* vulkan: support SET_ROWS
Add variants of the copy_to_quant shader that do the SET_ROWS operation.
Change these shaders to spread the work across the workgroup.
The memory access pattern is probably not great (one thread per quant block),
but should be fine for now.
* vulkan: optimize set_rows
Larger workgroups for non-quant types.
Set "norepeat" (there is manual repeat logic).
Use fastmod.
* implement unary REGLU/GEGLU/SWIGLU cpu ops
* relax constraints
* duplicate shape of source
* fix ggml_vec_geglu_f16
* special case gated ops
* implement unary REGLU/GEGLU/SWIGLU cuda ops
* tighten constraints again
* refactor into GGML_GLU_OP
* metal : add glu kernels
ggml-ci
* add CUDA_GLU_BLOCK_SIZE [no ci]
* more constraints and use 64bit ints
ggml-ci
* 64bit multiplication [no ci]
* implement swapped variants (cpu/cuda)
* update comment [no ci]
ggml-ci
* Vulkan: Add GLU ops and shaders
* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate
* ggml : implement GLU for split up/gate (#14181)
* implement GLU for split up/gate
* add tests for ggml_glu_split
* Vulkan: Implement glu_split logic and shader support
* add split to logging [no ci]
* SYCL: refactor element_size ops and add split up and gate support to gated kernels
* SYCL: switch GEGLU to use tanh approximation
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
* GGML: increase OP count in assertion
* Refactor: Optimize SYCL element-wise operations with unary function inlining
This commit refactors the SYCL element-wise operations to improve performance by:
- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.
The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.
* vulkan: Increase workgroup size for GLU, for performance (#14345)
* vulkan: Increase workgroup size for GLU, for performance
* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup
* merge fix
* metal : add support for split and swap
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Add fusion support for RMS_NORM+MUL
- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.
* extract some common fusion logic
* fix -Winconsistent-missing-override
* move ggml_can_fuse to a common function
* build fix
* C and C++ versions of can_fuse
* move use count to the graph to avoid data races and double increments when used in multiple threads
* use hash table lookup to find node index
* change use_counts to be indexed by hash table slot
* minimize hash lookups
style fixes
* last node doesn't need single use.
fix type.
handle mul operands being swapped.
* remove redundant parameter
---------
Co-authored-by: slaren <slarengh@gmail.com>
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D
* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D
* Missing barrier added to shader.
Number of additional tests reduced to 108.
* * Fixes typo in variable name.
* Removes extra whitespaces.
* Adds int64->int32 casts to prevent possible warnings.
* Problem size reduced in tests to pass tests with llvmpipe.
* supports_op condition moved from unintended position
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
* vulkan: scalar flash attention implementation
* vulkan: always use fp32 for scalar flash attention
* vulkan: use vector loads in scalar flash attention shader
* vulkan: remove PV matrix, helps with register usage
* vulkan: reduce register usage in scalar FA, but perf may be slightly worse
* vulkan: load each Q value once. optimize O reduction. more tuning
* vulkan: support q4_0/q8_0 KV in scalar FA
* CI: increase timeout to accommodate newly-supported tests
* vulkan: for scalar FA, select between 1 and 8 rows
* vulkan: avoid using Float16 capability in scalar FA
* vulkan: Add bfloat16 support
This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.
It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.
The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.
* vulkan: Support bf16 tensors without the bf16 extension or coopmat support
Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.
* vulkan: bfloat16 fixes (really works without bfloat16 support now)
* vulkan: fix spirv-val failure and reenable -O
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders
* vulkan: Optimize mul_mat_vec p021 and nc shaders.
These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).
Using subgroupAdd in the p021 shader also helps, use that conditionally.
* vulkan: implement specialized MMV kernels for IQ2 quantizations
* vulkan: add MMV kernels for IQ3 quants
* vulkan: Increase MMV batch size and unroll IQ LUT setup
* vulkan: fix init_iq_shmem for WG sizes larger than tables
* vulkan: common batch size for all I-quants