remove KEY_USE_GLU_MLP, KEY_USE_RMS_NORM

This commit is contained in:
HimariO 2025-04-26 00:16:27 +08:00
parent caa7e57ec5
commit f69e9fa04d
2 changed files with 29 additions and 133 deletions

View file

@ -330,8 +330,6 @@ struct clip_ctx {
float image_std[3]; float image_std[3];
bool use_gelu = false; bool use_gelu = false;
bool use_silu = false; bool use_silu = false;
bool use_glu_mlp = false;
bool use_rms_norm = false;
int32_t ftype = 1; int32_t ftype = 1;
gguf_context_ptr ctx_gguf; gguf_context_ptr ctx_gguf;
@ -847,7 +845,6 @@ static ggml_cgraph * clip_image_build_graph_qwen2_5_vl(clip_ctx * ctx, const cli
inp = ggml_add(ctx0, inp, model.patch_bias); inp = ggml_add(ctx0, inp, model.patch_bias);
} }
struct ggml_tensor * embeddings = inp; struct ggml_tensor * embeddings = inp;
struct ggml_tensor * pos_embed = nullptr;
struct ggml_tensor * window_mask = nullptr; struct ggml_tensor * window_mask = nullptr;
struct ggml_tensor * window_idx = nullptr; struct ggml_tensor * window_idx = nullptr;
struct ggml_tensor * inv_window_idx = nullptr; struct ggml_tensor * inv_window_idx = nullptr;
@ -858,17 +855,10 @@ static ggml_cgraph * clip_image_build_graph_qwen2_5_vl(clip_ctx * ctx, const cli
// pre-layernorm // pre-layernorm
if (model.pre_ln_w) { if (model.pre_ln_w) {
if (ctx->use_rms_norm) { embeddings = ggml_rms_norm(ctx0, embeddings, eps);
embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln");
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w); embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
} }
std::vector<struct ggml_tensor *> embedding_stack; std::vector<struct ggml_tensor *> embedding_stack;
@ -991,17 +981,10 @@ static ggml_cgraph * clip_image_build_graph_qwen2_5_vl(clip_ctx * ctx, const cli
// post-layernorm // post-layernorm
if (model.post_ln_w) { if (model.post_ln_w) {
if (ctx->use_rms_norm) { embeddings = ggml_rms_norm(ctx0, embeddings, eps);
embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln");
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w); embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
} }
// final layer is a vision feature layer // final layer is a vision feature layer
@ -1086,7 +1069,6 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
const int n_head = hparams.n_head; const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head; const int d_head = hidden_size / n_head;
const float eps = hparams.eps; const float eps = hparams.eps;
const bool use_window_attn = hparams.full_attn_layers.size() > 0;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
const int batch_size = imgs.entries.size(); const int batch_size = imgs.entries.size();
@ -1118,7 +1100,6 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1); inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b] inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d( inp = ggml_reshape_4d(
ctx0, inp, ctx0, inp,
@ -1140,11 +1121,8 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias); inp = ggml_add(ctx0, inp, model.patch_bias);
} }
struct ggml_tensor * embeddings = inp; struct ggml_tensor * embeddings = inp;
struct ggml_tensor * pos_embed = nullptr; struct ggml_tensor * pos_embed = nullptr;
struct ggml_tensor * window_mask = nullptr;
struct ggml_tensor * window_idx = nullptr;
struct ggml_tensor * inv_window_idx = nullptr;
if (ctx->has_llava_projector) { if (ctx->has_llava_projector) {
// concat class_embeddings and patch_embeddings // concat class_embeddings and patch_embeddings
@ -1186,40 +1164,16 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
// pre-layernorm // pre-layernorm
if (model.pre_ln_w) { if (model.pre_ln_w) {
if (ctx->use_rms_norm) { embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln");
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
} }
std::vector<struct ggml_tensor *> embedding_stack; std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer; const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers // loop over layers
if (use_window_attn) {
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
ggml_set_name(inv_window_idx, "inv_window_idx");
ggml_set_input(inv_window_idx);
// mask for window attention
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
ggml_set_name(window_mask, "window_mask");
ggml_set_input(window_mask);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
}
for (int il = 0; il < ctx->max_feature_layer; il++) { for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
@ -1232,12 +1186,9 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
//const size_t nb_q_w = model.layers[il].q_w->nb[0]; //const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1 // layernorm1
if (ctx->use_rms_norm) { {
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);
}
else {
cur = ggml_norm(ctx0, cur, eps); cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
model.layers[il].ln_1_b); model.layers[il].ln_1_b);
} }
@ -1277,14 +1228,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
const bool inlist = std::find(hparams.full_attn_layers.begin(), hparams.full_attn_layers.end(), il) != hparams.full_attn_layers.end(); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
const bool full_attn = use_window_attn ? inlist : true;
if (full_attn) {
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
} else {
KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
}
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
@ -1301,50 +1245,25 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
embeddings = cur; // embeddings = residual, cur = hidden_states embeddings = cur; // embeddings = residual, cur = hidden_states
// layernorm2 // layernorm2
if (ctx->use_rms_norm) { {
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);
} else {
cur = ggml_norm(ctx0, cur, eps); cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
} }
// mlp cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
if (ctx->use_glu_mlp) { cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
// ffn_up
auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);
auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur); if (ctx->use_gelu) {
cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b); cur = ggml_gelu_inplace(ctx0, cur);
if (ctx->use_gelu) { } else if (ctx->use_silu) {
cur_gate = ggml_gelu_inplace(ctx0, cur_gate); cur = ggml_silu_inplace(ctx0, cur);
} else if (ctx->use_silu) { } else {
cur_gate = ggml_silu_inplace(ctx0, cur_gate); cur = ggml_gelu_quick_inplace(ctx0, cur);
} else {
cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
}
cur = ggml_mul(ctx0, cur_gate, cur_up);
// ffn_down
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
} }
else {
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
if (ctx->use_gelu) { cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_gelu_inplace(ctx0, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
} else if (ctx->use_silu) {
cur = ggml_silu_inplace(ctx0, cur);
} else {
cur = ggml_gelu_quick_inplace(ctx0, cur);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
}
// residual 2 // residual 2
cur = ggml_add(ctx0, embeddings, cur); cur = ggml_add(ctx0, embeddings, cur);
@ -1354,17 +1273,10 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
// post-layernorm // post-layernorm
if (model.post_ln_w) { if (model.post_ln_w) {
if (ctx->use_rms_norm) { embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_rms_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln");
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
} }
// final layer is a vision feature layer // final layer is a vision feature layer
@ -1678,18 +1590,6 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
} }
if (use_window_attn) {
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
ggml_set_name(window_idx, "window_idx");
ggml_set_input(window_idx);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
}
// build the graph // build the graph
ggml_build_forward_expand(gf, embeddings); ggml_build_forward_expand(gf, embeddings);
@ -1810,8 +1710,6 @@ struct clip_model_loader {
get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false); get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
get_bool(KEY_USE_SILU, ctx_clip.use_silu, false); get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
get_bool(KEY_USE_GLU_MLP, ctx_clip.use_glu_mlp, false);
get_bool(KEY_USE_RMS_NORM, ctx_clip.use_rms_norm, false);
get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size); get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size);
get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head); get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head);

View file

@ -152,8 +152,6 @@ def main(args):
raise ValueError() raise ValueError()
if args.model_type == "qwen2.5vl": if args.model_type == "qwen2.5vl":
fout.add_bool("clip.use_glu_mlp", True) # gate linear unit MLP layer in vision model
fout.add_bool("clip.use_rms_norm", True)
fout.add_array("clip.vision.fullatt_block_indexes", vcfg.fullatt_block_indexes) fout.add_array("clip.vision.fullatt_block_indexes", vcfg.fullatt_block_indexes)
fout.add_uint32("clip.vision.window_size", vcfg.window_size) fout.add_uint32("clip.vision.window_size", vcfg.window_size)
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)