Commit graph

261 commits

Author SHA1 Message Date
Concedo
a97f7d5f91 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.devops/full-cuda.Dockerfile
#	.devops/full-rocm.Dockerfile
#	.devops/full.Dockerfile
#	.devops/main-cuda.Dockerfile
#	.devops/main-intel.Dockerfile
#	.devops/main-rocm.Dockerfile
#	.devops/main.Dockerfile
#	.devops/server-cuda.Dockerfile
#	.devops/server-intel.Dockerfile
#	.devops/server-rocm.Dockerfile
#	.devops/server.Dockerfile
#	.devops/tools.sh
#	.github/workflows/docker.yml
#	CMakeLists.txt
#	Makefile
#	README-sycl.md
#	README.md
#	ci/run.sh
#	llama.cpp
#	requirements.txt
#	requirements/requirements-convert-hf-to-gguf-update.txt
#	requirements/requirements-convert-hf-to-gguf.txt
#	requirements/requirements-convert-legacy-llama.txt
#	requirements/requirements-convert-llama-ggml-to-gguf.txt
#	scripts/check-requirements.sh
#	scripts/compare-llama-bench.py
#	scripts/convert-gg.sh
#	scripts/pod-llama.sh
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.last
#	scripts/sync-ggml.sh
#	tests/CMakeLists.txt
#	tests/test-backend-ops.cpp
#	tests/test-tokenizer-0.sh
#	tests/test-tokenizer-random.py
2024-06-02 12:28:38 +08:00
Georgi Gerganov
5921b8f089
llama : cache llama_token_to_piece (#7587)
* llama : cache llama_token_to_piece

ggml-ci

* llama : use vectors and avoid has_cache

ggml-ci

* llama : throw on unknown tokenizer types

ggml-ci

* llama : print a log of the total cache size
2024-05-31 02:01:41 +10:00
Concedo
4ed9ba7352 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.github/workflows/docker.yml
#	CMakeLists.txt
#	Makefile
#	README.md
#	flake.lock
#	tests/test-backend-ops.cpp
2024-05-28 21:57:19 +08:00
Georgi Gerganov
eaf6e03174
llama : add comments about experimental flags (#7544) 2024-05-27 09:24:13 +03:00
Bartowski
c429b33beb
llama : add Smaug 70B support (#7402) 2024-05-26 15:28:35 +03:00
Justine Tunney
00c6390793
main : don't print special tokens with --grammar (#6923)
* main : don't print special tokens with --grammar

The CLI interface was recently changed to print special control tokens
like the </s> stop message one. This token shouldn't be printed if the
grammar flag was passed, unless the grammar specifies it, because that
breaks shell-scriptability.

* main: use seperate stream for control characters

* main: use dprintf and add --ctrl-token-no-out and --ctrl-token-fd-out

* main: dprintf isn't part of the IEEE POSIX standard. Just use write().

* main: remove --ctrl-token-fd-out in favor for fcntl() based detection

* common.cpp: accidentally removed --interactive-first

* main: only merge stdout and control token if not in conversation or grammar mode

* main: rejig control token descriptor handling

* main: must check pipe status on very top of program

* main: renamed --no-special from  --ctrl-token-no-out and other refactoring

* main: refactor ctrl_token_no_out --> no_special

* llama: rename llama_token_is_control_token() to llama_token_is_control()

* main: remove special token file descriptor feature (#5)

---------

Co-authored-by: Brian <mofosyne@gmail.com>
2024-05-25 19:04:03 +10:00
Concedo
9af4907b7f Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	README.md
#	ci/run.sh
2024-05-23 21:29:12 +08:00
Daniel Bevenius
3015851c5a
llama : add getters for n_threads/n_threads_batch (#7464)
* llama : add getters for n_threads/n_threads_batch

This commit adds two new functions to the llama API. The functions
can be used to get the number of threads used for generating a single
token and the number of threads used for prompt and batch processing
(multiple tokens).

The motivation for this is that we want to be able to get the number of
threads that the a context is using. The main use case is for a
testing/verification that the number of threads is set correctly.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! llama : add getters for n_threads/n_threads_batch

Rename the getters to llama_n_threads and llama_n_threads_batch.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-05-23 15:29:26 +03:00
Concedo
52f9911240 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.devops/nix/package.nix
#	.github/workflows/build.yml
#	.github/workflows/server.yml
#	CMakeLists.txt
#	Makefile
#	README.md
#	requirements.txt
#	scripts/LlamaConfig.cmake.in
2024-05-21 19:05:52 +08:00
Anas Ahouzi
6aade19ee7
Add StableLM2 pre-tokenizer (#7349)
* Add StableLM pre-tokenizer

* Fix space

* Fix trailing whitespace
2024-05-19 22:46:46 +10:00
Concedo
47cbfd6150 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.github/workflows/build.yml
#	CMakeLists.txt
#	README.md
#	llama.cpp
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.last
#	scripts/sync-ggml.sh
#	tests/test-backend-ops.cpp
2024-05-17 22:30:41 +08:00
Radoslav Gerganov
5e31828d3e
ggml : add RPC backend (#6829)
* ggml : add RPC backend

The RPC backend proxies all operations to a remote server which runs a
regular backend (CPU, CUDA, Metal, etc).

* set TCP_NODELAY

* add CI workflows

* Address review comments

* fix warning

* implement llama_max_devices() for RPC

* Address review comments

* Address review comments

* wrap sockfd into a struct

* implement get_alignment and get_max_size

* add get_device_memory

* fix warning

* win32 support

* add README

* readme : trim trailing whitespace

* Address review comments

* win32 fix

* Address review comments

* fix compile warnings on macos
2024-05-14 14:27:19 +03:00
Concedo
d084f78faa Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	CMakeLists.txt
#	Makefile
#	README.md
#	common/common.cpp
#	requirements/requirements-convert-hf-to-gguf-update.txt
#	requirements/requirements-convert-hf-to-gguf.txt
#	requirements/requirements-convert.txt
#	tests/CMakeLists.txt
#	tests/test-json-schema-to-grammar.cpp
2024-05-09 15:13:34 +08:00
Ren Xuancheng
229ffff872
llama : add BPE pre-tokenization for Qwen2 (#7114)
* Add BPE pre-tokenization for Qwen2.

* minor : fixes

---------

Co-authored-by: Ren Xuancheng <17811943+jklj077@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-08 15:06:43 +03:00
DAN™
4cd621c26d
convert : add BPE pre-tokenization for DBRX (#7132)
* Add BPE pre-tokenization for DBRX.

* Add vocab GGUFs.

* Remove test.

* Remove GGUFs.
2024-05-08 13:43:23 +03:00
Concedo
165a56088b Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	ggml.c
#	scripts/compare-llama-bench.py
#	tests/test-backend-ops.cpp
2024-05-08 18:19:28 +08:00
Justine Tunney
3855416027
ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
Concedo
bc39b4d98a Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	CMakeLists.txt
#	README.md
#	ci/run.sh
#	docs/BLIS.md
#	flake.lock
#	grammars/README.md
2024-05-08 09:58:23 +08:00
nopperl
b6aa670203
Fix OLMo HF to GGUF conversion (#6910) 2024-05-07 21:39:43 +02:00
Concedo
6c000cbe7a Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.flake8
#	.github/workflows/bench.yml
#	.github/workflows/python-lint.yml
#	.pre-commit-config.yaml
#	Makefile
#	README.md
#	models/ggml-vocab-bert-bge.gguf.inp
#	models/ggml-vocab-bert-bge.gguf.out
#	models/ggml-vocab-deepseek-coder.gguf.inp
#	models/ggml-vocab-deepseek-coder.gguf.out
#	models/ggml-vocab-deepseek-llm.gguf.inp
#	models/ggml-vocab-deepseek-llm.gguf.out
#	models/ggml-vocab-falcon.gguf.inp
#	models/ggml-vocab-falcon.gguf.out
#	models/ggml-vocab-gpt-2.gguf.inp
#	models/ggml-vocab-gpt-2.gguf.out
#	models/ggml-vocab-llama-bpe.gguf.inp
#	models/ggml-vocab-llama-bpe.gguf.out
#	models/ggml-vocab-llama-spm.gguf.inp
#	models/ggml-vocab-llama-spm.gguf.out
#	models/ggml-vocab-mpt.gguf.inp
#	models/ggml-vocab-mpt.gguf.out
#	models/ggml-vocab-phi-3.gguf
#	models/ggml-vocab-phi-3.gguf.inp
#	models/ggml-vocab-phi-3.gguf.out
#	models/ggml-vocab-refact.gguf
#	models/ggml-vocab-starcoder.gguf.inp
#	models/ggml-vocab-starcoder.gguf.out
#	requirements/requirements-convert.txt
#	scripts/compare-llama-bench.py
#	scripts/run-with-preset.py
#	scripts/verify-checksum-models.py
#	tests/CMakeLists.txt
#	tests/test-tokenizer-0.cpp
2024-05-06 18:09:45 +08:00
DAN™
889bdd7686
command-r : add BPE pre-tokenization (#7063)
* Add BPE pre-tokenization for Command-R/R+.

* Bump transformers convert requirement.

* command-r : add individual digits regex

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-05-05 08:19:30 +03:00
Georgi Gerganov
92139b90af
tests : add test-tokenizer-0.sh + fix some tokenizers (#7036)
* tests : add test-tokenizer-0.sh

* unicode : add all unicode number ranges

* starcoder : fix pre-tokenizer

* tests : add test that fails with DeepSeek tokenizers

* falcon : fix regex

* unicode : regenerate unicode tables

* refact : add tokenizer model

* lint : fix

* tests : disable failing tests

ggml-ci

* refact : add tests files

ggml-ci

* convert : print -> logging

ggml-ci

* lint : fix

* unicode : digit -> number

* phi-3 : update
2024-05-04 08:32:32 +03:00
Daniel Bevenius
433def286e
llama : rename ctx to user_data in progress_callback (#7045)
* llama : rename ctx to user_data in progress_callback

This commit renames the `ctx` parameter to `user_data` in the
`llama_progress_callback` typedef.

The motivation for this is that other callbacks use `user_data` or
`data`, and using `ctx` in this case might be confusing as it could be
confused with `llama_context`.

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-05-03 15:24:30 +02:00
Concedo
17a24d753c Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.devops/main-intel.Dockerfile
#	.devops/main-vulkan.Dockerfile
#	.devops/server-intel.Dockerfile
#	.devops/server-vulkan.Dockerfile
#	.github/workflows/bench.yml
#	.github/workflows/build.yml
#	.github/workflows/python-lint.yml
#	.github/workflows/server.yml
#	.gitignore
#	Makefile
#	README-sycl.md
#	README.md
#	ci/run.sh
#	flake.lock
#	llama.cpp
#	models/ggml-vocab-falcon.gguf
#	models/ggml-vocab-llama-spm.gguf
#	models/ggml-vocab-mpt.gguf
#	models/ggml-vocab-stablelm.gguf
#	models/ggml-vocab-starcoder.gguf
#	requirements.txt
#	scripts/check-requirements.sh
#	tests/CMakeLists.txt
#	tests/test-backend-ops.cpp
#	tests/test-grammar-integration.cpp
#	tests/test-tokenizer-0-bpe.py
#	tests/test-tokenizer-0-spm.py
#	tests/test-tokenizer-1-spm.cpp
2024-04-30 21:04:17 +08:00
Georgi Gerganov
9c67c2773d
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
Georgi Gerganov
f4ab2a4147
llama : fix BPE pre-tokenization (#6920)
* merged the changes from deepseeker models to main branch

* Moved regex patterns to unicode.cpp and updated unicode.h

* Moved header files

* Resolved issues

* added and refactored unicode_regex_split and related functions

* Updated/merged the deepseek coder pr

* Refactored code

* Adding unicode regex mappings

* Adding unicode regex function

* Added needed functionality, testing remains

* Fixed issues

* Fixed issue with gpt2 regex custom preprocessor

* unicode : fix? unicode_wstring_to_utf8

* lint : fix whitespaces

* tests : add tokenizer tests for numbers

* unicode : remove redundant headers

* tests : remove and rename tokenizer test scripts

* tests : add sample usage

* gguf-py : reader prints warnings on duplicate keys

* llama : towards llama3 tokenization support (wip)

* unicode : shot in the dark to fix tests on Windows

* unicode : first try custom implementations

* convert : add "tokenizer.ggml.pre" GGUF KV (wip)

* llama : use new pre-tokenizer type

* convert : fix pre-tokenizer type writing

* lint : fix

* make : add test-tokenizer-0-llama-v3

* wip

* models : add llama v3 vocab file

* llama : adapt punctuation regex + add llama 3 regex

* minor

* unicode : set bomb

* unicode : set bomb

* unicode : always use std::wregex

* unicode : support \p{N}, \p{L} and \p{P} natively

* unicode : try fix windows

* unicode : category support via std::regex

* unicode : clean-up

* unicode : simplify

* convert : add convert-hf-to-gguf-update.py

ggml-ci

* lint : update

* convert : add falcon

ggml-ci

* unicode : normalize signatures

* lint : fix

* lint : fix

* convert : remove unused functions

* convert : add comments

* convert : exercise contractions

ggml-ci

* lint : fix

* cmake : refactor test targets

* tests : refactor vocab tests

ggml-ci

* tests : add more vocabs and tests

ggml-ci

* unicode : cleanup

* scripts : ignore new update script in check-requirements.sh

* models : add phi-3, mpt, gpt-2, starcoder

* tests : disable obsolete

ggml-ci

* tests : use faster bpe test

ggml-ci

* llama : more prominent warning for old BPE models

* tests : disable test-tokenizer-1-bpe due to slowness

ggml-ci

---------

Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
2024-04-29 16:58:41 +03:00
Pierrick Hymbert
0c4d489e29
quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file

* llama: support kv overrides type string string

* common: factorize KV Overrides parsing between common and server

* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656

* llama: remove kv override str_value initialization as it does not compile on some toolchain

* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`

* quantize: add imatrix filename in KV

* llama: add llama_model_kv_override_free

* common: add llama_model_kv_override_free
common: free kv override if used after model loading

* llama: finally move the string KV override value to the stack

* llama : minor

* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.

Co-authored-by: slaren <slarengh@gmail.com>

* kv override: ensure string termination

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 20:06:33 +02:00
slaren
017e6999b5
add basic tensor data validation function (#6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-04-26 18:39:58 +02:00
Concedo
544c36f751 merge, deprecate openblas 2024-04-26 19:24:59 +08:00
jiez
1966eb2615
quantize : add '--keep-split' to quantize model into shards (#6688)
* Implement '--keep-split' to quantize model into several shards

* Add test script

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Split model correctly even if tensor id is out-of-order

* Update llama_model_quantize_params

* Fix preci failures

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-25 13:29:35 +03:00
Concedo
b56805a2ba Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	README.md
2024-04-25 18:09:12 +08:00
Concedo
a681cdd9ef Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	common/sampling.h
#	llama.h
#	tests/test-chat-template.cpp
2024-04-24 21:29:07 +08:00
Douglas Hanley
b4e4b8a935
llama : add llama_get_pooling_type function (#6862)
* add llama_get_pooling_type function

* fix argument name, move with ctx funcs
2024-04-24 16:10:07 +03:00
Johannes Gäßler
28103f4832
Server: fix seed for multiple slots (#6835)
* Server: add tests for consistent results

* sampling: separate rng per sampling context
2024-04-24 11:08:36 +02:00
Concedo
b4d2031215 merged, added ability to render special tokens 2024-04-22 18:19:58 +08:00
Georgi Gerganov
40f74e4d73
llama : add option to render special/control tokens (#6807)
* make : fix common dep on llama.h

* llama : add option to render special tokens

* readme : add API change notice

ggml-ci

* swift : fix build
2024-04-21 18:36:45 +03:00
Pedro Cuenca
b97bc3966e
llama : support Llama 3 HF conversion (#6745)
* Support Llama 3 conversion

The tokenizer is BPE.

* style

* Accept suggestion

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* llama : add llama_token_is_eog()

ggml-ci

* llama : auto-detect more EOT tokens when missing in KV data

* convert : replacing EOS token is a hack

* llama : fix codegemma EOT token + add TODOs

* llama : fix model type string for 8B model

---------

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-21 14:50:41 +03:00
Concedo
9a25d77cc1 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.github/workflows/build.yml
#	.github/workflows/docker.yml
#	Makefile
#	README-sycl.md
#	README.md
#	ci/run.sh
#	ggml-cuda.cu
#	ggml.c
#	grammars/README.md
#	scripts/get-wikitext-2.sh
#	scripts/hf.sh
#	scripts/sync-ggml.last
#	tests/test-backend-ops.cpp
#	tests/test-grammar-integration.cpp
#	tests/test-json-schema-to-grammar.cpp
2024-04-14 21:18:39 +08:00
Olivier Chafik
cbaadc9294
grammars: 1.5x faster inference w/ complex grammars (vector reserves / reuses) (#6609)
* grammars: reserve rejects & next candidates

* grammars: reuse new_stacks

* grammars: fix missing sig change in llama.h

* grammars: fix test (api changed)

* grammars: update gbnf-validator.cpp

* grammars: simpler syntax (no swap)
2024-04-11 19:47:34 +01:00
Jared Van Bortel
1b67731e18
BERT tokenizer fixes (#6498)
Key changes:
* BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS
* Nomic Embed conversion: pad vocab instead of slicing embedding tensor
* llama_tokenize: handle added special tokens like HF does
2024-04-09 13:44:08 -04:00
Concedo
d1bb126605 Merge branch 'upstream' into concedo
# Conflicts:
#	README.md
#	llama.cpp
#	otherarch/sdcpp/SDCPP_LICENSE
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.sh
2024-04-09 17:18:35 +08:00
Rick G
e3c337d87c
llama : support negative ith in llama_get_ API (#6519)
* llama_sampling_sample with default args is more naively usable

* Batches populated by either llama_batch_get_one or llama_batch_add work with default args
  * Previously get_one could use the default argument
  * Previously add should usually have used the last index where logits[idx] == true
* This hopefully encourages the use of llama_batch_add
  * By giving expected results when using default arguments.
* Adds "negative indexing" feature to llama_get_logits_ith and llama_get_embeddings_ith
* Believed to work with any currently well behaved program
  * Default arg now works for both cases (previously would give strange results for add case)
  * Any non-negative number is unaffected and behaves as previously
  * Negative arguments were previously invalid.
* Implemented as a special case of indexing as suggested by @compilade in https://github.com/ggerganov/llama.cpp/pull/6519

* Fixed mismatch type errors

* cited in macOS CI tests
* Missed in original updates based on PR feedback in https://github.com/ggerganov/llama.cpp/pull/6519
2024-04-08 16:02:30 +03:00
Jan Boon
beea6e1b16
llama : save and restore kv cache for single seq id (#6341)
* llama : save and restore kv cache for single seq id

* remove trailing whitespace

* respond error in case there's no space in the kv cache

* add kv seq save restore to test case

* add --slot-save-path arg to enable save restore and restrict save location

* Returning 0 for some cases, instead of asserting.

* cleanup error cases

* rename sequence state functions

* rename state get set functions

* add previous function names back in with DEPRECATED notice

* update doc

* adjust endpoints to preferred style

* fix restoring zero cell count

* handle seq rm return value

* unused param

* keep in the size check

* fix return types

* add server test case for slot save restore

* cleanup

* add cake

* cleanup style

* add special

* removing a whole sequence never fails

* move sequence state file functionality from server to llama to match session api and add version tags

* catch exceptions on save as well

* error log messages

* check types for stricter restore

* update server doc

* readme : update API changes date

* strict filename validation

* move include, reject bom as well

* also reject empty filename

* reject whitespace and trailing dot

---------

Co-authored-by: Martin Evans <martindevans@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-08 15:43:30 +03:00
Concedo
81ac0e5656 Merge branch 'upstream' into concedo_experimental
# Conflicts:
#	.devops/full-cuda.Dockerfile
#	.devops/full-rocm.Dockerfile
#	.devops/full.Dockerfile
#	.devops/llama-cpp-clblast.srpm.spec
#	.devops/llama-cpp-cuda.srpm.spec
#	.devops/llama-cpp.srpm.spec
#	.devops/nix/package.nix
#	.devops/server-cuda.Dockerfile
#	.devops/server-intel.Dockerfile
#	.devops/server-rocm.Dockerfile
#	.devops/server-vulkan.Dockerfile
#	.devops/server.Dockerfile
#	.github/workflows/build.yml
#	.github/workflows/code-coverage.yml
#	.github/workflows/docker.yml
#	.github/workflows/editorconfig.yml
#	.github/workflows/gguf-publish.yml
#	.github/workflows/nix-ci-aarch64.yml
#	.github/workflows/nix-ci.yml
#	.github/workflows/python-check-requirements.yml
#	.github/workflows/python-lint.yml
#	.github/workflows/server.yml
#	.github/workflows/zig-build.yml
#	CMakeLists.txt
#	Makefile
#	README-sycl.md
#	README.md
#	ci/run.sh
#	examples/gguf-split/gguf-split.cpp
#	flake.lock
#	flake.nix
#	llama.cpp
#	scripts/compare-llama-bench.py
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.last
#	scripts/sync-ggml.sh
#	tests/CMakeLists.txt
#	tests/test-backend-ops.cpp
#	tests/test-chat-template.cpp
2024-04-07 22:07:27 +08:00
Concedo
22f543d09b Merge commit '32c8486e1f' into concedo_experimental
# Conflicts:
#	.devops/nix/package.nix
#	CMakeLists.txt
#	Makefile
#	Package.swift
#	README.md
#	build.zig
#	llama.cpp
#	tests/test-backend-ops.cpp
2024-04-07 20:39:17 +08:00
Concedo
9c0fbf9f73 Merge commit 'ad3a0505e3' into concedo_experimental
# Conflicts:
#	.github/workflows/build.yml
#	.github/workflows/close-issue.yml
#	.github/workflows/code-coverage.yml
#	.github/workflows/docker.yml
#	.github/workflows/editorconfig.yml
#	.github/workflows/nix-ci-aarch64.yml
#	.github/workflows/nix-ci.yml
#	.github/workflows/python-check-requirements.yml
#	.github/workflows/python-lint.yml
#	.github/workflows/server.yml
#	.github/workflows/zig-build.yml
#	.gitignore
#	CMakeLists.txt
#	Makefile
#	README-sycl.md
#	README.md
#	build.zig
#	common/CMakeLists.txt
#	llama.cpp
#	tests/CMakeLists.txt
#	tests/test-backend-ops.cpp
2024-04-06 18:32:57 +08:00
Clint Herron
9b84ae1806
examples : add GBNF validator program (#5948)
* Revising GBNF validator program to be much simpler.

* Changing from streams to using cstdio

* Adding final newline character.
2024-04-04 10:44:28 +03:00
Jared Van Bortel
be55134a53
convert : refactor vocab selection logic (#6355) 2024-03-28 11:44:36 -04:00
compilade
557410b8f0
llama : greatly reduce output buffer memory usage (#6122)
* llama : greatly reduce logits memory usage

* llama : more compact state saving and reloading

* llama : fix lctx.n_outputs not being set before building graph

* perplexity : adapt to the logits API changes

* perplexity : fix Winogrande, use correct logits for second choice start

The first logits used to evaluate the second choice were not from
the end of the common prefix; instead, they were the logits from the end
of the first choice. This has been corrected.

The previous implementation sometimes had outliers in the scores of
choices for some tasks, and the logic to skip choices words
in the log-likelihood evaluation probably was an attempt to reduce those,
but it was complex and didn't quite seem to be the right thing.

This is simpler now, and the outlier scores aren't there anymore.

* perplexity : normalize spaces and punctuation in Winogrande sentences

* llama : fix embedding conditions

* llama : fix llama_get_embeddings_ith when the resulting id is 0

* llama : fix wrong n_outputs in llama_set_inputs

A mismatch happened when using a smaller n_ubatch than n_batch and then using
llama_batch_get_one(). The decision of what n_outputs should be now almost
fully depends on how lctx.n_outputs is set in llama_decode_internal.
The conditions are simpler this way.

* llama : when saving the state, recalculate n_outputs

This ensures the correct number of outputs for the entire previous batch
is stored in the session file, even when n_ubatch is smaller than n_batch.

* llama : fix not-skipping outputs of non-causal models

* llama : fix running a batch with n_outputs == 0

It previously worked because lctx.inp_out_ids was not initialized,
so it pointed to some garbage address which was somehow still valid when I
ran my tests.

* llama : keep same graph topology even when n_outputs == 0

* ggml : saner ggml_can_repeat with empty tensors

*  ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1

* ggml : do not multi-thread ops returning empty tensors

* ggml : make ggml_is_empty public and work with views

* llama : use a vector for ctx->output_ids

* llama : rework reallocation logic for llama_output_reserve

Now comparing the actual size with the new total size of the output buffer
to allow more efficient enabling and disabling of the embeddings
and/or logits output in the future.

* ggml : skip empty tensors in all backends

* llama : fix llama_output_reserve nullptr deref when new_size is 0

* perplexity : make Winogrande work as it does on master

The problems with the Winogrande implementation will
need to be fixed in a separate PR to ease review.

* llama : clearer error messages for invalid logits or embeddings ids

* llama : assert all models that can have inp_out_ids

Since the graph topology is now constant, this presence check
can be done even when there are no outputs.

* llama : assert logits and embd buffers exist before writing to them

* llama : handle errors from llama_output_reserve at call sites

* perplexity : make hellaswag and multiple-choice outputs identical to master

Due to how the KV cache is updated, the logprobs for tokens in a batch
are very slightly affected by the other tokens present in the batch,
so to make hellaswag and multiple-choice return exactly the same results
as on master, the last token of each sequence needs to be evaluated
even though its output is not used at all.

This will probably be changed back in the future to make these benchmarks
a tiny bit faster.

* perplexity : fix division by zero when using less than 100 multiple-choice tasks

* llama : allow loading state saved with a different ctx size

When loading a session file, the context size is now only required to be
at least enough to load the KV cells contained in that session file,
instead of requiring to use exactly the same context size as when saving.

Doing this enables the use-case of extending or shrinking the context size
of a saved session.

This breaks existing session files because the meaning of kv_buf_size
is slightly changed (previously it was the size of the whole KV cache,
now it's only the size of the saved part of it). This allows for
finer-grained sanity checks when loading in an effort to keep kv_buf_size
useful even when the kv_size is changed.

* llama : minor

ggml-ci

* readme : update recent API changes, and warn about Vulkan

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 16:46:41 +02:00
Kawrakow
55c1b2a3bb
IQ1_M: 1.75 bpw quantization (#6302)
* iq1_m: basics

* iq1_m: basics-2

* iq1_m: CUDA dequantize works

Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.

* iq1_m: separate shifts for each group of 8 in a block

We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105

Not bad, but slightly higher than
  sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
 PPL = 9.14 for LLaMA-v2-7B
 PPL = 6.63 for LLaMA-v2-13B

* iq1_m: go to 3-bit scales

There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.

We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw

* iq1_m: scalar dot product

* iq1_m: AVX2 dot product

* iq1_m: very slightly faster AVX2 dot product

* iq1_m: ARM_NEON dot product

Works, but very slow (10.5 t/s)

* iq1_m: Metal - dequantize works, dot product does not

* iq1_m: Metal now works

About the same performance as iq1_s.

* iq1_m: minor

* iq1_m: checking pure iq1_m quantization

It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.

* iiq1_m: slightly faster ARM_NEON dot product

10.5 t/s -> 11.65 t/s

* iq1_m: faster ARM_NEON dot product

11.65 t/s -> 14.9 t/s

* iq1_m: another minor ARM_NEON dot product improvement

14.9 -> 15.0 t/s

* iq1_m: small PPL improvement via super-block scale adjustment

After quantizing block scales redo the super-block scale fit.

PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B  ) = 8.1624

* iq1_m: adapt to CUDA refactoring

* iq1_m: remove unused variable

We have progressed to warnings being errors.

* iq1_m: add to backend-ops tests

* iq1_m: fix Windows ARM

* iq1_m: use common definition of iq1m_scale_t

* cuda: assert -> NO_DEVICE_CODE

* iq1_M: PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 15:21:27 +01:00