added toggle for guidance

This commit is contained in:
Concedo 2025-05-05 22:21:46 +08:00
parent 41142ad67a
commit f59b5eb561
4 changed files with 54 additions and 21 deletions

View file

@ -62,6 +62,7 @@ struct load_model_inputs
const float rope_freq_base = 10000.0f; const float rope_freq_base = 10000.0f;
const int moe_experts = -1; const int moe_experts = -1;
const bool no_bos_token = false; const bool no_bos_token = false;
const bool load_guidance = false;
const char * override_kv = nullptr; const char * override_kv = nullptr;
const char * override_tensors = nullptr; const char * override_tensors = nullptr;
const bool flash_attention = false; const bool flash_attention = false;

View file

@ -98,6 +98,7 @@ static llama_v2_context * llama_ctx_v2 = nullptr;
static llama_v3_context * llama_ctx_v3 = nullptr; static llama_v3_context * llama_ctx_v3 = nullptr;
static llama_context * llama_ctx_v4 = nullptr; static llama_context * llama_ctx_v4 = nullptr;
static llama_context * draft_ctx = nullptr; //will remain null if speculative is unused static llama_context * draft_ctx = nullptr; //will remain null if speculative is unused
static llama_context * guidance_ctx = nullptr; //for classifier free guidance, will be null if unused
static clip_ctx * clp_ctx = nullptr; //for llava static clip_ctx * clp_ctx = nullptr; //for llava
static clip_image_u8 * clp_img_data = nullptr; //most recent image static clip_image_u8 * clp_img_data = nullptr; //most recent image
@ -134,6 +135,7 @@ static std::string concat_output_reader_copy_poll = ""; //for streaming
static std::string concat_output_reader_copy_res = ""; //for gen response static std::string concat_output_reader_copy_res = ""; //for gen response
static std::vector<logit_bias> logit_biases; static std::vector<logit_bias> logit_biases;
static bool add_bos_token = true; // if set to false, mmproj handling breaks. dont disable unless you know what you're doing static bool add_bos_token = true; // if set to false, mmproj handling breaks. dont disable unless you know what you're doing
static bool load_guidance = false; //whether to enable cfg for negative prompts
static int delayed_generated_tokens_limit = 0; static int delayed_generated_tokens_limit = 0;
std::deque<std::string> delayed_generated_tokens; //for use with antislop sampling std::deque<std::string> delayed_generated_tokens; //for use with antislop sampling
@ -1898,6 +1900,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
kcpp_data->use_fastforward = inputs.use_fastforward; kcpp_data->use_fastforward = inputs.use_fastforward;
debugmode = inputs.debugmode; debugmode = inputs.debugmode;
draft_ctx = nullptr; draft_ctx = nullptr;
guidance_ctx = nullptr;
auto clamped_max_context_length = inputs.max_context_length; auto clamped_max_context_length = inputs.max_context_length;
@ -1923,6 +1926,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
kcpp_data->n_ctx = clamped_max_context_length; kcpp_data->n_ctx = clamped_max_context_length;
max_context_limit_at_load = clamped_max_context_length; max_context_limit_at_load = clamped_max_context_length;
add_bos_token = !inputs.no_bos_token; add_bos_token = !inputs.no_bos_token;
load_guidance = inputs.load_guidance;
if(!add_bos_token) if(!add_bos_token)
{ {
@ -2303,6 +2307,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llama_ctx_params.type_k = (inputs.quant_k>1?GGML_TYPE_Q4_0:(inputs.quant_k==1?GGML_TYPE_Q8_0:GGML_TYPE_F16)); llama_ctx_params.type_k = (inputs.quant_k>1?GGML_TYPE_Q4_0:(inputs.quant_k==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
llama_ctx_params.type_v = (inputs.quant_v>1?GGML_TYPE_Q4_0:(inputs.quant_v==1?GGML_TYPE_Q8_0:GGML_TYPE_F16)); llama_ctx_params.type_v = (inputs.quant_v>1?GGML_TYPE_Q4_0:(inputs.quant_v==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
llama_ctx_v4 = llama_init_from_model(llamamodel, llama_ctx_params); llama_ctx_v4 = llama_init_from_model(llamamodel, llama_ctx_params);
if(load_guidance)
{
guidance_ctx = llama_init_from_model(llamamodel, llama_ctx_params);
}
if (llama_ctx_v4 == NULL) if (llama_ctx_v4 == NULL)
{ {
@ -3450,6 +3458,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
} }
} }
if(guidance_ctx)
{
llama_kv_self_clear(guidance_ctx);
}
bool blasmode = (embd_inp.size() >= 32 && kcpp_cpu_has_blas() && kcpp_data->n_batch>=32); bool blasmode = (embd_inp.size() >= 32 && kcpp_cpu_has_blas() && kcpp_data->n_batch>=32);

View file

@ -9615,7 +9615,7 @@ Current version indicated by LITEVER below.
let is_local = is_local_url(desired_oai_ep); let is_local = is_local_url(desired_oai_ep);
desired_oai_ep = (is_local?"http://":"https://") + desired_oai_ep; desired_oai_ep = (is_local?"http://":"https://") + desired_oai_ep;
} }
if (document.getElementById("oaiaddversion").checked && !desired_oai_ep.toLowerCase().includes("pollinations.ai")) if (document.getElementById("oaiaddversion").checked && !desired_oai_ep.toLowerCase().includes("text.pollinations.ai"))
{ {
//fix incorrect paths //fix incorrect paths
if(desired_oai_ep!="" && desired_oai_ep.toLowerCase().endsWith("/chat/completions")) { if(desired_oai_ep!="" && desired_oai_ep.toLowerCase().endsWith("/chat/completions")) {
@ -14990,6 +14990,14 @@ Current version indicated by LITEVER below.
oai_payload.messages.push({ "role": "assistant", "content": mainoaibody, "prefix":true }); oai_payload.messages.push({ "role": "assistant", "content": mainoaibody, "prefix":true });
oaiemulatecompletionscontent = mainoaibody; oaiemulatecompletionscontent = mainoaibody;
} }
if(targetep.toLowerCase().includes("text.pollinations.ai"))
{
if(localsettings.opmode==1)
{
oai_payload.messages.unshift({ "role": "system", "content": "Please continue this story directly from where it stopped. Just respond with a direct partial continuation of the story immediately from the latest word." });
}
}
} }
else else
{ {
@ -19168,7 +19176,7 @@ Current version indicated by LITEVER below.
}else if(custom_oai_endpoint.toLowerCase().includes("api.x.ai")) }else if(custom_oai_endpoint.toLowerCase().includes("api.x.ai"))
{ {
localsettings.prev_custom_endpoint_type = 9; localsettings.prev_custom_endpoint_type = 9;
}else if(custom_oai_endpoint.toLowerCase().includes("pollinations.ai")) }else if(custom_oai_endpoint.toLowerCase().includes("text.pollinations.ai"))
{ {
localsettings.prev_custom_endpoint_type = 10; localsettings.prev_custom_endpoint_type = 10;
} }
@ -22712,7 +22720,7 @@ Current version indicated by LITEVER below.
</span> </span>
<span id="pollinationsdesc" class="hidden"> <span id="pollinationsdesc" class="hidden">
Pollinations.ai API is free to use without any key required.<br><br> Pollinations.ai API is free to use without any key required.<br><br>
Note that KoboldAI Lite takes no responsibility for your usage or consequences of this feature.<br>Only Temperature, Top-P, Top-K and Repetition Penalty samplers are used.<br><br> Note that KoboldAI Lite takes no responsibility for your usage or consequences of this feature. This service is ad driven, ads may appear in the output.<br>Only Temperature, Top-P, Top-K and Repetition Penalty samplers are used.<br><br>
<span class="color_green" style="font-weight: bold;">No Key Required.</span><br><br> <span class="color_green" style="font-weight: bold;">No Key Required.</span><br><br>
</span> </span>

View file

@ -183,6 +183,7 @@ class load_model_inputs(ctypes.Structure):
("rope_freq_base", ctypes.c_float), ("rope_freq_base", ctypes.c_float),
("moe_experts", ctypes.c_int), ("moe_experts", ctypes.c_int),
("no_bos_token", ctypes.c_bool), ("no_bos_token", ctypes.c_bool),
("load_guidance", ctypes.c_bool),
("override_kv", ctypes.c_char_p), ("override_kv", ctypes.c_char_p),
("override_tensors", ctypes.c_char_p), ("override_tensors", ctypes.c_char_p),
("flash_attention", ctypes.c_bool), ("flash_attention", ctypes.c_bool),
@ -1230,6 +1231,7 @@ def load_model(model_filename):
inputs.moe_experts = args.moeexperts inputs.moe_experts = args.moeexperts
inputs.no_bos_token = args.nobostoken inputs.no_bos_token = args.nobostoken
inputs.load_guidance = args.enableguidance
inputs.override_kv = args.overridekv.encode("UTF-8") if args.overridekv else "".encode("UTF-8") inputs.override_kv = args.overridekv.encode("UTF-8") if args.overridekv else "".encode("UTF-8")
inputs.override_tensors = args.overridetensors.encode("UTF-8") if args.overridetensors else "".encode("UTF-8") inputs.override_tensors = args.overridetensors.encode("UTF-8") if args.overridetensors else "".encode("UTF-8")
inputs = set_backend_props(inputs) inputs = set_backend_props(inputs)
@ -1238,21 +1240,23 @@ def load_model(model_filename):
def generate(genparams, stream_flag=False): def generate(genparams, stream_flag=False):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey global maxctx, args, currentusergenkey, totalgens, pendingabortkey
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
prompt = genparams.get('prompt', "") prompt = genparams.get('prompt', "")
memory = genparams.get('memory', "") memory = genparams.get('memory', "")
images = genparams.get('images', []) images = genparams.get('images', [])
max_context_length = tryparseint(genparams.get('max_context_length', maxctx),maxctx) max_context_length = tryparseint(genparams.get('max_context_length', maxctx),maxctx)
max_length = tryparseint(genparams.get('max_length', args.defaultgenamt),args.defaultgenamt) max_length = tryparseint(genparams.get('max_length', args.defaultgenamt),args.defaultgenamt)
temperature = tryparsefloat(genparams.get('temperature', 0.75),0.75) temperature = tryparsefloat(genparams.get('temperature', adapter_obj.get("temperature", 0.75)),0.75)
top_k = tryparseint(genparams.get('top_k', 100),100) top_k = tryparseint(genparams.get('top_k', adapter_obj.get("top_k", 100)),100)
top_a = tryparsefloat(genparams.get('top_a', 0.0),0.0) top_a = tryparsefloat(genparams.get('top_a', 0.0),0.0)
top_p = tryparsefloat(genparams.get('top_p', 0.92),0.92) top_p = tryparsefloat(genparams.get('top_p', adapter_obj.get("top_p", 0.92)),0.92)
min_p = tryparsefloat(genparams.get('min_p', 0.0),0.0) min_p = tryparsefloat(genparams.get('min_p', adapter_obj.get("min_p", 0.0)),0.0)
typical_p = tryparsefloat(genparams.get('typical', 1.0),1.0) typical_p = tryparsefloat(genparams.get('typical', 1.0),1.0)
tfs = tryparsefloat(genparams.get('tfs', 1.0),1.0) tfs = tryparsefloat(genparams.get('tfs', 1.0),1.0)
nsigma = tryparsefloat(genparams.get('nsigma', 0.0),0.0) nsigma = tryparsefloat(genparams.get('nsigma', 0.0),0.0)
rep_pen = tryparsefloat(genparams.get('rep_pen', 1.0),1.0) rep_pen = tryparsefloat(genparams.get('rep_pen', adapter_obj.get("rep_pen", 1.0)),1.0)
rep_pen_range = tryparseint(genparams.get('rep_pen_range', 320),320) rep_pen_range = tryparseint(genparams.get('rep_pen_range', 320),320)
rep_pen_slope = tryparsefloat(genparams.get('rep_pen_slope', 1.0),1.0) rep_pen_slope = tryparsefloat(genparams.get('rep_pen_slope', 1.0),1.0)
presence_penalty = tryparsefloat(genparams.get('presence_penalty', 0.0),0.0) presence_penalty = tryparsefloat(genparams.get('presence_penalty', 0.0),0.0)
@ -1268,7 +1272,8 @@ def generate(genparams, stream_flag=False):
xtc_probability = tryparsefloat(genparams.get('xtc_probability', 0),0) xtc_probability = tryparsefloat(genparams.get('xtc_probability', 0),0)
sampler_order = genparams.get('sampler_order', [6, 0, 1, 3, 4, 2, 5]) sampler_order = genparams.get('sampler_order', [6, 0, 1, 3, 4, 2, 5])
seed = tryparseint(genparams.get('sampler_seed', -1),-1) seed = tryparseint(genparams.get('sampler_seed', -1),-1)
stop_sequence = genparams.get('stop_sequence', []) stop_sequence = (genparams.get('stop_sequence', []) if genparams.get('stop_sequence', []) is not None else [])
stop_sequence = stop_sequence[:stop_token_max]
ban_eos_token = genparams.get('ban_eos_token', False) ban_eos_token = genparams.get('ban_eos_token', False)
stream_sse = stream_flag stream_sse = stream_flag
grammar = genparams.get('grammar', '') grammar = genparams.get('grammar', '')
@ -1306,6 +1311,11 @@ def generate(genparams, stream_flag=False):
memory = memory.replace("{{[INPUT]}}", assistant_message_end + user_message_start) memory = memory.replace("{{[INPUT]}}", assistant_message_end + user_message_start)
memory = memory.replace("{{[OUTPUT]}}", user_message_end + assistant_message_start) memory = memory.replace("{{[OUTPUT]}}", user_message_end + assistant_message_start)
memory = memory.replace("{{[SYSTEM]}}", system_message_start) memory = memory.replace("{{[SYSTEM]}}", system_message_start)
for i in range(len(stop_sequence)):
if stop_sequence[i] == "{{[INPUT]}}":
stop_sequence[i] = user_message_start
elif stop_sequence[i] == "{{[OUTPUT]}}":
stop_sequence[i] = assistant_message_start
for tok in custom_token_bans.split(','): for tok in custom_token_bans.split(','):
tok = tok.strip() # Remove leading/trailing whitespace tok = tok.strip() # Remove leading/trailing whitespace
@ -1402,9 +1412,6 @@ def generate(genparams, stream_flag=False):
print("ERROR: sampler_order must be a list of integers: " + str(e)) print("ERROR: sampler_order must be a list of integers: " + str(e))
inputs.seed = seed inputs.seed = seed
if stop_sequence is None:
stop_sequence = []
stop_sequence = stop_sequence[:stop_token_max]
inputs.stop_sequence_len = len(stop_sequence) inputs.stop_sequence_len = len(stop_sequence)
inputs.stop_sequence = (ctypes.c_char_p * inputs.stop_sequence_len)() inputs.stop_sequence = (ctypes.c_char_p * inputs.stop_sequence_len)()
@ -3819,7 +3826,7 @@ def show_gui():
import customtkinter as ctk import customtkinter as ctk
nextstate = 0 #0=exit, 1=launch nextstate = 0 #0=exit, 1=launch
original_windowwidth = 580 original_windowwidth = 580
original_windowheight = 560 original_windowheight = 580
windowwidth = original_windowwidth windowwidth = original_windowwidth
windowheight = original_windowheight windowheight = original_windowheight
ctk.set_appearance_mode("dark") ctk.set_appearance_mode("dark")
@ -3966,6 +3973,7 @@ def show_gui():
nobostoken_var = ctk.IntVar(value=0) nobostoken_var = ctk.IntVar(value=0)
override_kv_var = ctk.StringVar(value="") override_kv_var = ctk.StringVar(value="")
override_tensors_var = ctk.StringVar(value="") override_tensors_var = ctk.StringVar(value="")
enableguidance_var = ctk.IntVar(value=0)
model_var = ctk.StringVar() model_var = ctk.StringVar()
lora_var = ctk.StringVar() lora_var = ctk.StringVar()
@ -4056,11 +4064,11 @@ def show_gui():
quick_tab = tabcontent["Quick Launch"] quick_tab = tabcontent["Quick Launch"]
# helper functions # helper functions
def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""): def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, padx=8,tooltiptxt=""):
temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue) temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=1, offvalue=0)
if command is not None and variable is not None: if command is not None and variable is not None:
variable.trace("w", command) variable.trace("w", command)
temp.grid(row=row,column=column, padx=8, pady=1, stick="nw") temp.grid(row=row,column=column, padx=padx, pady=1, stick="nw")
if tooltiptxt!="": if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip) temp.bind("<Leave>", hide_tooltip)
@ -4577,16 +4585,17 @@ def show_gui():
item.grid_remove() item.grid_remove()
makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.") makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.")
use_flashattn = makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.") use_flashattn = makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.")
noqkvlabel = makelabel(tokens_tab,"QuantKV works best with flash attention enabled",33,0,"WARNING: NOT RECOMMENDED.\nOnly K cache can be quantized, and performance can suffer.\nIn some cases, it might even use more VRAM when doing a full offload.") noqkvlabel = makelabel(tokens_tab,"(Note: QuantKV works best with flash attention)",28,0,"Only K cache can be quantized, and performance can suffer.\nIn some cases, it might even use more VRAM when doing a full offload.",padx=160)
noqkvlabel.configure(text_color="#ff5555") noqkvlabel.configure(text_color="#ff5555")
avoidfalabel = makelabel(tokens_tab,"Flash attention discouraged with Vulkan GPU offload!",35,0,"FlashAttention is discouraged when using Vulkan GPU offload.") avoidfalabel = makelabel(tokens_tab,"(Note: Flash attention may be slow on Vulkan)",28,0,"FlashAttention is discouraged when using Vulkan GPU offload.",padx=160)
avoidfalabel.configure(text_color="#ff5555") avoidfalabel.configure(text_color="#ff5555")
qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention for full effect, otherwise only K cache is quantized.") qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention for full effect, otherwise only K cache is quantized.")
quantkv_var.trace("w", toggleflashattn) quantkv_var.trace("w", toggleflashattn)
makecheckbox(tokens_tab, "No BOS Token", nobostoken_var, 43, tooltiptxt="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.") makecheckbox(tokens_tab, "No BOS Token", nobostoken_var, 43, tooltiptxt="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.")
makelabelentry(tokens_tab, "MoE Experts:", moeexperts_var, row=45, padx=120, singleline=True, tooltip="Override number of MoE experts.") makecheckbox(tokens_tab, "Enable Guidance", enableguidance_var, 43,padx=140, tooltiptxt="Enables the use of Classifier-Free-Guidance, which allows the use of negative prompts. Has performance and memory impact.")
makelabelentry(tokens_tab, "Override KV:", override_kv_var, row=47, padx=120, singleline=True, width=150, tooltip="Advanced option to override model metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str") makelabelentry(tokens_tab, "MoE Experts:", moeexperts_var, row=55, padx=120, singleline=True, tooltip="Override number of MoE experts.")
makelabelentry(tokens_tab, "Override Tensors:", override_tensors_var, row=49, padx=120, singleline=True, width=150, tooltip="Advanced option to override tensor backend selection, same as in llama.cpp.") makelabelentry(tokens_tab, "Override KV:", override_kv_var, row=57, padx=120, singleline=True, width=150, tooltip="Advanced option to override model metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str")
makelabelentry(tokens_tab, "Override Tensors:", override_tensors_var, row=59, padx=120, singleline=True, width=150, tooltip="Advanced option to override tensor backend selection, same as in llama.cpp.")
# Model Tab # Model Tab
model_tab = tabcontent["Loaded Files"] model_tab = tabcontent["Loaded Files"]
@ -4862,6 +4871,7 @@ def show_gui():
args.moeexperts = int(moeexperts_var.get()) if moeexperts_var.get()!="" else -1 args.moeexperts = int(moeexperts_var.get()) if moeexperts_var.get()!="" else -1
args.defaultgenamt = int(defaultgenamt_var.get()) if defaultgenamt_var.get()!="" else 512 args.defaultgenamt = int(defaultgenamt_var.get()) if defaultgenamt_var.get()!="" else 512
args.nobostoken = (nobostoken_var.get()==1) args.nobostoken = (nobostoken_var.get()==1)
args.enableguidance = (enableguidance_var.get()==1)
args.overridekv = None if override_kv_var.get() == "" else override_kv_var.get() args.overridekv = None if override_kv_var.get() == "" else override_kv_var.get()
args.overridetensors = None if override_tensors_var.get() == "" else override_tensors_var.get() args.overridetensors = None if override_tensors_var.get() == "" else override_tensors_var.get()
args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get() args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get()
@ -5057,6 +5067,7 @@ def show_gui():
if "defaultgenamt" in dict and dict["defaultgenamt"]: if "defaultgenamt" in dict and dict["defaultgenamt"]:
defaultgenamt_var.set(dict["defaultgenamt"]) defaultgenamt_var.set(dict["defaultgenamt"])
nobostoken_var.set(dict["nobostoken"] if ("nobostoken" in dict) else 0) nobostoken_var.set(dict["nobostoken"] if ("nobostoken" in dict) else 0)
enableguidance_var.set(dict["enableguidance"] if ("enableguidance" in dict) else 0)
if "overridekv" in dict and dict["overridekv"]: if "overridekv" in dict and dict["overridekv"]:
override_kv_var.set(dict["overridekv"]) override_kv_var.set(dict["overridekv"])
if "overridetensors" in dict and dict["overridetensors"]: if "overridetensors" in dict and dict["overridetensors"]:
@ -6801,6 +6812,7 @@ if __name__ == '__main__':
advparser.add_argument("--moeexperts", metavar=('[num of experts]'), help="How many experts to use for MoE models (default=follow gguf)", type=int, default=-1) advparser.add_argument("--moeexperts", metavar=('[num of experts]'), help="How many experts to use for MoE models (default=follow gguf)", type=int, default=-1)
advparser.add_argument("--defaultgenamt", help="How many tokens to generate by default, if not specified. Must be smaller than context size. Usually, your frontend GUI will override this.", type=check_range(int,64,4096), default=512) advparser.add_argument("--defaultgenamt", help="How many tokens to generate by default, if not specified. Must be smaller than context size. Usually, your frontend GUI will override this.", type=check_range(int,64,4096), default=512)
advparser.add_argument("--nobostoken", help="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.", action='store_true') advparser.add_argument("--nobostoken", help="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.", action='store_true')
advparser.add_argument("--enableguidance", help="Enables the use of Classifier-Free-Guidance, which allows the use of negative prompts. Has performance and memory impact.", action='store_true')
advparser.add_argument("--maxrequestsize", metavar=('[size in MB]'), help="Specify a max request payload size. Any requests to the server larger than this size will be dropped. Do not change if unsure.", type=int, default=32) advparser.add_argument("--maxrequestsize", metavar=('[size in MB]'), help="Specify a max request payload size. Any requests to the server larger than this size will be dropped. Do not change if unsure.", type=int, default=32)
advparser.add_argument("--overridekv", metavar=('[name=type:value]'), help="Advanced option to override a metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str", default="") advparser.add_argument("--overridekv", metavar=('[name=type:value]'), help="Advanced option to override a metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str", default="")
advparser.add_argument("--overridetensors", metavar=('[tensor name pattern=buffer type]'), help="Advanced option to override tensor backend selection, same as in llama.cpp.", default="") advparser.add_argument("--overridetensors", metavar=('[tensor name pattern=buffer type]'), help="Advanced option to override tensor backend selection, same as in llama.cpp.", default="")