* vulkan: support SET_ROWS
Add variants of the copy_to_quant shader that do the SET_ROWS operation.
Change these shaders to spread the work across the workgroup.
The memory access pattern is probably not great (one thread per quant block),
but should be fine for now.
* vulkan: optimize set_rows
Larger workgroups for non-quant types.
Set "norepeat" (there is manual repeat logic).
Use fastmod.
* implement unary REGLU/GEGLU/SWIGLU cpu ops
* relax constraints
* duplicate shape of source
* fix ggml_vec_geglu_f16
* special case gated ops
* implement unary REGLU/GEGLU/SWIGLU cuda ops
* tighten constraints again
* refactor into GGML_GLU_OP
* metal : add glu kernels
ggml-ci
* add CUDA_GLU_BLOCK_SIZE [no ci]
* more constraints and use 64bit ints
ggml-ci
* 64bit multiplication [no ci]
* implement swapped variants (cpu/cuda)
* update comment [no ci]
ggml-ci
* Vulkan: Add GLU ops and shaders
* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate
* ggml : implement GLU for split up/gate (#14181)
* implement GLU for split up/gate
* add tests for ggml_glu_split
* Vulkan: Implement glu_split logic and shader support
* add split to logging [no ci]
* SYCL: refactor element_size ops and add split up and gate support to gated kernels
* SYCL: switch GEGLU to use tanh approximation
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
* GGML: increase OP count in assertion
* Refactor: Optimize SYCL element-wise operations with unary function inlining
This commit refactors the SYCL element-wise operations to improve performance by:
- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.
The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.
* vulkan: Increase workgroup size for GLU, for performance (#14345)
* vulkan: Increase workgroup size for GLU, for performance
* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup
* merge fix
* metal : add support for split and swap
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Add fusion support for RMS_NORM+MUL
- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.
* extract some common fusion logic
* fix -Winconsistent-missing-override
* move ggml_can_fuse to a common function
* build fix
* C and C++ versions of can_fuse
* move use count to the graph to avoid data races and double increments when used in multiple threads
* use hash table lookup to find node index
* change use_counts to be indexed by hash table slot
* minimize hash lookups
style fixes
* last node doesn't need single use.
fix type.
handle mul operands being swapped.
* remove redundant parameter
---------
Co-authored-by: slaren <slarengh@gmail.com>
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D
* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D
* Missing barrier added to shader.
Number of additional tests reduced to 108.
* * Fixes typo in variable name.
* Removes extra whitespaces.
* Adds int64->int32 casts to prevent possible warnings.
* Problem size reduced in tests to pass tests with llvmpipe.
* supports_op condition moved from unintended position
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
* vulkan: scalar flash attention implementation
* vulkan: always use fp32 for scalar flash attention
* vulkan: use vector loads in scalar flash attention shader
* vulkan: remove PV matrix, helps with register usage
* vulkan: reduce register usage in scalar FA, but perf may be slightly worse
* vulkan: load each Q value once. optimize O reduction. more tuning
* vulkan: support q4_0/q8_0 KV in scalar FA
* CI: increase timeout to accommodate newly-supported tests
* vulkan: for scalar FA, select between 1 and 8 rows
* vulkan: avoid using Float16 capability in scalar FA
* vulkan: Add bfloat16 support
This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.
It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.
The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.
* vulkan: Support bf16 tensors without the bf16 extension or coopmat support
Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.
* vulkan: bfloat16 fixes (really works without bfloat16 support now)
* vulkan: fix spirv-val failure and reenable -O
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders
* vulkan: Optimize mul_mat_vec p021 and nc shaders.
These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).
Using subgroupAdd in the p021 shader also helps, use that conditionally.
* vulkan: implement specialized MMV kernels for IQ2 quantizations
* vulkan: add MMV kernels for IQ3 quants
* vulkan: Increase MMV batch size and unroll IQ LUT setup
* vulkan: fix init_iq_shmem for WG sizes larger than tables
* vulkan: common batch size for all I-quants
* vulkan: initial support for IQ1_S and IQ1_M quantizations
* vulkan: define MMV kernels for IQ1 quantizations
* devops: increase timeout of Vulkan tests again
* vulkan: simplify ifdef for init_iq_shmem
* vulkan: initial support for IQ3_S
* vulkan: initial support for IQ3_XXS
* vulkan: initial support for IQ2_XXS
* vulkan: initial support for IQ2_XS
* vulkan: optimize Q3_K by removing branches
* vulkan: implement dequantize variants for coopmat2
* vulkan: initial support for IQ2_S
* vulkan: vertically realign code
* port failing dequant callbacks from mul_mm
* Fix array length mismatches
* vulkan: avoid using workgroup size before it is referenced
* tests: increase timeout for Vulkan llvmpipe backend
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.
coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl
Shaders are based on cpy.cu.
* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32
* ggml: copy q->f32 assumes some contiguity in the destination
* fix: ggml: fix vulkan-shaders-gen build
The vulkan-shaders-gen target was not being built correctly
in case of cross-compilation.
Other outputs need to be built for the cross compile target,
but vulkan-shaders-gen needs to be built for the host.
* refactor: ggml: Improve vulkan-shaders-gen toolchain setup
- Add GGML_SHADERS_GEN_TOOLCHAIN CMake option.
- Auto-detect host toolchain if not set.
* refactor: ggml: Improve vulkan-shaders-gen toolchain setup
Use configure_file to generate host_toolchain.cmake from template
* fix: ggml: Fix compile error
Fix compile error not finding vulkan-shaders-gen
* fix: vulkan-shaders-gen build and path handling
Fix build issues with vulkan-shaders-gen:
- Add target dependency for correct build order
- Use CMAKE_HOST_SYSTEM_NAME for executable suffix
- Fix MSVC output directory in host toolchain
- Normalize path handling for cross-compilation
* fix: improve host compiler detection in vulkan shader build
Improve host compiler detection for vulkan shader generation:
- Add NO_CMAKE_FIND_ROOT_PATH to all compiler searches
- Consolidate compiler detection logic
- Fix Windows-specific MSVC detection
- Ensure correct compiler search in cross-compilation
* refactor: Simplify CMake function for detecting host compiler
Simplified the CMake function to improve the process of detecting the host compiler.
* fix: Remove unnecessary Vulkan library linkage in CMakeLists.txt
Since `vulkan-shader-gen.cpp` only requires the `glslc` executable
and not the Vulkan headers or libraries, CMakeLists.txt needs to
be corrected.
(See: ecc93d0558)
* refactor: Rename host_toolchain.cmake.in
- Rename host_toolchain.cmake.in to cmake/host-toolchain.cmake.in
* refactor: GGML_VULKAN_SHADERS_GEN_TOOLCHAIN
Rename the macro GGML_SHADERS_GEN_TOOLCHAIN to GGML_VULKAN_SHADERS_GEN_TOOLCHAIN
* Disable GL_KHR_cooperative_matrix Vulkan extension if not available.
* Perform Vulkan extensions checks in a more sensible order
* Remove unnecessary #ifdef directive
Warning types fixed (observed under MSYS2 GCC 14.2.0):
* format '%ld' expects argument of type 'long int', but argument has type 'size_t'
* llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers] (emitted for all struct field except first)
Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls
feature allows rounding mode to be requested if the implementation supports it.
There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly
necessary anyway.
Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it
changes.
Fix coopmat support reporting when glslc doesn't support NV_coopmat2.
* Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader
* Improve performance with better q4_k and q5_k dequant and store unrolling
* Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection
* Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device
* Vulkan: Implement accumulator switch for specific mul mat mat shaders
* Vulkan: Unroll more loops for more mul mat mat performance
* Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic
* Disable coopmat support on AMD proprietary driver
* Remove redundant checks
* Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support
* Fix rebase typo
* Fix coopmat2 MUL_MAT_ID pipeline selection
The vulkan-shaders-gen was not parsing the --no-clean argument correctly.
Because the previous code was parsing the arguments which have a value only
and the --no-clean argument does not have a value, it was not being parsed
correctly. This commit can now correctly parse arguments that don't have values.
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.
Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.
Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.
* vulkan: Add GLSL structure aliases for quant types to allow larger loads
In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.
* vulkan: use larger loads in q5_k and q6_k shaders.
Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.
* vulkan: use larger K step per iteration in mul_mat_vec.
Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.
The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.
Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.
Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.
Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.