mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
updated sdcpp prepare for inpaint
fixed img2img (+1 squashed commits) Squashed commits: [42c48f14] try update sdcpp, feels kind of buggy
This commit is contained in:
parent
ebf924c5d1
commit
fea3b2bd4a
18 changed files with 1850 additions and 271 deletions
|
@ -25,11 +25,15 @@ static float pending_apply_lora_power = 1.0f;
|
|||
|
||||
const char* model_version_to_str[] = {
|
||||
"SD 1.x",
|
||||
"SD 1.x Inpaint",
|
||||
"SD 2.x",
|
||||
"SD 2.x Inpaint",
|
||||
"SDXL",
|
||||
"SDXL Inpaint",
|
||||
"SVD",
|
||||
"SD3.x",
|
||||
"Flux"};
|
||||
"Flux",
|
||||
"Flux Fill"};
|
||||
|
||||
const char* sampling_methods_str[] = {
|
||||
"Euler A",
|
||||
|
@ -42,6 +46,8 @@ const char* sampling_methods_str[] = {
|
|||
"iPNDM",
|
||||
"iPNDM_v",
|
||||
"LCM",
|
||||
"DDIM \"trailing\"",
|
||||
"TCD"
|
||||
};
|
||||
|
||||
/*================================================== Helper Functions ================================================*/
|
||||
|
@ -302,7 +308,7 @@ public:
|
|||
model_loader.set_wtype_override(wtype);
|
||||
}
|
||||
|
||||
if (version == VERSION_SDXL) {
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
vae_wtype = GGML_TYPE_F32;
|
||||
model_loader.set_wtype_override(GGML_TYPE_F32, "vae.");
|
||||
}
|
||||
|
@ -314,7 +320,7 @@ public:
|
|||
|
||||
LOG_DEBUG("ggml tensor size = %d bytes", (int)sizeof(ggml_tensor));
|
||||
|
||||
if (version == VERSION_SDXL) {
|
||||
if (sd_version_is_sdxl(version)) {
|
||||
scale_factor = 0.13025f;
|
||||
if (vae_path.size() == 0 && taesd_path_fixed.size() == 0) {
|
||||
LOG_WARN(
|
||||
|
@ -368,7 +374,7 @@ public:
|
|||
diffusion_model = std::make_shared<MMDiTModel>(backend, model_loader.tensor_storages_types);
|
||||
} else if (sd_version_is_flux(version)) {
|
||||
cond_stage_model = std::make_shared<FluxCLIPEmbedder>(clip_backend, model_loader.tensor_storages_types);
|
||||
diffusion_model = std::make_shared<FluxModel>(backend, model_loader.tensor_storages_types, diffusion_flash_attn);
|
||||
diffusion_model = std::make_shared<FluxModel>(backend, model_loader.tensor_storages_types, version, diffusion_flash_attn);
|
||||
} else {
|
||||
if (id_embeddings_path.find("v2") != std::string::npos) {
|
||||
cond_stage_model = std::make_shared<FrozenCLIPEmbedderWithCustomWords>(clip_backend, model_loader.tensor_storages_types, embeddings_path, version, PM_VERSION_2);
|
||||
|
@ -556,8 +562,12 @@ public:
|
|||
|
||||
// check is_using_v_parameterization_for_sd2
|
||||
bool is_using_v_parameterization = false;
|
||||
if (version == VERSION_SD2) {
|
||||
if (is_using_v_parameterization_for_sd2(ctx)) {
|
||||
if (sd_version_is_sd2(version)) {
|
||||
if (is_using_v_parameterization_for_sd2(ctx, sd_version_is_inpaint(version))) {
|
||||
is_using_v_parameterization = true;
|
||||
}
|
||||
} else if (sd_version_is_sdxl(version)) {
|
||||
if (model_loader.tensor_storages_types.find("v_pred") != model_loader.tensor_storages_types.end()) {
|
||||
is_using_v_parameterization = true;
|
||||
}
|
||||
} else if (version == VERSION_SVD) {
|
||||
|
@ -631,7 +641,7 @@ public:
|
|||
return true;
|
||||
}
|
||||
|
||||
bool is_using_v_parameterization_for_sd2(ggml_context* work_ctx) {
|
||||
bool is_using_v_parameterization_for_sd2(ggml_context* work_ctx, bool is_inpaint = false) {
|
||||
struct ggml_tensor* x_t = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 4, 1);
|
||||
ggml_set_f32(x_t, 0.5);
|
||||
struct ggml_tensor* c = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 1024, 2, 1, 1);
|
||||
|
@ -639,9 +649,15 @@ public:
|
|||
|
||||
struct ggml_tensor* timesteps = ggml_new_tensor_1d(work_ctx, GGML_TYPE_F32, 1);
|
||||
ggml_set_f32(timesteps, 999);
|
||||
|
||||
struct ggml_tensor* concat = is_inpaint ? ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 8, 8, 5, 1) : NULL;
|
||||
if (concat != NULL) {
|
||||
ggml_set_f32(concat, 0);
|
||||
}
|
||||
|
||||
int64_t t0 = ggml_time_ms();
|
||||
struct ggml_tensor* out = ggml_dup_tensor(work_ctx, x_t);
|
||||
diffusion_model->compute(n_threads, x_t, timesteps, c, NULL, NULL, NULL, -1, {}, 0.f, &out);
|
||||
diffusion_model->compute(n_threads, x_t, timesteps, c, concat, NULL, NULL, -1, {}, 0.f, &out);
|
||||
diffusion_model->free_compute_buffer();
|
||||
|
||||
double result = 0.f;
|
||||
|
@ -683,7 +699,7 @@ public:
|
|||
}
|
||||
|
||||
lora.multiplier = multiplier;
|
||||
lora.apply(tensors, n_threads);
|
||||
lora.apply(tensors, version, n_threads);
|
||||
lora.free_params_buffer();
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
@ -713,7 +729,8 @@ public:
|
|||
}
|
||||
|
||||
lora.multiplier = multiplier;
|
||||
lora.apply(tensors, n_threads);
|
||||
// TODO: send version?
|
||||
lora.apply(tensors, version, n_threads);
|
||||
lora.free_params_buffer();
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
|
@ -729,19 +746,20 @@ public:
|
|||
for (auto& kv : lora_state) {
|
||||
const std::string& lora_name = kv.first;
|
||||
float multiplier = kv.second;
|
||||
|
||||
if (curr_lora_state.find(lora_name) != curr_lora_state.end()) {
|
||||
float curr_multiplier = curr_lora_state[lora_name];
|
||||
float multiplier_diff = multiplier - curr_multiplier;
|
||||
if (multiplier_diff != 0.f) {
|
||||
lora_state_diff[lora_name] = multiplier_diff;
|
||||
}
|
||||
} else {
|
||||
lora_state_diff[lora_name] = multiplier;
|
||||
}
|
||||
lora_state_diff[lora_name] += multiplier;
|
||||
}
|
||||
for (auto& kv : curr_lora_state) {
|
||||
const std::string& lora_name = kv.first;
|
||||
float curr_multiplier = kv.second;
|
||||
lora_state_diff[lora_name] -= curr_multiplier;
|
||||
}
|
||||
|
||||
LOG_INFO("Attempting to apply %lu LoRAs", lora_state.size());
|
||||
size_t rm = lora_state_diff.size() - lora_state.size();
|
||||
if (rm != 0) {
|
||||
LOG_INFO("Attempting to apply %lu LoRAs (removing %lu applied LoRAs)", lora_state.size(), rm);
|
||||
} else {
|
||||
LOG_INFO("Attempting to apply %lu LoRAs", lora_state.size());
|
||||
}
|
||||
|
||||
for (auto& kv : lora_state_diff) {
|
||||
apply_lora(kv.first, kv.second);
|
||||
|
@ -848,6 +866,7 @@ public:
|
|||
float min_cfg,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
sample_method_t method,
|
||||
const std::vector<float>& sigmas,
|
||||
int start_merge_step,
|
||||
|
@ -855,7 +874,20 @@ public:
|
|||
std::vector<int> skip_layers = {},
|
||||
float slg_scale = 0,
|
||||
float skip_layer_start = 0.01,
|
||||
float skip_layer_end = 0.2) {
|
||||
float skip_layer_end = 0.2,
|
||||
ggml_tensor* noise_mask = nullptr) {
|
||||
LOG_DEBUG("Sample");
|
||||
struct ggml_init_params params;
|
||||
size_t data_size = ggml_row_size(init_latent->type, init_latent->ne[0]);
|
||||
for (int i = 1; i < 4; i++) {
|
||||
data_size *= init_latent->ne[i];
|
||||
}
|
||||
data_size += 1024;
|
||||
params.mem_size = data_size * 3;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
ggml_context* tmp_ctx = ggml_init(params);
|
||||
|
||||
size_t steps = sigmas.size() - 1;
|
||||
// noise = load_tensor_from_file(work_ctx, "./rand0.bin");
|
||||
// print_ggml_tensor(noise);
|
||||
|
@ -1014,10 +1046,23 @@ public:
|
|||
pretty_progress(step, (int)steps, (t1 - t0) / 1000000.f);
|
||||
// LOG_INFO("step %d sampling completed taking %.2fs", step, (t1 - t0) * 1.0f / 1000000);
|
||||
}
|
||||
if (noise_mask != nullptr) {
|
||||
for (int64_t x = 0; x < denoised->ne[0]; x++) {
|
||||
for (int64_t y = 0; y < denoised->ne[1]; y++) {
|
||||
float mask = ggml_tensor_get_f32(noise_mask, x, y);
|
||||
for (int64_t k = 0; k < denoised->ne[2]; k++) {
|
||||
float init = ggml_tensor_get_f32(init_latent, x, y, k);
|
||||
float den = ggml_tensor_get_f32(denoised, x, y, k);
|
||||
ggml_tensor_set_f32(denoised, init + mask * (den - init), x, y, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return denoised;
|
||||
};
|
||||
|
||||
sample_k_diffusion(method, denoise, work_ctx, x, sigmas, rng);
|
||||
sample_k_diffusion(method, denoise, work_ctx, x, sigmas, rng, eta);
|
||||
|
||||
x = denoiser->inverse_noise_scaling(sigmas[sigmas.size() - 1], x);
|
||||
|
||||
|
@ -1234,6 +1279,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
|
@ -1248,7 +1294,8 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
std::vector<int> skip_layers = {},
|
||||
float slg_scale = 0,
|
||||
float skip_layer_start = 0.01,
|
||||
float skip_layer_end = 0.2) {
|
||||
float skip_layer_end = 0.2,
|
||||
ggml_tensor* masked_image = NULL) {
|
||||
if (seed < 0) {
|
||||
// Generally, when using the provided command line, the seed is always >0.
|
||||
// However, to prevent potential issues if 'stable-diffusion.cpp' is invoked as a library
|
||||
|
@ -1294,7 +1341,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
if (sd_ctx->sd->stacked_id) {
|
||||
if (!sd_ctx->sd->pmid_lora->applied) {
|
||||
t0 = ggml_time_ms();
|
||||
sd_ctx->sd->pmid_lora->apply(sd_ctx->sd->tensors, sd_ctx->sd->n_threads);
|
||||
sd_ctx->sd->pmid_lora->apply(sd_ctx->sd->tensors, sd_ctx->sd->version, sd_ctx->sd->n_threads);
|
||||
t1 = ggml_time_ms();
|
||||
sd_ctx->sd->pmid_lora->applied = true;
|
||||
LOG_INFO("pmid_lora apply completed, taking %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
|
@ -1404,7 +1451,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
SDCondition uncond;
|
||||
if (cfg_scale != 1.0) {
|
||||
bool force_zero_embeddings = false;
|
||||
if (sd_ctx->sd->version == VERSION_SDXL && negative_prompt.size() == 0) {
|
||||
if (sd_version_is_sdxl(sd_ctx->sd->version) && negative_prompt.size() == 0) {
|
||||
force_zero_embeddings = true;
|
||||
}
|
||||
uncond = sd_ctx->sd->cond_stage_model->get_learned_condition(work_ctx,
|
||||
|
@ -1441,6 +1488,39 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
int W = width / 8;
|
||||
int H = height / 8;
|
||||
LOG_INFO("sampling using %s method", sampling_methods_str[sample_method]);
|
||||
ggml_tensor* noise_mask = nullptr;
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
if (masked_image == NULL) {
|
||||
int64_t mask_channels = 1;
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
mask_channels = 8 * 8; // flatten the whole mask
|
||||
}
|
||||
// no mask, set the whole image as masked
|
||||
masked_image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, init_latent->ne[0], init_latent->ne[1], mask_channels + init_latent->ne[2], 1);
|
||||
for (int64_t x = 0; x < masked_image->ne[0]; x++) {
|
||||
for (int64_t y = 0; y < masked_image->ne[1]; y++) {
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
// TODO: this might be wrong
|
||||
for (int64_t c = 0; c < init_latent->ne[2]; c++) {
|
||||
ggml_tensor_set_f32(masked_image, 0, x, y, c);
|
||||
}
|
||||
for (int64_t c = init_latent->ne[2]; c < masked_image->ne[2]; c++) {
|
||||
ggml_tensor_set_f32(masked_image, 1, x, y, c);
|
||||
}
|
||||
} else {
|
||||
ggml_tensor_set_f32(masked_image, 1, x, y, 0);
|
||||
for (int64_t c = 1; c < masked_image->ne[2]; c++) {
|
||||
ggml_tensor_set_f32(masked_image, 0, x, y, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
cond.c_concat = masked_image;
|
||||
uncond.c_concat = masked_image;
|
||||
} else {
|
||||
noise_mask = masked_image;
|
||||
}
|
||||
for (int b = 0; b < batch_count; b++) {
|
||||
int64_t sampling_start = ggml_time_ms();
|
||||
int64_t cur_seed = seed + b;
|
||||
|
@ -1469,6 +1549,7 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
cfg_scale,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
eta,
|
||||
sample_method,
|
||||
sigmas,
|
||||
start_merge_step,
|
||||
|
@ -1476,7 +1557,9 @@ sd_image_t* generate_image(sd_ctx_t* sd_ctx,
|
|||
skip_layers,
|
||||
slg_scale,
|
||||
skip_layer_start,
|
||||
skip_layer_end);
|
||||
skip_layer_end,
|
||||
noise_mask);
|
||||
|
||||
// struct ggml_tensor* x_0 = load_tensor_from_file(ctx, "samples_ddim.bin");
|
||||
// print_ggml_tensor(x_0);
|
||||
int64_t sampling_end = ggml_time_ms();
|
||||
|
@ -1532,6 +1615,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
|||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
int width,
|
||||
int height,
|
||||
enum sample_method_t sample_method,
|
||||
|
@ -1598,6 +1682,10 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
|||
ggml_set_f32(init_latent, 0.f);
|
||||
}
|
||||
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
LOG_WARN("This is an inpainting model, this should only be used in img2img mode with a mask");
|
||||
}
|
||||
|
||||
sd_image_t* result_images = generate_image(sd_ctx,
|
||||
work_ctx,
|
||||
init_latent,
|
||||
|
@ -1606,6 +1694,7 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
|||
clip_skip,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
eta,
|
||||
width,
|
||||
height,
|
||||
sample_method,
|
||||
|
@ -1631,11 +1720,13 @@ sd_image_t* txt2img(sd_ctx_t* sd_ctx,
|
|||
|
||||
sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
||||
sd_image_t init_image,
|
||||
sd_image_t mask,
|
||||
const char* prompt_c_str,
|
||||
const char* negative_prompt_c_str,
|
||||
int clip_skip,
|
||||
float cfg_scale,
|
||||
float guidance,
|
||||
float eta,
|
||||
int width,
|
||||
int height,
|
||||
sample_method_t sample_method,
|
||||
|
@ -1670,7 +1761,7 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
|||
if (sd_ctx->sd->stacked_id) {
|
||||
params.mem_size += static_cast<size_t>(10 * 1024 * 1024); // 10 MB
|
||||
}
|
||||
params.mem_size += width * height * 3 * sizeof(float) * 2;
|
||||
params.mem_size += width * height * 3 * sizeof(float) * 3;
|
||||
params.mem_size *= batch_count;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
@ -1691,7 +1782,70 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
|||
sd_ctx->sd->rng->manual_seed(seed);
|
||||
|
||||
ggml_tensor* init_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
ggml_tensor* mask_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 1, 1);
|
||||
|
||||
sd_mask_to_tensor(mask.data, mask_img);
|
||||
|
||||
sd_image_to_tensor(init_image.data, init_img);
|
||||
|
||||
ggml_tensor* masked_image;
|
||||
|
||||
if (sd_version_is_inpaint(sd_ctx->sd->version)) {
|
||||
int64_t mask_channels = 1;
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
mask_channels = 8 * 8; // flatten the whole mask
|
||||
}
|
||||
ggml_tensor* masked_img = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width, height, 3, 1);
|
||||
sd_apply_mask(init_img, mask_img, masked_img);
|
||||
ggml_tensor* masked_image_0 = NULL;
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
masked_image_0 = sd_ctx->sd->get_first_stage_encoding(work_ctx, moments);
|
||||
} else {
|
||||
masked_image_0 = sd_ctx->sd->encode_first_stage(work_ctx, masked_img);
|
||||
}
|
||||
masked_image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, masked_image_0->ne[0], masked_image_0->ne[1], mask_channels + masked_image_0->ne[2], 1);
|
||||
for (int ix = 0; ix < masked_image_0->ne[0]; ix++) {
|
||||
for (int iy = 0; iy < masked_image_0->ne[1]; iy++) {
|
||||
int mx = ix * 8;
|
||||
int my = iy * 8;
|
||||
if (sd_ctx->sd->version == VERSION_FLUX_FILL) {
|
||||
for (int k = 0; k < masked_image_0->ne[2]; k++) {
|
||||
float v = ggml_tensor_get_f32(masked_image_0, ix, iy, k);
|
||||
ggml_tensor_set_f32(masked_image, v, ix, iy, k);
|
||||
}
|
||||
// "Encode" 8x8 mask chunks into a flattened 1x64 vector, and concatenate to masked image
|
||||
for (int x = 0; x < 8; x++) {
|
||||
for (int y = 0; y < 8; y++) {
|
||||
float m = ggml_tensor_get_f32(mask_img, mx + x, my + y);
|
||||
// TODO: check if the way the mask is flattened is correct (is it supposed to be x*8+y or x+8*y?)
|
||||
// python code was using "b (h 8) (w 8) -> b (8 8) h w"
|
||||
ggml_tensor_set_f32(masked_image, m, ix, iy, masked_image_0->ne[2] + x * 8 + y);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
float m = ggml_tensor_get_f32(mask_img, mx, my);
|
||||
ggml_tensor_set_f32(masked_image, m, ix, iy, 0);
|
||||
for (int k = 0; k < masked_image_0->ne[2]; k++) {
|
||||
float v = ggml_tensor_get_f32(masked_image_0, ix, iy, k);
|
||||
ggml_tensor_set_f32(masked_image, v, ix, iy, k + mask_channels);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// LOG_WARN("Inpainting with a base model is not great");
|
||||
masked_image = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, width / 8, height / 8, 1, 1);
|
||||
for (int ix = 0; ix < masked_image->ne[0]; ix++) {
|
||||
for (int iy = 0; iy < masked_image->ne[1]; iy++) {
|
||||
int mx = ix * 8;
|
||||
int my = iy * 8;
|
||||
float m = ggml_tensor_get_f32(mask_img, mx, my);
|
||||
ggml_tensor_set_f32(masked_image, m, ix, iy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tensor* init_latent = NULL;
|
||||
if (!sd_ctx->sd->use_tiny_autoencoder) {
|
||||
ggml_tensor* moments = sd_ctx->sd->encode_first_stage(work_ctx, init_img);
|
||||
|
@ -1705,6 +1859,8 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
|||
|
||||
std::vector<float> sigmas = sd_ctx->sd->denoiser->get_sigmas(sample_steps);
|
||||
size_t t_enc = static_cast<size_t>(sample_steps * strength);
|
||||
if (t_enc == sample_steps)
|
||||
t_enc--;
|
||||
LOG_INFO("target t_enc is %zu steps", t_enc);
|
||||
std::vector<float> sigma_sched;
|
||||
sigma_sched.assign(sigmas.begin() + sample_steps - t_enc - 1, sigmas.end());
|
||||
|
@ -1717,6 +1873,7 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
|||
clip_skip,
|
||||
cfg_scale,
|
||||
guidance,
|
||||
eta,
|
||||
width,
|
||||
height,
|
||||
sample_method,
|
||||
|
@ -1731,11 +1888,12 @@ sd_image_t* img2img(sd_ctx_t* sd_ctx,
|
|||
skip_layers_vec,
|
||||
slg_scale,
|
||||
skip_layer_start,
|
||||
skip_layer_end);
|
||||
skip_layer_end,
|
||||
masked_image);
|
||||
|
||||
size_t t2 = ggml_time_ms();
|
||||
|
||||
LOG_INFO("img2img completed in %.2fs", (t1 - t0) * 1.0f / 1000);
|
||||
LOG_INFO("img2img completed in %.2fs", (t2 - t0) * 1.0f / 1000);
|
||||
|
||||
return result_images;
|
||||
}
|
||||
|
@ -1829,6 +1987,7 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
|
|||
min_cfg,
|
||||
cfg_scale,
|
||||
0.f,
|
||||
0.f,
|
||||
sample_method,
|
||||
sigmas,
|
||||
-1,
|
||||
|
@ -1870,4 +2029,4 @@ SD_API sd_image_t* img2vid(sd_ctx_t* sd_ctx,
|
|||
LOG_INFO("img2vid completed in %.2fs", (t3 - t0) * 1.0f / 1000);
|
||||
|
||||
return result_images;
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue