Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	docs/backend/CANN.md
#	docs/multimodal/minicpmo2.6.md
#	docs/multimodal/minicpmv2.5.md
#	docs/multimodal/minicpmv2.6.md
#	examples/speculative-simple/speculative-simple.cpp
#	ggml/cmake/ggml-config.cmake.in
#	ggml/src/ggml-cann/aclnn_ops.cpp
#	ggml/src/ggml-cann/ggml-cann.cpp
#	ggml/src/ggml-cpu/repack.cpp
#	ggml/src/ggml-opencl/CMakeLists.txt
#	ggml/src/ggml-opencl/ggml-opencl.cpp
#	ggml/src/ggml-opencl/kernels/add.cl
#	ggml/src/ggml-opencl/kernels/mul.cl
#	scripts/compare-commits.sh
#	scripts/compare-llama-bench.py
#	scripts/sync-ggml.last
#	tools/server/README.md
This commit is contained in:
Concedo 2025-08-02 10:25:10 +08:00
commit f430916a71
57 changed files with 6028 additions and 731 deletions

130
.devops/cann.Dockerfile Normal file
View file

@ -0,0 +1,130 @@
# ==============================================================================
# ARGUMENTS
# ==============================================================================
# Define the CANN base image for easier version updates later
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.1.rc1-910b-openeuler22.03-py3.10
# ==============================================================================
# BUILD STAGE
# Compile all binary files and libraries
# ==============================================================================
FROM ${CANN_BASE_IMAGE} AS build
# Define the Ascend chip model for compilation. Default is Ascend910B3
ARG ASCEND_SOC_TYPE=Ascend910B3
# -- Install build dependencies --
RUN yum install -y gcc g++ cmake make git libcurl-devel python3 python3-pip && \
yum clean all && \
rm -rf /var/cache/yum
# -- Set the working directory --
WORKDIR /app
# -- Copy project files --
COPY . .
# -- Set CANN environment variables (required for compilation) --
# Using ENV instead of `source` allows environment variables to persist across the entire image layer
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
# ... You can add other environment variables from the original file as needed ...
# For brevity, only core variables are listed here. You can paste the original ENV list here.
# -- Build llama.cpp --
# Use the passed ASCEND_SOC_TYPE argument and add general build options
RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh --force \
&& \
cmake -B build \
-DGGML_CANN=ON \
-DCMAKE_BUILD_TYPE=Release \
-DSOC_TYPE=${ASCEND_SOC_TYPE} \
. && \
cmake --build build --config Release -j$(nproc)
# -- Organize build artifacts for copying in later stages --
# Create a lib directory to store all .so files
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
# Create a full directory to store all executables and Python scripts
RUN mkdir -p /app/full && \
cp build/bin/* /app/full/ && \
cp *.py /app/full/ && \
cp -r gguf-py /app/full/ && \
cp -r requirements /app/full/ && \
cp requirements.txt /app/full/
# If you have a tools.sh script, make sure it is copied here
# cp .devops/tools.sh /app/full/tools.sh
# ==============================================================================
# BASE STAGE
# Create a minimal base image with CANN runtime and common libraries
# ==============================================================================
FROM ${CANN_BASE_IMAGE} AS base
# -- Install runtime dependencies --
RUN yum install -y libgomp curl && \
yum clean all && \
rm -rf /var/cache/yum
# -- Set CANN environment variables (required for runtime) --
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LD_LIBRARY_PATH=/app:${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
# ... You can add other environment variables from the original file as needed ...
WORKDIR /app
# Copy compiled .so files from the build stage
COPY --from=build /app/lib/ /app
# ==============================================================================
# FINAL STAGES (TARGETS)
# ==============================================================================
### Target: full
# Complete image with all tools, Python bindings, and dependencies
# ==============================================================================
FROM base AS full
COPY --from=build /app/full /app
# Install Python dependencies
RUN yum install -y git python3 python3-pip && \
pip3 install --no-cache-dir --upgrade pip setuptools wheel && \
pip3 install --no-cache-dir -r requirements.txt && \
yum clean all && \
rm -rf /var/cache/yum
# You need to provide a tools.sh script as the entrypoint
ENTRYPOINT ["/app/tools.sh"]
# If there is no tools.sh, you can set the default to start the server
# ENTRYPOINT ["/app/llama-server"]
### Target: light
# Lightweight image containing only llama-cli
# ==============================================================================
FROM base AS light
COPY --from=build /app/full/llama-cli /app
ENTRYPOINT [ "/app/llama-cli" ]
### Target: server
# Dedicated server image containing only llama-server
# ==============================================================================
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
HEALTHCHECK --interval=5m CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View file

@ -979,6 +979,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) { for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
string_process_escapes(seq_breaker); string_process_escapes(seq_breaker);
} }
for (auto & pair : params.speculative.replacements) {
string_process_escapes(pair.first);
string_process_escapes(pair.second);
}
} }
if (!params.kv_overrides.empty()) { if (!params.kv_overrides.empty()) {
@ -2093,6 +2097,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.no_kv_offload = true; params.no_kv_offload = true;
} }
).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
add_opt(common_arg(
{"-nr", "--no-repack"},
"disable weight repacking",
[](common_params & params) {
params.no_extra_bufts = true;
}
).set_env("LLAMA_ARG_NO_REPACK"));
add_opt(common_arg( add_opt(common_arg(
{"-ctk", "--cache-type-k"}, "TYPE", {"-ctk", "--cache-type-k"}, "TYPE",
string_format( string_format(
@ -2371,6 +2382,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
} }
} }
)); ));
add_opt(common_arg(
{"--cpu-moe"},
"use CPU for Mixture of Experts (MoE) weights",
[](common_params & params) {
params.tensor_buft_overrides.push_back({"\\.ffn_up_exps\\.weight$", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back({"\\.ffn_down_exps\\.weight$", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back({"\\.ffn_gate_exps\\.weight$", ggml_backend_cpu_buffer_type()});
}
).set_env("LLAMA_ARG_CPU_MOE"));
add_opt(common_arg( add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM", "number of layers to store in VRAM",
@ -3251,6 +3271,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.model.path = value; params.speculative.model.path = value;
} }
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT")); ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
add_opt(common_arg(
{"--spec-replace"}, "TARGET", "DRAFT",
"translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
[](common_params & params, const std::string & tgt, const std::string & dft) {
params.speculative.replacements.push_back({ tgt, dft });
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg( add_opt(common_arg(
{"-ctkd", "--cache-type-k-draft"}, "TYPE", {"-ctkd", "--cache-type-k-draft"}, "TYPE",
string_format( string_format(
@ -3440,28 +3467,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
} }
).set_examples({LLAMA_EXAMPLE_SERVER})); ).set_examples({LLAMA_EXAMPLE_SERVER}));
// diffusion parameters
add_opt(common_arg( add_opt(common_arg(
{ "--diffusion-steps" }, "N", { "--diffusion-steps" }, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps), string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; } [](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg( add_opt(common_arg(
{ "--diffusion-visual" }, { "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)", string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
@ -3469,5 +3479,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) { params.diffusion.visual_mode = true; } [](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-block-length" }, "N",
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
[](common_params & params, int value) { params.diffusion.block_length = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-cfg-scale" }, "F",
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-add-gumbel-noise" }, "F",
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
return ctx_arg; return ctx_arg;
} }

View file

@ -1130,6 +1130,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.use_mmap = params.use_mmap; mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock; mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors; mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;
if (params.kv_overrides.empty()) { if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL; mparams.kv_overrides = NULL;

View file

@ -197,6 +197,7 @@ struct common_params_speculative {
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy) float p_min = 0.75f; // minimum speculative decoding probability (greedy)
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
@ -216,11 +217,17 @@ struct common_params_vocoder {
}; };
struct common_params_diffusion { struct common_params_diffusion {
int32_t steps = 64; // number of diffusion steps int32_t steps = 128;
float eps = 1e-3f; // epsilon for timesteps bool visual_mode = false;
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
float alg_temp = 0.0f; // algorithm temperature float eps = 0; // epsilon for timesteps
bool visual_mode = false; // show progressive diffusion on screen int32_t block_length = 0; // block length for generation
int32_t algorithm = 4; // default algorithm: low-confidence
float alg_temp = 0.0f; // algorithm temperature
float cfg_scale = 0; // classifier-free guidance scale
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
}; };
enum common_reasoning_format { enum common_reasoning_format {
@ -348,6 +355,7 @@ struct common_params {
bool warmup = true; // warmup run bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device bool no_op_offload = false; // globally disable offload host tensor operations to device
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
bool single_turn = false; // single turn chat conversation bool single_turn = false; // single turn chat conversation

View file

@ -1,30 +1,39 @@
#include "speculative.h" #include "speculative.h"
#include "ggml.h"
#include "llama.h"
#include "log.h" #include "log.h"
#include "common.h" #include "common.h"
#include "sampling.h" #include "sampling.h"
#include <cstring> #include <cstring>
#include <algorithm> #include <algorithm>
#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128 #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative { struct common_speculative {
struct llama_context * ctx; struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
struct llama_context * ctx_dft;
struct common_sampler * smpl; struct common_sampler * smpl;
llama_batch batch; llama_batch batch;
llama_tokens prompt; llama_tokens prompt_dft;
bool vocab_dft_compatible = true; // whether retokenization is needed
std::map<std::string, std::string> tgt_dft_replacements = {};
}; };
struct common_speculative * common_speculative_init( struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft) { struct llama_context * ctx_dft) {
auto * result = new common_speculative { auto * result = new common_speculative {
/* .ctx = */ ctx_dft, /* .ctx_tgt = */ ctx_tgt,
/* .smpl = */ nullptr, /* .ctx_dft = */ ctx_dft,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1), /* .smpl = */ nullptr,
/* .prompt = */ {}, /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .prompt_dft = */ {},
/* .vocab_dft_compatible = */ false,
}; };
// TODO: optimize or pass from outside? // TODO: optimize or pass from outside?
@ -59,6 +68,9 @@ struct common_speculative * common_speculative_init(
} }
#endif #endif
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
return result; return result;
} }
@ -75,8 +87,8 @@ void common_speculative_free(struct common_speculative * spec) {
} }
bool common_speculative_are_compatible( bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt, const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) { const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt); const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft); const struct llama_model * model_dft = llama_get_model(ctx_dft);
@ -90,31 +102,32 @@ bool common_speculative_are_compatible(
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft); LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) { if (vocab_type_tgt != vocab_type_dft) {
LOG_ERR("%s: draft model vocab type must match target model to use speculation but " LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt); LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
return false; return false;
} }
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) || if (
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) || llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) || llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) { llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__); ) {
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt)); LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
return false; return false;
} }
{ {
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt); const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft); const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft); ? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but " LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false; return false;
} }
@ -122,8 +135,8 @@ bool common_speculative_are_compatible(
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i); const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i); const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) { if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but " LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
"token %d content differs - target '%s', draft '%s'\n", __func__, i, LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
common_token_to_piece(ctx_tgt, i).c_str(), common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str()); common_token_to_piece(ctx_dft, i).c_str());
return false; return false;
@ -134,32 +147,93 @@ bool common_speculative_are_compatible(
return true; return true;
} }
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest) {
spec->tgt_dft_replacements[source] = dest;
}
static std::string replace_to_dft(
struct common_speculative * spec,
const std::string& input) {
std::string result = input;
for (const auto & pair : spec->tgt_dft_replacements) {
size_t pos = result.find(pair.first);
while (pos != std::string::npos) {
result.replace(pos, pair.first.length(), pair.second);
pos = result.find(pair.first, pos + pair.second.length());
}
}
return result;
}
static std::string replace_to_tgt(
struct common_speculative * spec,
const std::string& input) {
std::string result = input;
for (const auto& pair : spec->tgt_dft_replacements) {
size_t pos = result.find(pair.second);
while (pos != std::string::npos) {
result.replace(pos, pair.second.length(), pair.first);
pos = result.find(pair.second, pos + pair.first.length());
}
}
return result;
}
llama_tokens common_speculative_gen_draft( llama_tokens common_speculative_gen_draft(
struct common_speculative * spec, struct common_speculative * spec,
struct common_speculative_params params, struct common_speculative_params params,
const llama_tokens & prompt_tgt, const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
llama_token id_last) { llama_token id_last) {
auto & batch = spec->batch; auto & batch = spec->batch;
auto & ctx = spec->ctx; auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl; auto & smpl = spec->smpl;
auto & prompt = spec->prompt; auto & prompt_dft = spec->prompt_dft;
auto * mem = llama_get_memory(ctx); auto * mem_dft = llama_get_memory(ctx_dft);
int reuse_i = 0; int reuse_i = 0;
int reuse_n = 0; int reuse_n = 0;
const int n_ctx = llama_n_ctx(ctx) - params.n_draft; const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
llama_tokens prompt_tgt_draft_model;
if (!spec->vocab_dft_compatible) {
std::string text;
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
text = replace_to_dft(spec, text);
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
const auto * model_tgt = llama_get_model(ctx_tgt);
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
text.resize(-n_chars);
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
text = replace_to_dft(spec, text);
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
id_last = common_tokenize(ctx_dft, text, false, true)[0];
}
// prompt_tgt's tokens will always be compatible with ctx_dft
const llama_tokens &prompt_tgt =
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx); const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
// reuse as much as possible from the old draft context // reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt.size(); ++i) { for (int i = 0; i < (int) prompt_dft.size(); ++i) {
int cur = 0; int cur = 0;
while (i_start + cur < (int) prompt_tgt.size() && while (i_start + cur < (int) prompt_tgt.size() &&
i + cur < (int) prompt.size() && i + cur < (int) prompt_dft.size() &&
prompt_tgt[i_start + cur] == prompt[i + cur]) { prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
cur++; cur++;
} }
@ -169,21 +243,20 @@ llama_tokens common_speculative_gen_draft(
} }
} }
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size()); LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
llama_tokens result; llama_tokens result;
result.reserve(params.n_draft); result.reserve(params.n_draft);
if (reuse_n == 0) { if (reuse_n == 0) {
llama_memory_clear(mem, false); llama_memory_clear(mem_dft, false);
prompt_dft.clear();
prompt.clear();
} else { } else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the // this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute // target model agreed with it. in this case, we simply pass back the previous results to save compute
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) { if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) { for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
result.push_back(prompt[i]); result.push_back(prompt_dft[i]);
if (params.n_draft <= (int) result.size()) { if (params.n_draft <= (int) result.size()) {
break; break;
@ -194,16 +267,15 @@ llama_tokens common_speculative_gen_draft(
} }
if (reuse_i > 0) { if (reuse_i > 0) {
llama_memory_seq_rm (mem, 0, 0, reuse_i); llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i); llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i); prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
} }
if (reuse_n < (int) prompt.size()) { if (reuse_n < (int) prompt_dft.size()) {
llama_memory_seq_rm (mem, 0, reuse_n, -1); llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
prompt.erase(prompt.begin() + reuse_n, prompt.end());
} }
} }
@ -214,28 +286,28 @@ llama_tokens common_speculative_gen_draft(
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]); //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false); common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
prompt.push_back(prompt_tgt[i]); prompt_dft.push_back(prompt_tgt[i]);
} }
// we should rarely end-up here during normal decoding // we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) { if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str()); //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx, batch); llama_decode(ctx_dft, batch);
} }
const llama_pos n_past = prompt.size(); const llama_pos n_past = prompt_dft.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past); LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch); common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true); common_batch_add (batch, id_last, n_past, { 0 }, true);
prompt.push_back(id_last); prompt_dft.push_back(id_last);
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str()); LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
llama_decode(ctx, batch); llama_decode(ctx_dft, batch);
common_sampler_reset(smpl); common_sampler_reset(smpl);
@ -243,13 +315,13 @@ llama_tokens common_speculative_gen_draft(
for (int i = 0; i < params.n_draft; ++i) { for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch); common_batch_clear(batch);
common_sampler_sample(smpl, ctx, 0, true); common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl); const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str()); k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
} }
// add drafted token for each sequence // add drafted token for each sequence
@ -271,10 +343,19 @@ llama_tokens common_speculative_gen_draft(
common_batch_add(batch, id, n_past + i + 1, { 0 }, true); common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model // evaluate the drafted tokens on the draft model
llama_decode(ctx, batch); llama_decode(ctx_dft, batch);
prompt.push_back(id); prompt_dft.push_back(id);
} }
if (!spec->vocab_dft_compatible) {
std::string detokenized = common_detokenize(ctx_dft, result, true);
detokenized = replace_to_tgt(spec, detokenized);
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
result = common_tokenize(ctx_tgt, detokenized, false, true);
if (result.size() > (size_t)params.n_draft) {
result.resize(params.n_draft);
}
}
return result; return result;
} }

View file

@ -12,7 +12,10 @@ struct common_speculative_params {
float p_min = 0.75f; // min probability required to accept a token in the draft float p_min = 0.75f; // min probability required to accept a token in the draft
}; };
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft); struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft
);
void common_speculative_free(struct common_speculative * spec); void common_speculative_free(struct common_speculative * spec);
@ -20,6 +23,10 @@ bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt, const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft); const struct llama_context * ctx_dft);
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest);
// sample up to n_draft tokens and add them to the batch using the draft model // sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft( llama_tokens common_speculative_gen_draft(
struct common_speculative * spec, struct common_speculative * spec,

View file

@ -684,6 +684,9 @@ class TextModel(ModelBase):
if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664": if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
# ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
res = "hunyuan" res = "hunyuan"
if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
# ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
res = "hunyuan-dense"
if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6": if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
# ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
res = "falcon-h1" res = "falcon-h1"
@ -2904,6 +2907,107 @@ class DreamModel(TextModel):
yield from super().modify_tensors(data_torch, name, bid) yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("LLaDAModelLM")
class LLaDAModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLADA
undo_permute = True
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab_dict = tokenizer.get_vocab()
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
assert max(vocab_dict.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
added_vocab = tokenizer.get_added_vocab()
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
# Check if it's a special token - treat special tokens as CONTROL tokens
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
return tokens, toktypes, tokpre
def set_vocab(self):
self._set_vocab_gpt2()
# LLaDA specific parameters
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
# Add parameters similar to LlamaModel
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if (rope_dim := hparams.get("head_dim")) is None:
n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
self.gguf_writer.add_rope_dimension_count(rope_dim)
# Set context length for LLaDA
context_length = self.hparams.get("max_sequence_length", 4096)
self.gguf_writer.add_context_length(context_length)
# Set embedding length (dimension size)
embedding_length = self.hparams.get("d_model", 4096)
self.gguf_writer.add_embedding_length(embedding_length)
# Set feed forward length (MLP hidden size)
feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
self.gguf_writer.add_feed_forward_length(feed_forward_length)
# LLaDA models use non-causal attention for diffusion, similar to Dream
self.gguf_writer.add_causal_attention(False)
# LLaDA models don't shift their logits
self.gguf_writer.add_diffusion_shift_logits(False)
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
# LLaDA model tensors should be mapped directly since it's the base model
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Ernie4_5_ForCausalLM") @ModelBase.register("Ernie4_5_ForCausalLM")
class Ernie4_5Model(TextModel): class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5 model_arch = gguf.MODEL_ARCH.ERNIE4_5
@ -7452,11 +7556,6 @@ class FalconH1Model(Mamba2Model):
class HunYuanMoEModel(TextModel): class HunYuanMoEModel(TextModel):
model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# For handling tied embeddings
self._tok_embd = None
def set_vocab(self): def set_vocab(self):
from transformers import AutoTokenizer from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
@ -7550,9 +7649,6 @@ class HunYuanMoEModel(TextModel):
_experts: list[dict[str, Tensor]] | None = None _experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name == "model.embed_tokens.weight":
self._tok_embd = data_torch.clone()
if name == "lm_head.weight": if name == "lm_head.weight":
if self.hparams.get("tie_word_embeddings", False): if self.hparams.get("tie_word_embeddings", False):
logger.info("Skipping tied output layer 'lm_head.weight'") logger.info("Skipping tied output layer 'lm_head.weight'")
@ -7597,6 +7693,98 @@ class HunYuanMoEModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}") raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("HunYuanDenseV1ForCausalLM")
class HunYuanModel(TextModel):
model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
def set_vocab(self):
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
# 1. Get the pre-tokenizer identifier hash
tokpre = self.get_vocab_base_pre(tokenizer)
# 2. Reverse-engineer the merges list from mergeable_ranks
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# 3. Generate the tokens and toktypes lists
vocab_size = self.hparams["vocab_size"]
assert tokenizer.vocab_size == vocab_size
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
# 4. Write all vocab-related fields to the GGUF writer
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
# 5. Add special tokens and chat templates
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# FIX for BOS token: Overwrite incorrect id read from config.json
if self.hparams['hidden_size'] == 4096:
self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
# Rope
rope_scaling = hparams.get("rope_scaling", {})
if rope_scaling.get("type") == "dynamic":
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
alpha = rope_scaling.get("alpha", 50)
base = hparams.get("rope_theta", 10000.0)
dim = hparams["head_dim"]
scaled_base = base * (alpha ** (dim / (dim - 2)))
self.gguf_writer.add_rope_freq_base(scaled_base)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_rope_scaling_factor(1)
# There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
self.gguf_writer.add_context_length(256 * 1024) # 256k context length
# if any of our assumptions about the values are wrong, something has changed and this may need to be updated
assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
"HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name == "lm_head.weight":
if self.hparams.get("tie_word_embeddings", False):
logger.info("Skipping tied output layer 'lm_head.weight'")
return []
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("SmolLM3ForCausalLM") @ModelBase.register("SmolLM3ForCausalLM")
class SmolLM3Model(LlamaModel): class SmolLM3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.SMOLLM3 model_arch = gguf.MODEL_ARCH.SMOLLM3

View file

@ -140,6 +140,7 @@ pre_computed_hashes = [
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"}, {"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"}, {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"}, {"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
# falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes # falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"}, {"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"}, {"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},

View file

@ -0,0 +1,47 @@
## MiniCPM-o 4
### Prepare models and code
Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model from huggingface to "MiniCPM-o-4" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-o 4
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-4-gguf) by us)
```bash
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-o-4
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-4 --minicpmv-projector ../MiniCPM-o-4/minicpmv.projector --output-dir ../MiniCPM-o-4/ --minicpmv_version 6
python ./convert_hf_to_gguf.py ../MiniCPM-o-4/model
# quantize int4 version
./build/bin/llama-quantize ../MiniCPM-o-4/model/ggml-model-f16.gguf ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Inference on Linux or Mac
```bash
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-o-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-4/mmproj-model-f16.gguf
```

View file

@ -0,0 +1,47 @@
## MiniCPM-V 4
### Prepare models and code
Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model from huggingface to "MiniCPM-V-4" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 4
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-4-gguf) by us)
```bash
python ./tools/mtmd/legacy-models/minicpmv-surgery.py -m ../MiniCPM-V-4
python ./tools/mtmd/legacy-models/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-V-4 --minicpmv-projector ../MiniCPM-V-4/minicpmv.projector --output-dir ../MiniCPM-V-4/ --minicpmv_version 5
python ./convert_hf_to_gguf.py ../MiniCPM-V-4/model
# quantize int4 version
./build/bin/llama-quantize ../MiniCPM-V-4/model/ggml-model-f16.gguf ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Inference on Linux or Mac
```bash
# run in single-turn mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run in conversation mode
./build/bin/llama-mtmd-cli -m ../MiniCPM-V-4/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-4/mmproj-model-f16.gguf
```

View file

@ -0,0 +1,13 @@
# Diffusion Text Generation
This directory contains implementations for Diffusion LLMs (DLLMs)
More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`

View file

@ -5,344 +5,128 @@
#include "log.h" #include "log.h"
#include <limits.h> #include <limits.h>
#include <string>
#include <vector>
#include <algorithm> #include <algorithm>
#include <cmath> #include <cmath>
#include <cstring>
#include <limits> #include <limits>
#include <random> #include <random>
#include <string>
#include <vector>
typedef bool (*diffusion_step_callback_t)(int32_t step, enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
enum diffusion_alg { // Unified transfer scheduling methods
DIFFUSION_ALG_ORIGIN = 0, enum transfer_schedule {
DIFFUSION_ALG_MASKGIT_PLUS = 1, TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
DIFFUSION_ALG_TOPK_MARGIN = 2, BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
DIFFUSION_ALG_ENTROPY = 3,
}; };
typedef bool (*diffusion_step_callback_t)(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
struct diffusion_params { struct diffusion_params {
int32_t steps; int32_t steps = 0;
float eps; float temperature = 0;
float temperature; llama_token mask_token_id = LLAMA_TOKEN_NULL;
float top_p; diffusion_step_callback_t step_callback = nullptr;
int32_t top_k; void * step_callback_user_data = nullptr;
llama_token mask_token_id; int32_t seed = 0;
enum diffusion_alg algorithm; bool visual_mode = false;
float alg_temp; bool shift_logits = false; // Shift logits by -1 after decode
diffusion_step_callback_t step_callback;
void * step_callback_user_data; float top_p = 0.;
int32_t seed; int32_t top_k = 0.;
diffusion_algorithm algorithm = CONFIDENCE_BASED;
transfer_schedule schedule = TIMESTEP_BASED;
float cfg_scale = 0.; // Config scale for classifier-free guidance
float eps = 0.; // Timestep scheduling
int32_t block_length = 0; // Block size (for block scheduling)
float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
int32_t max_length = 0; // Maximum sequence length
}; };
static diffusion_params diffusion_default_params() {
diffusion_params params = {};
params.steps = 64;
params.eps = 1e-3f;
params.temperature = 0.2f;
params.top_p = 0.95f;
params.top_k = 0;
params.mask_token_id = LLAMA_TOKEN_NULL;
params.algorithm = DIFFUSION_ALG_ORIGIN;
params.alg_temp = 0.0f;
params.step_callback = nullptr;
params.step_callback_user_data = nullptr;
params.seed = 0;
return params;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
int32_t max_length,
struct diffusion_params params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
std::vector<float> timesteps(params.steps + 1);
for (int32_t i = 0; i <= params.steps; i++) {
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
}
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(max_length);
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(max_length, 0, 1);
batch.n_tokens = max_length;
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int32_t step = 0; step < params.steps; step++) {
if (params.step_callback) {
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
break;
}
}
for (int32_t i = 0; i < max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
break;
}
float * raw_logits = llama_get_logits(ctx);
if (!raw_logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
mask_positions.push_back(i);
}
}
if (mask_positions.empty()) {
break;
}
float t = timesteps[step];
float s = timesteps[step + 1];
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float confidence = 0.0f;
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
const float epsilon = 1e-10f;
for (size_t j = 0; j < cur_p.size; j++) {
float prob = cur_p.data[j].p;
confidence += prob * logf(prob + epsilon);
}
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
confidence = cur_p.data[0].p - cur_p.data[1].p;
} else {
confidence = cur_p.data[cur_p.selected].p;
}
sampled_tokens[i] = sampled_token;
confidences.emplace_back(confidence, i);
}
int32_t num_transfer =
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
if (num_transfer > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
} else {
conf_candidates.clear();
for (int32_t pos = 0; pos < max_length; pos++) {
float conf_logit = -std::numeric_limits<float>::infinity();
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
size_t mask_idx = std::distance(mask_positions.begin(), it);
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
}
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
/* .data = */ conf_candidates.data(),
/* .size = */ conf_candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
for (int32_t i = 0; i < num_transfer; i++) {
// Apply distribution sampler to get selected index
llama_sampler_apply(dist_sampler, &conf_array);
int selected_idx = conf_array.selected;
confidences[i].second = conf_candidates[selected_idx].id;
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
if (params.alg_temp == 0.0f) {
// Deterministic - use confidence order
for (int32_t i = 0; i < num_transfer; i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
llama_token token = sampled_tokens[mask_idx];
output_tokens[pos] = token;
}
} else {
for (int32_t i = 0; i < num_transfer; i++) {
int32_t pos = confidences[i].second;
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
int32_t mask_idx = std::distance(mask_positions.begin(), it);
output_tokens[pos] = sampled_tokens[mask_idx];
}
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
inputs.messages.push_back(user_msg);
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
struct callback_data { struct callback_data {
const common_params_diffusion * diff_params; diffusion_params * diff_params;
const llama_vocab * vocab; const llama_vocab * vocab;
int32_t n_input; int32_t n_input;
}; };
static bool diffusion_step_callback(int32_t step, static float calculate_confidence(const llama_token_data_array & cur_p,
int32_t total_steps, diffusion_algorithm algorithm,
std::mt19937 & rng) {
switch (algorithm) {
case CONFIDENCE_BASED:
return cur_p.data[cur_p.selected].p; // Selected token probability
case ENTROPY_BASED:
{
float entropy = 0.0f;
const float epsilon = 1e-10f;
for (size_t i = 0; i < cur_p.size; i++) {
float prob = cur_p.data[i].p;
entropy += prob * logf(prob + epsilon);
}
return -entropy; // Higher entropy = lower confidence
}
case MARGIN_BASED:
return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
case RANDOM:
{
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
return uniform(rng); // Random confidence
}
case ORIGIN:
return cur_p.data[cur_p.selected].p;
default:
return 0.0f;
}
}
// Unified transfer count calculation function
static int32_t calculate_transfer_count(int32_t step,
int32_t total_steps,
int32_t remaining_masked,
transfer_schedule schedule,
float eps,
const std::vector<int32_t> & num_transfer_tokens = {}) {
switch (schedule) {
case TIMESTEP_BASED:
{
float t = 1.0f - (float) step / total_steps * (1.0f - eps);
float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
return (int32_t) (remaining_masked * p_transfer);
}
case BLOCK_BASED:
if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
return num_transfer_tokens[step];
}
return remaining_masked / (total_steps - step); // Fallback
default:
return remaining_masked / (total_steps - step);
}
}
static bool diffusion_step_callback(int32_t step,
int32_t total_steps,
const llama_token * tokens, const llama_token * tokens,
int32_t n_tokens, int32_t n_tokens,
void * user_data) { void * user_data) {
(void)user_data; (void) user_data;
callback_data * data = static_cast<callback_data *>(user_data); callback_data * data = static_cast<callback_data *>(user_data);
@ -350,11 +134,11 @@ static bool diffusion_step_callback(int32_t step,
int progress_percent = (step * 100) / total_steps; int progress_percent = (step * 100) / total_steps;
int progress_bars = (step * 50) / total_steps; int progress_bars = (step * 50) / total_steps;
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%", LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
step, step,
total_steps, total_steps,
std::string(progress_bars, '=').c_str(), std::string(progress_bars, '=').c_str(),
std::string(50 - progress_bars, ' ').c_str(), std::string(50 - progress_bars, ' ').c_str(),
progress_percent); progress_percent);
}; };
if (data->diff_params->visual_mode) { if (data->diff_params->visual_mode) {
@ -391,6 +175,360 @@ static bool diffusion_step_callback(int32_t step,
return true; return true;
} }
static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
if (temperature == 0.0f) {
return;
}
std::uniform_real_distribution<double> uniform(0.0, 1.0);
for (int32_t i = 0; i < n_vocab; i++) {
double noise = uniform(rng);
// Prevent log(0)
noise = std::max(noise, 1e-20);
double gumbel_noise = std::pow(-std::log(noise), temperature);
logits[i] = std::exp(logits[i]) / gumbel_noise;
}
}
static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
std::vector<int32_t> num_transfer_tokens(steps);
int32_t base = mask_count / steps;
int32_t remainder = mask_count % steps;
for (int32_t i = 0; i < steps; i++) {
num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
}
return num_transfer_tokens;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
const diffusion_params & params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(params.max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(params.max_length);
// Setup sampler chain
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(params.max_length, 0, 1);
batch.n_tokens = params.max_length;
// Pre-allocate buffers for CFG if needed
int32_t logits_size = n_vocab * params.max_length;
std::vector<float> cond_logits_buffer;
std::vector<llama_token> un_x_buffer;
if (params.cfg_scale > 0.0f) {
cond_logits_buffer.resize(logits_size);
un_x_buffer.resize(params.max_length);
}
// For block-based processing
std::vector<int32_t> num_transfer_tokens;
int32_t num_blocks = 1;
int32_t steps_per_block = params.steps;
if (params.schedule == BLOCK_BASED) {
GGML_ASSERT(params.max_length % params.block_length == 0);
num_blocks = params.max_length / params.block_length;
GGML_ASSERT(params.steps % num_blocks == 0);
steps_per_block = params.steps / num_blocks;
}
std::vector<float> confidence(params.max_length);
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int block_num = 0; block_num < num_blocks; block_num++) {
int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
int32_t block_end = (params.schedule == BLOCK_BASED) ?
std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
params.max_length;
// Count masked tokens in current block for block-based processing
if (params.schedule == BLOCK_BASED) {
int32_t block_mask_count = 0;
for (int i = block_start; i < block_end; i++) {
if (output_tokens[i] == params.mask_token_id) {
block_mask_count++;
}
}
num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
}
for (int32_t step = 0; step < steps_per_block; step++) {
int32_t global_step = block_num * steps_per_block + step;
if (params.step_callback) {
if (!params.step_callback(
global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
break;
}
}
// Setup batch
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
float * logits = nullptr;
if (params.cfg_scale > 0.0f) {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate conditional");
break;
}
float * cond_logits_ptr = llama_get_logits(ctx);
std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
// Unconditional generation (mask input)
std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
for (int32_t i = 0; i < n_input; i++) {
un_x_buffer[i] = params.mask_token_id;
}
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = un_x_buffer[i];
}
ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate unconditional");
break;
}
float * uncond_logits = llama_get_logits(ctx);
// Apply CFG
for (int32_t i = 0; i < logits_size; i++) {
cond_logits_buffer[i] =
uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
}
logits = cond_logits_buffer.data();
} else {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
break;
}
logits = llama_get_logits(ctx);
}
if (!logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
if (params.shift_logits) {
return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
}
return logits + (pos) *n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < params.max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
// For block-based, only consider current block
if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
mask_positions.push_back(i);
}
}
}
if (mask_positions.empty()) {
break;
}
if (params.add_gumbel_noise && params.temperature > 0.0f) {
add_gumbel_noise(logits, n_vocab, params.temperature, rng);
}
if (params.algorithm == ORIGIN) {
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
float p_transfer = (float) transfer_count / mask_positions.size();
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
candidates.data(),
(size_t) n_vocab,
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
candidates.data(),
candidates.size(),
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float conf = calculate_confidence(cur_p, params.algorithm, rng);
sampled_tokens[i] = sampled_token;
confidences.emplace_back(conf, i);
}
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
if (transfer_count > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(),
confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
}
} else {
conf_candidates.clear();
for (size_t i = 0; i < confidences.size(); i++) {
float conf_logit = confidences[i].first / params.alg_temp;
conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
conf_candidates.data(),
conf_candidates.size(),
-1,
false,
};
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
llama_sampler_apply(dist_sampler, &conf_array);
int32_t selected_idx = conf_array.selected;
int32_t mask_idx = selected_idx;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0,
total_time / 1000.0 / params.steps,
total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = params.max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
inputs.messages.push_back(user_msg);
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
ggml_time_init(); ggml_time_init();
@ -400,11 +538,6 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
alg_names[params.diffusion.algorithm] :
"UNKNOWN";
common_init(); common_init();
llama_backend_init(); llama_backend_init();
@ -421,6 +554,12 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
if (!llama_model_is_diffusion(model)) {
LOG_ERR("error: unsupported model for diffusion");
llama_model_free(model);
return 1;
}
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx; ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch; ctx_params.n_batch = params.n_batch;
@ -442,10 +581,12 @@ int main(int argc, char ** argv) {
const llama_vocab * vocab = llama_model_get_vocab(model); const llama_vocab * vocab = llama_model_get_vocab(model);
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model); std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt, std::vector<llama_token> input_tokens = common_tokenize(vocab,
formatted_prompt,
/*add special tokens*/ true, /*add special tokens*/ true,
/*parse special*/ true); /*parse special*/ true);
int n_input = input_tokens.size();
int n_input = input_tokens.size();
if (n_input >= params.n_ctx) { if (n_input >= params.n_ctx) {
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx); LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
@ -454,44 +595,79 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
struct diffusion_params ldiff_params = diffusion_default_params();
ldiff_params.steps = params.diffusion.steps;
ldiff_params.eps = params.diffusion.eps;
ldiff_params.temperature = params.sampling.temp;
ldiff_params.top_p = params.sampling.top_p;
ldiff_params.top_k = params.sampling.top_k;
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
ldiff_params.alg_temp = params.diffusion.alg_temp;
ldiff_params.seed = params.sampling.seed;
llama_token mask_token_id = llama_vocab_mask(vocab); llama_token mask_token_id = llama_vocab_mask(vocab);
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL); GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id); bool visual_mode = params.diffusion.visual_mode;
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
alg_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
ldiff_params.mask_token_id = mask_token_id;
callback_data cb_data = { &params.diffusion, vocab, n_input };
ldiff_params.step_callback = diffusion_step_callback;
ldiff_params.step_callback_user_data = &cb_data;
int32_t n_generated = 0;
int32_t n_generated = 0;
std::vector<llama_token> output_tokens(params.n_ubatch); std::vector<llama_token> output_tokens(params.n_ubatch);
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
ldiff_params, n_generated); struct diffusion_params diff_params;
char shift_logits_str[8];
if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
} else {
diff_params.shift_logits = true;
}
//Use either eps or block length, but not both
GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
if (params.diffusion.eps) {
diff_params.schedule = TIMESTEP_BASED;
diff_params.eps = params.diffusion.eps;
} else if (params.diffusion.block_length) {
diff_params.schedule = BLOCK_BASED;
diff_params.block_length = params.diffusion.block_length;
}
diff_params.mask_token_id = mask_token_id;
diff_params.seed = params.sampling.seed;
diff_params.temperature = params.sampling.temp;
diff_params.steps = params.diffusion.steps;
diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
diff_params.max_length = params.n_ubatch;
diff_params.top_p = params.sampling.top_p;
diff_params.top_k = params.sampling.top_k;
diff_params.visual_mode = params.diffusion.visual_mode;
diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
diff_params.step_callback = diffusion_step_callback;
callback_data cb_data = { &diff_params, vocab, n_input };
diff_params.step_callback_user_data = &cb_data;
const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
const char * alg_name =
(diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
const char * sched_name =
(diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
if (diff_params.schedule == TIMESTEP_BASED) {
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
}
if (diff_params.schedule == BLOCK_BASED) {
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
}
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
if (n_generated > 0) { if (n_generated > 0) {
if (params.diffusion.visual_mode) { if (visual_mode) {
//clear screen and move cursor to top-left //clear screen and move cursor to top-left
LOG_INF("\033[2J\033[H"); LOG_INF("\033[2J\033[H");
} }
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input); output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
std::string output_data = common_detokenize(vocab, output_tokens, false); std::string output_data = common_detokenize(vocab, output_tokens, false);
LOG_INF("\n%s\n", output_data.c_str()); LOG_INF("\n%s\n", output_data.c_str());

View file

@ -37,17 +37,21 @@
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0 #define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0 #define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64) #elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp // repack.cpp
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8 #define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64) #elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
// repack.cpp // repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4 #define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
@ -72,11 +76,13 @@
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0 #define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0 #define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__loongarch64) #elif defined(__loongarch64)
// quants.c // quants.c
@ -92,11 +98,13 @@
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0 #define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0 #define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__riscv) #elif defined(__riscv)
// quants.c // quants.c
@ -119,10 +127,12 @@
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0 #define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__s390x__) #elif defined(__s390x__)
// quants.c // quants.c
@ -147,11 +157,13 @@
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0 #define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0 #define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__wasm__) #elif defined(__wasm__)
// quants.c // quants.c
@ -175,10 +187,12 @@
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0 #define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0 #define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K #define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0 #define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0 #define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0 #define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0 #define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K #define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0 #define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#endif #endif

File diff suppressed because it is too large Load diff

View file

@ -412,6 +412,82 @@ void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
} }
} }
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[8];
float sum_minf[8];
int sumi1,sumi2,sumi3,sumi4;
int sumi;
const block_q8_K * a_ptr = (const block_q8_K *)vy;
for(int x = 0; x < nc / ncols_interleaved; x++) {
const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) {
sumf[j] = 0.0;
sum_minf[j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (4 * blocklen)); k++) {
const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi3 = 0;
sumi4 = 0;
sumi = 0;
int offset = ((k / 2) % 2) + j * 2;
for (int i = 0; i < blocklen; ++i){
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 32]);
sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 64]);
sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 128 + (k % 4) * blocklen + i + 96]);
sumi1 = sumi1 * (scales_0[offset] & 0xF);
sumi2 = sumi2 * (scales_1[offset] & 0xF);
sumi3 = sumi3 * (scales_2[offset] & 0xF);
sumi4 = sumi4 * (scales_3[offset] & 0xF);
sumi += sumi1 + sumi2 + sumi3 + sumi4;
}
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
}
}
for(int sb = 0; sb < 8; sb++) {
const uint8_t *mins = b_ptr[l].scales + sb * 16;
for(int j = 0; j < ncols_interleaved; j++){
sum_minf[j] += ((mins[j * 2] >> 4) * a_ptr[l].bsums[sb * 2] + (mins[(j * 2)+ 1] >> 4) * a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
}
}
}
for (int j = 0; j < ncols_interleaved; j++) {
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
}
}
}
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0; const int qk = QK8_0;
const int nb = n / qk; const int nb = n / qk;
@ -711,6 +787,97 @@ void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs,
} }
} }
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 8;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(s);
UNUSED(bs);
UNUSED(vx);
UNUSED(vy);
UNUSED(nr);
UNUSED(nc);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][8];
float sum_minf[4][8];
int sumi1, sumi2, sumi3, sumi4;
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q2_Kx8 * b_ptr = (const block_q2_Kx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumf[m][j] = 0.0;
sum_minf[m][j] = 0.0;
}
}
for (int l = 0; l < nb; l++) {
for (int k = 0; k < (qk / (4 * blocklen)); k++) {
const uint8_t *scales_0 = b_ptr[l].scales + (k / 4) * 64 ;
const uint8_t *scales_1 = b_ptr[l].scales + (k / 4) * 64 + 16;
const uint8_t *scales_2 = b_ptr[l].scales + (k / 4) * 64 + 32;
const uint8_t *scales_3 = b_ptr[l].scales + (k / 4) * 64 + 48;
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi3 = 0;
sumi4 = 0;
sumi = 0;
int offset = ((k / 2) % 2) + j * 2;
for (int i = 0; i < blocklen; ++i){
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 3);
const int v1 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 2 ) & 3);
const int v2 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4 ) & 3);
const int v3 = (int8_t) ((b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 6 ) & 3);
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
sumi3 = (v2 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 256]);
sumi4 = (v3 * a_ptr[l].qs[(k >> 2) * 512 + (k % 4) * 4 * blocklen + m * blocklen + i + 384]);
sumi1 = sumi1 * (scales_0[offset] & 0xF);
sumi2 = sumi2 * (scales_1[offset] & 0xF);
sumi3 = sumi3 * (scales_2[offset] & 0xF);
sumi4 = sumi4 * (scales_3[offset] & 0xF);
sumi += sumi1 + sumi2 + sumi3 + sumi4;
}
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
}
}
}
for(int sb = 0; sb < 8; sb++) {
const uint8_t *mins = b_ptr[l].scales + sb * 16;
for(int m = 0; m < 4; m++) {
const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
for(int j = 0; j < ncols_interleaved; j++) {
int mins_prod = ((mins[j * 2] >> 4) * bsums[0] + (mins[(j * 2)+ 1] >> 4) * bsums[1]);
sum_minf[m][j] += (mins_prod) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
}
}
}
}
}
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) { void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK8_0; const int qk = QK8_0;
const int nb = n / qk; const int nb = n / qk;
@ -916,6 +1083,50 @@ static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_in
return out; return out;
} }
static block_q2_Kx8 make_block_q2_Kx8(block_q2_K * in, unsigned int blck_size_interleave) {
block_q2_Kx8 out;
// Delta(scale) and dmin values of the eight Q2_K structures are copied onto the output interleaved structure
for (int i = 0; i < 8; i++) {
out.d[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.d;
}
for (int i = 0; i < 8; i++) {
out.dmin[i] = in[i].GGML_COMMON_AGGR_U.GGML_COMMON_AGGR_S.dmin;
}
const int end = QK_K * 2 / blck_size_interleave;
// Interleave Q2_K quants by taking 8 bytes at a time
for (int i = 0; i < end; ++i) {
int src_id = i % 8;
int src_offset = (i / 8) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
uint64_t elems;
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
}
// The below logic is designed so as to unpack and rearrange scales and mins values in Q2_K
// Currently the Q2_K structure has 16 scales and 16 mins packed in 16 bytes ( 4 bits for each value)
// The output Q2_Kx8 structure has 128 bytes for storing scales and mins
// Every 16 byte is packed such that it contains scales and mins for corresponding sub blocks from Q2_K structure
// For eg - First 16 bytes contains 16 scales and 16 mins - each of first and second sub blocks from different Q2_K structures
for(int i = 0; i < 128; i++){
// Index for selecting which q2k super block
int src1 = (i % 16) / 2;
// Index for selecting scale
int src2 = ((i / 16) * 2) + (i % 2);
out.scales[i] = in[src1].scales[src2];
}
return out;
}
static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
if(kcpp_q_already_repacked) //using legacy prepacked quant, so just copy it if(kcpp_q_already_repacked) //using legacy prepacked quant, so just copy it
{ {
@ -982,6 +1193,37 @@ static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block
GGML_UNUSED(data_size); GGML_UNUSED(data_size);
} }
static int repack_q2_K_to_q2_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q2_K);
GGML_ASSERT(interleave_block == 8);
constexpr int nrows_interleaved = 8;
block_q2_Kx8 * dst = (block_q2_Kx8*)t->data;
const block_q2_K * src = (const block_q2_K*) data;
block_q2_K dst_tmp[8];
int nrow = ggml_nrows(t);
int nblocks = t->ne[0] / QK_K;
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_q2_K));
if (t->ne[1] % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
return -1;
}
for (int b = 0; b < nrow; b += nrows_interleaved) {
for (int64_t x = 0; x < nblocks; x++) {
for (int i = 0; i < nrows_interleaved; i++ ) {
dst_tmp[i] = src[x + i * nblocks];
}
*dst++ = make_block_q2_Kx8(dst_tmp, interleave_block);
}
src += nrows_interleaved * nblocks;
}
return 0;
GGML_UNUSED(data_size);
}
static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) { static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
if(kcpp_q_already_repacked) //using legacy prepacked quant, so just copy it if(kcpp_q_already_repacked) //using legacy prepacked quant, so just copy it
{ {
@ -1112,6 +1354,10 @@ template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * da
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size); return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
} }
template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
}
template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) { template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size); return repack_iq4_nl_to_iq4_nl_4_bl(t, 4, data, data_size);
} }
@ -1141,6 +1387,10 @@ template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
} }
template <> void gemv<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
} }
@ -1165,6 +1415,10 @@ template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t
ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc); ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
} }
template <> void gemm<block_q2_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q2_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) { template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc); ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
} }
@ -1447,12 +1701,14 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0; static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K; static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for Q2
static const ggml::cpu::repack::tensor_traits<block_q2_K, 8, 8, GGML_TYPE_Q8_K> q2_K_8x8_q8_K;
// instance for IQ4 // instance for IQ4
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0; static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
if (cur->type == GGML_TYPE_Q4_0) { if (cur->type == GGML_TYPE_Q4_0) {
//we shall just use the regular avx2 handling, no repacking if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
if (/*ggml_cpu_has_avx2() ||*/ (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
if (cur->ne[1] % 8 == 0) { if (cur->ne[1] % 8 == 0) {
return &q4_0_8x8_q8_0; return &q4_0_8x8_q8_0;
} }
@ -1468,11 +1724,17 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
} }
} }
} else if (cur->type == GGML_TYPE_Q4_K) { } else if (cur->type == GGML_TYPE_Q4_K) {
// if (ggml_cpu_has_avx2()) { if (ggml_cpu_has_avx2()) {
// if (cur->ne[1] % 8 == 0) { if (cur->ne[1] % 8 == 0) {
// return &q4_K_8x8_q8_K; return &q4_K_8x8_q8_K;
// } }
// } }
} else if (cur->type == GGML_TYPE_Q2_K) {
if (ggml_cpu_has_avx512()) {
if (cur->ne[1] % 8 == 0) {
return &q2_K_8x8_q8_K;
}
}
} else if (cur->type == GGML_TYPE_IQ4_NL) { } else if (cur->type == GGML_TYPE_IQ4_NL) {
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) { if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 4 == 0) { if (cur->ne[1] % 4 == 0) {

View file

@ -44,7 +44,14 @@ struct block_q4_Kx8 {
}; };
static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding"); static_assert(sizeof(block_q4_Kx8) == sizeof(ggml_half) * 16 + K_SCALE_SIZE * 8 + QK_K * 4, "wrong q4_K block size/padding");
struct block_q2_Kx8 {
ggml_half d[8]; // super-block scale for quantized scales
ggml_half dmin[8]; // super-block scale for quantized mins
uint8_t scales[128]; // scales and mins, quantized with 4 bits
uint8_t qs[512]; // 2--bit quants
};
static_assert(sizeof(block_q2_Kx8) == sizeof(ggml_half) * 16 + QK_K/2 + QK_K * 2, "wrong q2_K block size/padding");
struct block_q8_Kx4 { struct block_q8_Kx4 {
float d[4]; // delta float d[4]; // delta
int8_t qs[QK_K * 4]; // quants int8_t qs[QK_K * 4]; // quants
@ -71,11 +78,13 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// Native implementations // Native implementations
@ -86,11 +95,13 @@ void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc); void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
#if defined(__cplusplus) #if defined(__cplusplus)

View file

@ -231,9 +231,9 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE #define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4))) #endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(CDNA3) && !defined(GGML_HIP_NO_MMQ_MFMA) #if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE #define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA3) && !defined(GGML_HIP_NO_MMQ_MFMA) #endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING #if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE #define NEW_MMA_AVAILABLE
@ -297,10 +297,9 @@ static bool fp32_mma_hardware_available(const int cc) {
return GGML_CUDA_CC_IS_CDNA(cc); return GGML_CUDA_CC_IS_CDNA(cc);
} }
// AMD CDNA3 matrix cores.. Will add support for other CDNA generations later.
static bool amd_mfma_available(const int cc) { static bool amd_mfma_available(const int cc) {
#if !defined(GGML_HIP_NO_MMQ_MFMA) #if !defined(GGML_HIP_NO_MMQ_MFMA)
return GGML_CUDA_CC_IS_CDNA3(cc); return GGML_CUDA_CC_IS_CDNA(cc);
#else #else
return false; return false;
#endif //!defined(GGML_HIP_NO_MMQ_MFMA) #endif //!defined(GGML_HIP_NO_MMQ_MFMA)
@ -436,6 +435,20 @@ static __global__ void reduce_rows_f32(const float * x, float * dst, const int n
dst[row] = norm ? sum / ncols : sum; dst[row] = norm ? sum / ncols : sum;
} }
template<int width = WARP_SIZE>
static __device__ __forceinline__ int warp_reduce_all(int x) {
#ifdef GGML_USE_HIP
#pragma unroll
for (int offset = width/2; offset > 0; offset >>= 1) {
x = x && __shfl_xor_sync(0xffffffff, x, offset, width);
}
return x;
#else
static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented");
return __all_sync(0xffffffff, x);
#endif // GGML_USE_HIP
}
template<int width = WARP_SIZE> template<int width = WARP_SIZE>
static __device__ __forceinline__ float warp_reduce_max(float x) { static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll #pragma unroll

View file

@ -15,6 +15,7 @@ typedef void (* fattn_kernel_t)(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -500,6 +501,55 @@ constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
nullptr; nullptr;
} }
template <int ncols1>
__launch_bounds__(FATTN_KQ_STRIDE/2, 1)
static __global__ void flash_attn_mask_to_KV_max(
const half2 * __restrict__ mask, int * __restrict__ KV_max, const int ne30, const int s31, const int s33) {
const int ne31 = gridDim.x;
const int tid = threadIdx.x;
const int sequence = blockIdx.y;
const int jt = blockIdx.x;
mask += sequence*s33 + jt*ncols1*s31;
__shared__ int buf_iw[WARP_SIZE];
if (tid < WARP_SIZE) {
buf_iw[tid] = 1;
}
__syncthreads();
int KV_max_sj = (ne30 - 1) * FATTN_KQ_STRIDE;
for (; KV_max_sj >= 0; KV_max_sj -= FATTN_KQ_STRIDE) {
int all_inf = 1;
#pragma unroll
for (int j = 0; j < ncols1; ++j) {
const float2 tmp = __half22float2(mask[j*s31 + KV_max_sj/2 + tid]);
all_inf = all_inf && int(isinf(tmp.x)) && int(isinf(tmp.y));
}
all_inf = warp_reduce_all(all_inf);
if (tid % WARP_SIZE == 0) {
buf_iw[tid / WARP_SIZE] = all_inf;
}
__syncthreads();
all_inf = buf_iw[tid % WARP_SIZE];
__syncthreads();
all_inf = warp_reduce_all(all_inf);
if (!all_inf) {
KV_max_sj += FATTN_KQ_STRIDE;
break;
}
}
if (threadIdx.x != 0) {
return;
}
KV_max[sequence*ne31 + jt] = KV_max_sj;
}
template<int D, int ncols1, int ncols2> // D == head size template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1) __launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup( static __global__ void flash_attn_stream_k_fixup(
@ -711,6 +761,7 @@ void launch_fattn(
ggml_cuda_pool_alloc<half> K_f16(pool); ggml_cuda_pool_alloc<half> K_f16(pool);
ggml_cuda_pool_alloc<half> V_f16(pool); ggml_cuda_pool_alloc<half> V_f16(pool);
ggml_cuda_pool_alloc<int> KV_max(pool);
ggml_cuda_pool_alloc<float> dst_tmp(pool); ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool); ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
@ -779,11 +830,30 @@ void launch_fattn(
V_data = (char *) V_f16.ptr; V_data = (char *) V_f16.ptr;
} }
int parallel_blocks = 1;
const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1); const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3]; const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
// Optional optimization where the mask is scanned to determine whether part of the calculation can be skipped.
// Only worth the overhead if there is at lease one FATTN_KQ_STRIDE x FATTN_KQ_STRIDE square to be skipped or
// multiple sequences of possibly different lengths.
if (mask && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
const int s31 = mask->nb[1] / sizeof(half2);
const int s33 = mask->nb[3] / sizeof(half2);
const dim3 blocks_num_KV_max(ntiles_x, Q->ne[3], 1);
const dim3 block_dim_KV_max(FATTN_KQ_STRIDE/2, 1, 1);
const int ne_KV_max = blocks_num_KV_max.x*blocks_num_KV_max.y;
const int iter_k = K->ne[1] / FATTN_KQ_STRIDE;
KV_max.alloc(ne_KV_max);
flash_attn_mask_to_KV_max<ncols1><<<blocks_num_KV_max, block_dim_KV_max, 0, main_stream>>>
((const half2 *) mask->data, KV_max.ptr, iter_k, s31, s33);
CUDA_CHECK(cudaGetLastError());
}
int parallel_blocks = 1;
const dim3 block_dim(warp_size, nwarps, 1); const dim3 block_dim(warp_size, nwarps, 1);
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy. int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared)); CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
@ -870,6 +940,7 @@ void launch_fattn(
K_data, K_data,
V_data, V_data,
mask ? ((const char *) mask->data) : nullptr, mask ? ((const char *) mask->data) : nullptr,
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr, !stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap, scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3], Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],

View file

@ -392,7 +392,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_load_mask(
} }
} }
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter> template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles,
bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup, bool last_iter>
static __device__ __forceinline__ void flash_attn_ext_f16_iter( static __device__ __forceinline__ void flash_attn_ext_f16_iter(
const float2 * const __restrict__ Q_f2, const float2 * const __restrict__ Q_f2,
const half2 * const __restrict__ K_h2, const half2 * const __restrict__ K_h2,
@ -922,7 +923,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
} }
// Iterate over ne11 == previous tokens: // Iterate over ne11 == previous tokens:
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) { int kb0 = kb0_start;
for (; kb0 < kb0_stop-1; ++kb0) {
constexpr bool last_iter = false; constexpr bool last_iter = false;
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter> flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
@ -932,7 +934,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
constexpr bool last_iter = true; constexpr bool last_iter = true;
flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter> flash_attn_ext_f16_iter<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup, last_iter>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap, (Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup, scale, slope, logit_softcap,
ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1); ne01, ne02, stride_K, stride_V, stride_mask, tile_Q, tile_K, tile_V, tile_mask, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
} }
// With multi-stage loading there is no __syncthreads at the end of the iter, // With multi-stage loading there is no __syncthreads at the end of the iter,
@ -1204,6 +1206,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -1280,7 +1283,11 @@ static __global__ void flash_attn_ext_f16(
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f; const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter; const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter; int kb0_stop_kernel = kb0_stop * kb_niter;
if (KV_max) {
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
}
constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer. constexpr bool is_fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
if (kb0_start == 0) { if (kb0_start == 0) {
@ -1321,7 +1328,11 @@ static __global__ void flash_attn_ext_f16(
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f; const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter; const int kb0_start_kernel = kb0_start * kb_niter;
const int kb0_stop_kernel = kb0_stop * kb_niter; int kb0_stop_kernel = kb0_stop * kb_niter;
if (KV_max) {
kb0_stop_kernel = min(kb0_stop_kernel, KV_max[sequence*iter_j + jt] / c::nbatch_fa);
}
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks. constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
constexpr bool needs_fixup = false; constexpr bool needs_fixup = false;

View file

@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -90,7 +91,8 @@ static __global__ void flash_attn_tile_ext_f16(
__syncthreads(); __syncthreads();
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) { const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
// Calculate KQ tile and keep track of new maximum KQ values: // Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new[ncols/nwarps]; half kqmax_new[ncols/nwarps];

View file

@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -99,7 +100,8 @@ static __global__ void flash_attn_tile_ext_f32(
__syncthreads(); __syncthreads();
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) { const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
// Calculate KQ tile and keep track of new maximum KQ values: // Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps]; float kqmax_new[ncols/nwarps];

View file

@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -177,10 +178,11 @@ static __global__ void flash_attn_vec_ext_f16(
half2 VKQ[ncols] = {{0.0f, 0.0f}}; half2 VKQ[ncols] = {{0.0f, 0.0f}};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11; K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21; V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D; maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D, for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop: // Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) { K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
@ -191,29 +193,7 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) { for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid]; maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid];
} }
__syncthreads(); __syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = __half22float2(((const half2 *) maskh_shared)[j*(D/2) + i]);
skip = skip && isinf(tmp.x) && isinf(tmp.y);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
} }
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,

View file

@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -183,10 +184,11 @@ static __global__ void flash_attn_vec_ext_f32(
float VKQ[ncols] = {0.0f}; float VKQ[ncols] = {0.0f};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11; K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21; V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D; maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*D, for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop: // Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) { K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
@ -197,28 +199,7 @@ static __global__ void flash_attn_vec_ext_f32(
for (int j = 0; j < ncols; ++j) { for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]); maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
} }
__syncthreads(); __syncthreads();
// When using multiple parallel sequences in llama.cpp, some KV slices can be fully masked out.
// In such cases, skip the KV slice.
// On AMD __all_sync would not work correctly because it assumes a warp size of 64.
#ifndef GGML_USE_HIP
bool skip = true;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
skip = skip && isinf(maskf_shared[j*D + i]);
}
}
if (__all_sync(0xFFFFFFFF, skip)) {
__syncthreads();
continue;
}
#endif // GGML_USE_HIP
} }
float kqmax_new_arr[ncols]; float kqmax_new_arr[ncols];

View file

@ -29,6 +29,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K, const char * __restrict__ K,
const char * __restrict__ V, const char * __restrict__ V,
const char * __restrict__ mask, const char * __restrict__ mask,
const int * __restrict__ KV_max,
float * __restrict__ dst, float * __restrict__ dst,
float2 * __restrict__ dst_meta, float2 * __restrict__ dst_meta,
const float scale, const float scale,
@ -165,7 +166,8 @@ static __global__ void flash_attn_ext_f16(
__syncthreads(); __syncthreads();
// Iterate over ne11 == previous tokens: // Iterate over ne11 == previous tokens:
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) { const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
// Calculate tile of KQ: // Calculate tile of KQ:
#pragma unroll #pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) { for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {

View file

@ -315,7 +315,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16; const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies && cc < GGML_CUDA_CC_ADA_LOVELACE && !mma_needs_data_conversion; const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies &&
(Q->ne[3] > 1 || cc < GGML_CUDA_CC_ADA_LOVELACE) && !mma_needs_data_conversion;
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0; const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) { if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT) { if (prec == GGML_PREC_DEFAULT) {

View file

@ -109,8 +109,8 @@ void ggml_cuda_mul_mat_q(
const int64_t s03 = src0->nb[3] / ts_src0; const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s3 = dst->nb[3] / ts_dst; const int64_t s3 = dst->nb[3] / ts_dst;
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) const bool use_stream_k = (GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc))); || GGML_CUDA_CC_IS_CDNA(cc);
if (!ids) { if (!ids) {
const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 + const size_t nbytes_src1_q8_1 = ne13*ne12 * ne11*ne10_padded * sizeof(block_q8_1)/QK8_1 +
@ -252,7 +252,7 @@ void ggml_cuda_op_mul_mat_q(
// Also its fixup needs to allocate a temporary buffer in the memory pool. // Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer. // There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) const bool use_stream_k = ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA)
|| (GGML_CUDA_CC_IS_AMD(cc) && GGML_CUDA_CC_IS_CDNA3(cc))) || GGML_CUDA_CC_IS_CDNA(cc))
&& src1_ncols == ne11; && src1_ncols == ne11;
const mmq_args args = { const mmq_args args = {
src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i, src0_dd_i, src0->type, (const int *) src1_ddq_i, nullptr, nullptr, dst_dd_i,
@ -308,7 +308,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false; return false;
} }
if (new_mma_available(cc) || amd_mfma_available(cc)) { if (new_mma_available(cc)) {
return true; return true;
} }
@ -324,5 +324,21 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
} }
if (amd_mfma_available(cc)) {
// As of ROCM 7.0 rocblas/tensile performs very poorly on CDNA3 and hipblaslt (via ROCBLAS_USE_HIPBLASLT)
// performs better but is currently suffering from a crash on this architecture.
// TODO: Revisit when hipblaslt is fixed on CDNA3
if (GGML_CUDA_CC_IS_CDNA3(cc)) {
return true;
}
if (ne11 <= 128 || type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
return true;
}
if (ne11 <= 256 && (type == GGML_TYPE_Q4_K || type == GGML_TYPE_Q5_K)) {
return true;
}
return false;
}
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE; return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
} }

View file

@ -252,25 +252,21 @@ static constexpr __device__ int mmq_get_granularity_device(const int /*mmq_x*/)
#endif // AMD_MFMA_AVAILABLE #endif // AMD_MFMA_AVAILABLE
#if defined(GGML_USE_HIP) #if defined(GGML_USE_HIP)
static int mmq_get_nwarps_host(const int cc) { static int mmq_get_nwarps_host(const int cc, const int warp_size) {
return amd_mfma_available(cc) ? 8 : 4; return amd_mfma_available(cc) ? 8 : 256/warp_size;
} }
#else #else
static int mmq_get_nwarps_host(const int /*cc*/) { static int mmq_get_nwarps_host(const int /*cc*/, const int warp_size) {
return 8; return 256/warp_size;
} }
#endif // (GGML_USE_HIP) #endif // (GGML_USE_HIP)
static constexpr __device__ int mmq_get_nwarps_device() { static constexpr __device__ int mmq_get_nwarps_device() {
#if defined(GGML_USE_HIP)
#if defined(AMD_MFMA_AVAILABLE) #if defined(AMD_MFMA_AVAILABLE)
return 8; return 8;
#else #else
return 4; return 256/ggml_cuda_get_physical_warp_size();
#endif // AMD_MFMA_AVAILABLE #endif // AMD_MFMA_AVAILABLE
#else
return 8;
#endif // defined(GGML_USE_HIP)
} }
// ------------------------------------------------------------ // ------------------------------------------------------------
@ -3097,8 +3093,8 @@ static __global__ void mul_mat_q(
} }
__syncthreads(); __syncthreads();
// On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead: // On non-CDNA AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
#if (defined(GGML_USE_HIP) && !defined(CDNA3)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA #if (defined(GGML_USE_HIP) && !defined(CDNA)) || __CUDA_ARCH__ < GGML_CUDA_CC_VOLTA
{ {
const int wt = blockIdx.z / nchannels_y; const int wt = blockIdx.z / nchannels_y;
const int zt = blockIdx.z - wt*nchannels_y; const int zt = blockIdx.z - wt*nchannels_y;
@ -3473,7 +3469,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
const int cc = ggml_cuda_info().devices[id].cc; const int cc = ggml_cuda_info().devices[id].cc;
const int nsm = ggml_cuda_info().devices[id].nsm; const int nsm = ggml_cuda_info().devices[id].nsm;
const int warp_size = ggml_cuda_info().devices[id].warp_size; const int warp_size = ggml_cuda_info().devices[id].warp_size;
const int nwarps = mmq_get_nwarps_host(cc); const int nwarps = mmq_get_nwarps_host(cc, warp_size);
const int mmq_y = get_mmq_y_host(cc); const int mmq_y = get_mmq_y_host(cc);
const dim3 block_dims(warp_size, nwarps, 1); const dim3 block_dims(warp_size, nwarps, 1);
@ -3560,7 +3556,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
const int cc = ggml_cuda_info().devices[id].cc; const int cc = ggml_cuda_info().devices[id].cc;
const size_t smpbo = ggml_cuda_info().devices[id].smpbo; const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
const int warp_size = ggml_cuda_info().devices[id].warp_size; const int warp_size = ggml_cuda_info().devices[id].warp_size;
const int nwarps = mmq_get_nwarps_host(cc); const int nwarps = mmq_get_nwarps_host(cc, warp_size);
const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc); const int mmq_y = get_mmq_y_host(cc);

View file

@ -70,3 +70,69 @@ kernel void kernel_div_row(
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] / src1[idx1]; dst[gid] = src0[gid] / src1[idx1];
} }
kernel void kernel_div_f16(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) / *((global half *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_div_row_f16(
global half4 * src0,
ulong offset0,
global half4 * src1,
ulong offset1,
global half4 * dst,
ulong offsetd,
int ne
) {
src0 = (global half4*)((global char*)src0 + offset0);
src1 = (global half4*)((global char*)src1 + offset1);
dst = (global half4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] / src1[idx1];
}

View file

@ -0,0 +1,132 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define LOAD_VEC_A 4
#define LOAD_VEC_B 4
#define BM 64
#define BN 64
#define BK 16
#define TM 4
#define TN 8
kernel void kernel_mul_mm_f16_f32_l4_lm(
global half4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne11,
int ne12,
int stride_a,
int stride_b,
int stride_d,
int batch_stride_a,
int batch_stride_b,
int batch_stride_d,
int r2,
int r3
) {
src0 = (global half4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float*)((global char*)dst + offsetd);
local half buf_a[BM * BK];
local float buf_b[BN * BK];
const int batch_idx = get_global_id(2);
const int i13 = batch_idx / ne12;
const int i12 = batch_idx % ne12;
const int i03 = i13 / r3;
const int i02 = i12 / r2;
const int batch_idx_a = i03 * ne02 + i02;
const int ir = get_group_id(0);
const int ic = get_group_id(1);
const int tid = get_local_id(0);
const int th_r = tid % (BM / TM);
const int th_c = tid / (BM / TM);
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
float sums[TM * TN];
half cache_a[TM];
float cache_b[TN];
for (int i = 0; i < TM * TN; i++) {
sums[i] = 0.0f;
}
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
}
for (int l = 0; l < BN; l += loadstride_b) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
}
barrier(CLK_LOCAL_MEM_FENCE);
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (int i = 0; i < BK; i++) {
for (int j = 0; j < TM; j++) {
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
}
for (int j = 0; j < TN; j++) {
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
}
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
const int sums_idx = cc*TM + cr;
sums[sums_idx] = mad(convert_float(cache_a[cr]), cache_b[cc], sums[sums_idx]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int dr = ir * BM + th_r * TM;
const int dc = ic * BN + th_c * TN;
const int offsets = batch_idx * batch_stride_d;
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
if (dr + cr < ne01 && dc + cc < ne11) {
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
}
}
}
}

View file

@ -0,0 +1,133 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define LOAD_VEC_A 4
#define LOAD_VEC_B 4
#define BM 64
#define BN 64
#define BK 16
#define TM 4
#define TN 8
kernel void kernel_mul_mm_f32_f32_l4_lm(
global float4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne11,
int ne12,
int stride_a,
int stride_b,
int stride_d,
int batch_stride_a,
int batch_stride_b,
int batch_stride_d,
int r2,
int r3
) {
src0 = (global float4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float*)((global char*)dst + offsetd);
local float buf_a[BM * BK];
local float buf_b[BN * BK];
const int batch_idx = get_global_id(2);
const int i13 = batch_idx / ne12;
const int i12 = batch_idx % ne12;
const int i03 = i13 / r3;
const int i02 = i12 / r2;
const int batch_idx_a = i03 * ne02 + i02;
const int ir = get_group_id(0);
const int ic = get_group_id(1);
const int tid = get_local_id(0);
const int th_r = tid % (BM / TM);
const int th_c = tid / (BM / TM);
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
float sums[TM * TN];
float cache_a[TM];
float cache_b[TN];
for (int i = 0; i < TM * TN; i++) {
sums[i] = 0.0f;
}
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
}
for (int l = 0; l < BN; l += loadstride_b) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
}
barrier(CLK_LOCAL_MEM_FENCE);
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (int i = 0; i < BK; i++) {
for (int j = 0; j < TM; j++) {
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
}
for (int j = 0; j < TN; j++) {
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
}
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
const int sums_idx = cc*TM + cr;
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int dr = ir * BM + th_r * TM;
const int dc = ic * BN + th_c * TN;
const int offsets = batch_idx * batch_stride_d;
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
if (dr + cr < ne01 && dc + cc < ne11) {
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
}
}
}
}

View file

@ -70,3 +70,69 @@ kernel void kernel_sub_row(
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] - src1[idx1]; dst[gid] = src0[gid] - src1[idx1];
} }
kernel void kernel_sub_f16(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global half *)(dst_ptr + i0*nb0)) = *((global half *)(src0_ptr + i0*nb00)) - *((global half *)(src1_ptr + i10*nb10));
}
}
kernel void kernel_sub_row_f16(
global half4 * src0,
ulong offset0,
global half4 * src1,
ulong offset1,
global half4 * dst,
ulong offsetd,
int ne
) {
src0 = (global half4*)((global char*)src0 + offset0);
src1 = (global half4*)((global char*)src1 + offset1);
dst = (global half4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] - src1[idx1];
}

View file

@ -1357,7 +1357,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
vk::DebugUtilsObjectNameInfoEXT duoni; vk::DebugUtilsObjectNameInfoEXT duoni;
duoni.objectType = vk::ObjectType::ePipeline; duoni.objectType = vk::ObjectType::ePipeline;
duoni.pObjectName = pipeline->name.c_str(); duoni.pObjectName = pipeline->name.c_str();
duoni.objectHandle = reinterpret_cast<uint64_t>(static_cast<VkPipeline_T*>(pipeline->pipeline)); duoni.objectHandle = /*reinterpret_cast*/(uint64_t)(static_cast<VkPipeline>(pipeline->pipeline));
vk_instance.pfn_vkSetDebugUtilsObjectNameEXT(device->device, &static_cast<VkDebugUtilsObjectNameInfoEXT &>(duoni)); vk_instance.pfn_vkSetDebugUtilsObjectNameEXT(device->device, &static_cast<VkDebugUtilsObjectNameInfoEXT &>(duoni));
} }
@ -5249,9 +5249,9 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
} }
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << ggml_type_name(src0->type) << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << ggml_type_name(src1->type) << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3]; std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << ggml_type_name(dst->type) << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")"); std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16); // NOLINT
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
@ -11192,7 +11192,7 @@ size_t comp_nb[GGML_MAX_DIMS];
size_t check_counter = 0; size_t check_counter = 0;
static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) { static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
ggml_tensor * tensor = cgraph->nodes[tensor_idx]; ggml_tensor * tensor = cgraph->nodes[tensor_idx];
if (tensor->op == GGML_OP_TRANSPOSE) { if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
return; return;
} }
@ -11312,7 +11312,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]); tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], (ggml_scale_mode) tensor->op_params[0]);
} else if (tensor->op == GGML_OP_SCALE) { } else if (tensor->op == GGML_OP_SCALE) {
const float * params = (const float *)tensor->op_params; const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]); tensor_clone = ggml_scale_bias(ggml_ctx, src_clone[0], params[0], params[1]);
} else if (tensor->op == GGML_OP_SQR) { } else if (tensor->op == GGML_OP_SQR) {
tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]); tensor_clone = ggml_sqr(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_SIN) { } else if (tensor->op == GGML_OP_SIN) {
@ -11423,8 +11423,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
} else { } else {
tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]); tensor_clone = ggml_cpy(ggml_ctx, src_clone[0], src_clone[1]);
} }
} else if (tensor->op == GGML_OP_SET_ROWS) {
tensor_clone = ggml_set_rows(ggml_ctx, src_clone[0], src_clone[1]);
} else if (tensor->op == GGML_OP_CONT) { } else if (tensor->op == GGML_OP_CONT) {
tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); tensor_clone = ggml_cont_4d(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
} else if (tensor->op == GGML_OP_RESHAPE) { } else if (tensor->op == GGML_OP_RESHAPE) {
@ -11532,7 +11530,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) { static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph * cgraph, int tensor_idx) {
ggml_tensor * tensor = cgraph->nodes[tensor_idx]; ggml_tensor * tensor = cgraph->nodes[tensor_idx];
if (tensor->op == GGML_OP_TRANSPOSE) { if (tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_SET_ROWS) {
return; return;
} }
bool fused_rms_norm_mul = false; bool fused_rms_norm_mul = false;
@ -11592,6 +11590,9 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_cgraph *
} else if (tensor->type == GGML_TYPE_F16) { } else if (tensor->type == GGML_TYPE_F16) {
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0])); correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
} else if (tensor->type == GGML_TYPE_BF16) {
correct = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
result = ggml_bf16_to_fp32(*(ggml_bf16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
} else if (tensor->type == GGML_TYPE_I32) { } else if (tensor->type == GGML_TYPE_I32) {
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);

View file

@ -279,6 +279,9 @@ class Keys:
class Projector: class Projector:
STACK_FACTOR = "clip.audio.projector.stack_factor" STACK_FACTOR = "clip.audio.projector.stack_factor"
class Diffusion:
SHIFT_LOGITS = "diffusion.shift_logits"
# #
# recommended mapping of model tensor names for storage in gguf # recommended mapping of model tensor names for storage in gguf
# #
@ -373,10 +376,12 @@ class MODEL_ARCH(IntEnum):
ERNIE4_5 = auto() ERNIE4_5 = auto()
ERNIE4_5_MOE = auto() ERNIE4_5_MOE = auto()
HUNYUAN_MOE = auto() HUNYUAN_MOE = auto()
HUNYUAN_DENSE = auto()
SMOLLM3 = auto() SMOLLM3 = auto()
LFM2 = auto() LFM2 = auto()
DREAM = auto() DREAM = auto()
SMALLTHINKER = auto() SMALLTHINKER = auto()
LLADA = auto()
class VISION_PROJECTOR_TYPE(IntEnum): class VISION_PROJECTOR_TYPE(IntEnum):
@ -693,10 +698,12 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe", MODEL_ARCH.ERNIE4_5_MOE: "ernie4_5-moe",
MODEL_ARCH.FALCON_H1: "falcon-h1", MODEL_ARCH.FALCON_H1: "falcon-h1",
MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe", MODEL_ARCH.HUNYUAN_MOE: "hunyuan-moe",
MODEL_ARCH.HUNYUAN_DENSE: "hunyuan-dense",
MODEL_ARCH.SMOLLM3: "smollm3", MODEL_ARCH.SMOLLM3: "smollm3",
MODEL_ARCH.LFM2: "lfm2", MODEL_ARCH.LFM2: "lfm2",
MODEL_ARCH.DREAM: "dream", MODEL_ARCH.DREAM: "dream",
MODEL_ARCH.SMALLTHINKER: "smallthinker", MODEL_ARCH.SMALLTHINKER: "smallthinker",
MODEL_ARCH.LLADA: "llada",
} }
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@ -1318,6 +1325,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.LLADA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2VL: [ MODEL_ARCH.QWEN2VL: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,
@ -2451,6 +2473,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_SHEXP, MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP, MODEL_TENSOR.FFN_UP_SHEXP,
], ],
MODEL_ARCH.HUNYUAN_DENSE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.SMOLLM3: [ MODEL_ARCH.SMOLLM3: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View file

@ -1047,6 +1047,11 @@ class GGUFWriter:
def add_audio_stack_factor(self, value: int) -> None: def add_audio_stack_factor(self, value: int) -> None:
self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value) self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value)
# diffusion models
def add_diffusion_shift_logits(self, value: bool) -> None:
self.add_bool(Keys.Diffusion.SHIFT_LOGITS, value)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = '' pack_prefix = ''
if not skip_pack_prefix: if not skip_pack_prefix:

View file

@ -32,6 +32,7 @@ class TensorNameMap:
"model.word_embeddings", # bailingmoe "model.word_embeddings", # bailingmoe
"language_model.model.embed_tokens", # llama4 "language_model.model.embed_tokens", # llama4
"encoder", # neobert "encoder", # neobert
"model.transformer.wte", # llada
), ),
# Token type embeddings # Token type embeddings
@ -71,6 +72,7 @@ class TensorNameMap:
"head", # rwkv "head", # rwkv
"head.out", # wavtokenizer "head.out", # wavtokenizer
"lm_head", # llama4 "lm_head", # llama4
"model.transformer.ff_out", # llada
), ),
# Output norm # Output norm
@ -94,6 +96,7 @@ class TensorNameMap:
"model.ln_out", # rwkv7 "model.ln_out", # rwkv7
"backbone.final_layer_norm", # wavtokenizer "backbone.final_layer_norm", # wavtokenizer
"model.norm", # llama4 "model.norm", # llama4
"model.transformer.ln_f", # llada
), ),
# Rope frequencies # Rope frequencies
@ -139,6 +142,7 @@ class TensorNameMap:
"model.layers.{bid}.input_layernorm", # llama4 "model.layers.{bid}.input_layernorm", # llama4
"transformer_encoder.{bid}.attention_norm", # neobert "transformer_encoder.{bid}.attention_norm", # neobert
"model.layers.{bid}.operator_norm", # lfm2 "model.layers.{bid}.operator_norm", # lfm2
"model.transformer.blocks.{bid}.attn_norm", # llada
), ),
# Attention norm 2 # Attention norm 2
@ -183,6 +187,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
"transformer.h.{bid}.attn.attention.q_proj", # exaone "transformer.h.{bid}.attn.attention.q_proj", # exaone
"model.layers.{bid}.self_attn.q_proj", # llama4 "model.layers.{bid}.self_attn.q_proj", # llama4
"model.transformer.blocks.{bid}.q_proj", # llada
), ),
# Attention key # Attention key
@ -199,6 +204,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
"transformer.h.{bid}.attn.attention.k_proj", # exaone "transformer.h.{bid}.attn.attention.k_proj", # exaone
"model.layers.{bid}.self_attn.k_proj", # llama4 "model.layers.{bid}.self_attn.k_proj", # llama4
"model.transformer.blocks.{bid}.k_proj", # llada
), ),
# Attention value # Attention value
@ -214,6 +220,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
"transformer.h.{bid}.attn.attention.v_proj", # exaone "transformer.h.{bid}.attn.attention.v_proj", # exaone
"model.layers.{bid}.self_attn.v_proj", # llama4 "model.layers.{bid}.self_attn.v_proj", # llama4
"model.transformer.blocks.{bid}.v_proj", # llada
), ),
# Attention output # Attention output
@ -246,6 +253,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.attention.out_proj", # exaone "transformer.h.{bid}.attn.attention.out_proj", # exaone
"model.layers.{bid}.self_attn.o_proj", # llama4 "model.layers.{bid}.self_attn.o_proj", # llama4
"transformer_encoder.{bid}.wo", # neobert "transformer_encoder.{bid}.wo", # neobert
"model.transformer.blocks.{bid}.attn_out", # llada
), ),
# Attention output norm # Attention output norm
@ -291,6 +299,7 @@ class TensorNameMap:
"model.layers.{bid}.post_attention_layernorm", # llama4 "model.layers.{bid}.post_attention_layernorm", # llama4
"transformer_encoder.{bid}.ffn_norm", # neobert "transformer_encoder.{bid}.ffn_norm", # neobert
"model.layers.layers.{bid}.pre_mlp_norm", # plamo2 "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
"model.transformer.blocks.{bid}.ff_norm", # llada
), ),
# Post feed-forward norm # Post feed-forward norm
@ -364,6 +373,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w12", # neobert "transformer_encoder.{bid}.ffn.w12", # neobert
"model.layers.{bid}.block_sparse_moe.up", # smallthinker "model.layers.{bid}.block_sparse_moe.up", # smallthinker
"model.transformer.blocks.{bid}.up_proj", # llada
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -405,6 +415,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.c_fc_0", # exaone "transformer.h.{bid}.mlp.c_fc_0", # exaone
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
"model.layers.{bid}.block_sparse_moe.gate", # smallthinker "model.layers.{bid}.block_sparse_moe.gate", # smallthinker
"model.transformer.blocks.{bid}.ff_proj", # llada
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -454,6 +465,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w3", # neobert "transformer_encoder.{bid}.ffn.w3", # neobert
"model.layers.{bid}.block_sparse_moe.down", # smallthinker "model.layers.{bid}.block_sparse_moe.down", # smallthinker
"model.transformer.blocks.{bid}.ff_out", # llada
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (
@ -604,6 +616,7 @@ class TensorNameMap:
), ),
MODEL_TENSOR.SSM_DT_NORM: ( MODEL_TENSOR.SSM_DT_NORM: (
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
"model.layers.{bid}.mamba.dt_layernorm", # jamba "model.layers.{bid}.mamba.dt_layernorm", # jamba
), ),
@ -633,10 +646,6 @@ class TensorNameMap:
"model.layers.layers.{bid}.mixer.D", # plamo2 "model.layers.layers.{bid}.mixer.D", # plamo2
), ),
MODEL_TENSOR.SSM_DT_NORM: (
"model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
),
MODEL_TENSOR.SSM_NORM: ( MODEL_TENSOR.SSM_NORM: (
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
"backbone.layers.{bid}.mixer.norm", # mamba2 "backbone.layers.{bid}.mixer.norm", # mamba2

View file

@ -287,10 +287,11 @@ extern "C" {
const struct llama_model_kv_override * kv_overrides; const struct llama_model_kv_override * kv_overrides;
// Keep the booleans together to avoid misalignment during copy-by-value. // Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
}; };
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
@ -540,6 +541,9 @@ extern "C" {
// Returns true if the model is recurrent (like Mamba, RWKV, etc.) // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model); LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
// Returns true if the model is diffusion-based (like LLaDA, Dream, etc.)
LLAMA_API bool llama_model_is_diffusion(const struct llama_model * model);
// Returns 0 on success // Returns 0 on success
LLAMA_API uint32_t llama_model_quantize( LLAMA_API uint32_t llama_model_quantize(
const char * fname_inp, const char * fname_inp,

View file

@ -85,10 +85,12 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_ERNIE4_5, "ernie4_5" }, { LLM_ARCH_ERNIE4_5, "ernie4_5" },
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" }, { LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" }, { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
{ LLM_ARCH_HUNYUAN_DENSE, "hunyuan-dense" },
{ LLM_ARCH_SMOLLM3, "smollm3" }, { LLM_ARCH_SMOLLM3, "smollm3" },
{ LLM_ARCH_LFM2, "lfm2" }, { LLM_ARCH_LFM2, "lfm2" },
{ LLM_ARCH_DREAM, "dream" }, { LLM_ARCH_DREAM, "dream" },
{ LLM_ARCH_SMALLTHINKER, "smallthinker" }, { LLM_ARCH_SMALLTHINKER, "smallthinker" },
{ LLM_ARCH_LLADA, "llada" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -1896,6 +1898,26 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
}, },
}, },
{
LLM_ARCH_HUNYUAN_DENSE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_SMOLLM3, LLM_ARCH_SMOLLM3,
{ {
@ -1972,6 +1994,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_LLADA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2224,6 +2263,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
bool llm_arch_is_diffusion(const llm_arch & arch) { bool llm_arch_is_diffusion(const llm_arch & arch) {
switch (arch) { switch (arch) {
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
return true; return true;
default: default:
return false; return false;

View file

@ -89,10 +89,12 @@ enum llm_arch {
LLM_ARCH_ERNIE4_5, LLM_ARCH_ERNIE4_5,
LLM_ARCH_ERNIE4_5_MOE, LLM_ARCH_ERNIE4_5_MOE,
LLM_ARCH_HUNYUAN_MOE, LLM_ARCH_HUNYUAN_MOE,
LLM_ARCH_HUNYUAN_DENSE,
LLM_ARCH_SMOLLM3, LLM_ARCH_SMOLLM3,
LLM_ARCH_LFM2, LLM_ARCH_LFM2,
LLM_ARCH_DREAM, LLM_ARCH_DREAM,
LLM_ARCH_SMALLTHINKER, LLM_ARCH_SMALLTHINKER,
LLM_ARCH_LLADA,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };

View file

@ -66,6 +66,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 }, { "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
{ "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM }, { "smolvlm", LLM_CHAT_TEMPLATE_SMOLVLM },
{ "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE }, { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
{ "hunyuan-dense", LLM_CHAT_TEMPLATE_HUNYUAN_DENSE },
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 }, { "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
}; };
@ -193,6 +194,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_DOTS1; return LLM_CHAT_TEMPLATE_DOTS1;
} else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) { } else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
return LLM_CHAT_TEMPLATE_HUNYUAN_MOE; return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
} else if (tmpl_contains("<hy_place▁holder▁no▁2>") && tmpl_contains("<hy_place▁holder▁no▁3>")) {
return LLM_CHAT_TEMPLATE_HUNYUAN_DENSE;
} else if (tmpl_contains("<|im_assistant|>assistant<|im_middle|>")) { } else if (tmpl_contains("<|im_assistant|>assistant<|im_middle|>")) {
return LLM_CHAT_TEMPLATE_KIMI_K2; return LLM_CHAT_TEMPLATE_KIMI_K2;
} }
@ -698,11 +701,27 @@ int32_t llm_chat_apply_template(
if (role == "system") { if (role == "system") {
ss << "<|startoftext|>" << message->content << "<|extra_4|>"; ss << "<|startoftext|>" << message->content << "<|extra_4|>";
} else if (role == "assistant") { } else if (role == "assistant") {
ss << "<|startoftext|>" << message->content << "<|eos|>"; ss << message->content << "<|eos|>";
} else { } else {
ss << "<|startoftext|>" << message->content << "<|extra_0|>"; ss << "<|startoftext|>" << message->content << "<|extra_0|>";
} }
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_DENSE) {
// tencent/Hunyuan-4B-Instruct
for (size_t i = 0; i < chat.size(); i++) {
std::string role(chat[i]->role);
if (i == 0) {
if (role == "system") {
ss << chat[i]->content << "<hy_place▁holder▁no▁3>";
}
}
if (role == "assistant") {
ss << "<hy_Assistant>" << chat[i]->content << "<hy_place▁holder▁no▁2>";
} else if (role == "user") {
ss << "<hy_User>" << chat[i]->content << "<hy_Assistant>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_KIMI_K2) { } else if (tmpl == LLM_CHAT_TEMPLATE_KIMI_K2) {
// moonshotai/Kimi-K2-Instruct // moonshotai/Kimi-K2-Instruct
for (auto message : chat) { for (auto message : chat) {

View file

@ -46,6 +46,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_SMOLVLM, LLM_CHAT_TEMPLATE_SMOLVLM,
LLM_CHAT_TEMPLATE_DOTS1, LLM_CHAT_TEMPLATE_DOTS1,
LLM_CHAT_TEMPLATE_HUNYUAN_MOE, LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
LLM_CHAT_TEMPLATE_HUNYUAN_DENSE,
LLM_CHAT_TEMPLATE_KIMI_K2, LLM_CHAT_TEMPLATE_KIMI_K2,
LLM_CHAT_TEMPLATE_UNKNOWN, LLM_CHAT_TEMPLATE_UNKNOWN,
}; };

View file

@ -113,6 +113,15 @@ llama_context::llama_context(
} }
} }
{
const char * LLAMA_GRAPH_REUSE_DISABLE = getenv("LLAMA_GRAPH_REUSE_DISABLE");
graph_reuse_disable = LLAMA_GRAPH_REUSE_DISABLE ? (atoi(LLAMA_GRAPH_REUSE_DISABLE) != 0) : graph_reuse_disable;
if (graph_reuse_disable) {
LLAMA_LOG_WARN("%s: graph reuse disabled\n", __func__);
}
}
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max); LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
@ -716,7 +725,7 @@ llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, ll
// in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters // in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters
const auto gparams = graph_params(res, ubatch, mctx, gtype); const auto gparams = graph_params(res, ubatch, mctx, gtype);
if (res->can_reuse(gparams)) { if (!graph_reuse_disable && res->can_reuse(gparams)) {
//LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__); //LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__);
n_reused++; n_reused++;

View file

@ -291,6 +291,9 @@ private:
// ref: https://github.com/ggml-org/llama.cpp/pull/14285 // ref: https://github.com/ggml-org/llama.cpp/pull/14285
bool supports_set_rows = false; bool supports_set_rows = false;
// env: LLAMA_GRAPH_REUSE_DISABLE
bool graph_reuse_disable = false;
// perf // perf
mutable int64_t t_start_us = 0; mutable int64_t t_start_us = 0;
mutable int64_t t_load_us = 0; mutable int64_t t_load_us = 0;

View file

@ -785,13 +785,20 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
bool scale_w, bool scale_w,
float w_scale, float w_scale,
llama_expert_gating_func_type gating_op, llama_expert_gating_func_type gating_op,
int il) const { int il,
ggml_tensor * probs_in) const {
const int64_t n_embd = cur->ne[0]; const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1]; const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens] ggml_tensor * logits = nullptr;
cb(logits, "ffn_moe_logits", il);
if (probs_in == nullptr) {
logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
} else {
logits = probs_in;
}
ggml_tensor * probs = nullptr; ggml_tensor * probs = nullptr;
switch (gating_op) { switch (gating_op) {
@ -884,6 +891,14 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cur = ggml_gelu(ctx0, cur); cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il); cb(cur, "ffn_moe_gelu", il);
} break; } break;
case LLM_FFN_RELU:
if (gate_exps) {
cur = ggml_reglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_reglu", il);
} else {
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_moe_relu", il);
} break;
default: default:
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
@ -927,100 +942,6 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
return moe_out; return moe_out;
} }
ggml_tensor * llm_graph_context::build_moe_ffn_from_probs(
ggml_tensor * cur,
ggml_tensor * probs,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llama_expert_gating_func_type gating_op,
int il) const {
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
// add experts selection bias - introduced in DeepSeek V3
// leave probs unbiased as it's later used to get expert weights
ggml_tensor * selection_probs = probs;
if (exp_probs_b != nullptr) {
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
cb(selection_probs, "ffn_moe_probs_biased", il);
}
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
ggml_tensor * weights = ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights", il);
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX) {
weights = ggml_soft_max(ctx0, weights);
} else {
weights = ggml_sigmoid(ctx0, weights);
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
}
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * experts = nullptr;
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(cur, "ffn_moe_gate", il);
cur = ggml_reglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_reglu", il);
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
experts = ggml_mul(ctx0, experts, weights);
cb(cur, "ffn_moe_weighted", il);
ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
assert(n_expert_used > 0);
// order the views before the adds
for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
ggml_build_forward_expand(gf, cur_experts[i]);
}
// aggregate experts
// note: here we explicitly use hparams.n_expert_used instead of n_expert_used
// to avoid potentially a large number of add nodes during warmup
// ref: https://github.com/ggml-org/llama.cpp/pull/14753
ggml_tensor * moe_out = cur_experts[0];
for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
}
if (n_expert_used == 1) {
// avoid returning a non-contiguous tensor
moe_out = ggml_cont(ctx0, moe_out);
}
cb(moe_out, "ffn_moe_out", il);
return moe_out;
}
// input embeddings with optional lora // input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const { ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd; const int64_t n_embd = hparams.n_embd;
@ -1644,16 +1565,17 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif
ggml_tensor * llm_graph_context::build_rs( ggml_tensor * llm_graph_context::build_rs(
ggml_tensor * s, ggml_tensor * s,
ggml_tensor * state_copy, ggml_tensor * state_copy_main,
ggml_tensor * state_copy_extra,
int32_t state_size, int32_t state_size,
int32_t n_seqs, int32_t n_seqs,
uint32_t n_kv, uint32_t n_rs,
uint32_t kv_head, uint32_t rs_head,
uint32_t kv_size, uint32_t rs_size,
int32_t rs_zero, int32_t rs_zero,
const llm_graph_get_rows_fn & get_state_rows) const { const llm_graph_get_rows_fn & get_state_rows) const {
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size); ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, rs_size);
// Clear a single state which will then be copied to the other cleared states. // Clear a single state which will then be copied to the other cleared states.
// Note that this is a no-op when the view is zero-sized. // Note that this is a no-op when the view is zero-sized.
@ -1661,39 +1583,44 @@ ggml_tensor * llm_graph_context::build_rs(
ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0)); ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
// copy states // copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv // NOTE: assuming the copy destinations are ALL contained between rs_head and rs_head + n_rs
// {state_size, kv_size} -> {state_size, n_seqs} // {state_size, rs_size} -> {state_size, n_seqs}
ggml_tensor * output_states = get_state_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0)); ggml_tensor * output_states = get_state_rows(ctx0, states, state_copy_main);
ggml_build_forward_expand(gf, output_states); ggml_build_forward_expand(gf, output_states);
// copy extra states which won't be changed further (between n_seqs and n_kv) // copy extra states which won't be changed further (between n_seqs and n_rs)
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0])); ggml_tensor * states_extra = ggml_get_rows(ctx0, states, state_copy_extra);
ggml_build_forward_expand(gf, ggml_build_forward_expand(gf,
ggml_cpy(ctx0, ggml_cpy(ctx0,
states_extra, states_extra,
ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s)))); ggml_view_1d(ctx0, s, state_size*(n_rs - n_seqs), (rs_head + n_seqs)*state_size*ggml_element_size(s))));
return output_states; return output_states;
} }
static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl( static std::unique_ptr<llm_graph_input_rs> build_rs_inp_impl(
ggml_context * ctx0, ggml_context * ctx0,
const llama_ubatch & ubatch,
const llama_memory_recurrent_context * mctx_cur) { const llama_memory_recurrent_context * mctx_cur) {
auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur); auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
const auto n_rs = mctx_cur->get_n_rs(); const int64_t n_rs = mctx_cur->get_n_rs();
const int64_t n_seqs = ubatch.n_seqs;
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs); inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
ggml_set_input(inp->s_copy); ggml_set_input(inp->s_copy);
inp->s_copy_main = ggml_view_1d(ctx0, inp->s_copy, n_seqs, 0);
inp->s_copy_extra = ggml_view_1d(ctx0, inp->s_copy, n_rs - n_seqs, n_seqs * inp->s_copy->nb[0]);
return inp; return inp;
} }
llm_graph_input_rs * llm_graph_context::build_rs_inp() const { llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx); const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
auto inp = build_rs_inp_impl(ctx0, mctx_cur); auto inp = build_rs_inp_impl(ctx0, ubatch, mctx_cur);
return (llm_graph_input_rs *) res->add_input(std::move(inp)); return (llm_graph_input_rs *) res->add_input(std::move(inp));
} }
@ -1706,7 +1633,9 @@ ggml_tensor * llm_graph_context::build_rs(
const llm_graph_get_rows_fn & get_state_rows) const { const llm_graph_get_rows_fn & get_state_rows) const {
const auto * kv_state = inp->mctx; const auto * kv_state = inp->mctx;
return build_rs(s, inp->s_copy, state_size, n_seqs, kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(), get_state_rows); return build_rs(s, inp->s_copy_main, inp->s_copy_extra, state_size, n_seqs,
kv_state->get_n_rs(), kv_state->get_head(), kv_state->get_size(), kv_state->get_rs_z(),
get_state_rows);
} }
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
@ -1753,7 +1682,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx); const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
auto inp_rs = build_rs_inp_impl(ctx0, mctx_cur->get_recr()); auto inp_rs = build_rs_inp_impl(ctx0, ubatch, mctx_cur->get_recr());
auto inp_attn = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn()); auto inp_attn = build_attn_inp_kv_unified_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur); auto inp = std::make_unique<llm_graph_input_mem_hybrid>(std::move(inp_attn), std::move(inp_rs), mctx_cur);

View file

@ -214,7 +214,12 @@ public:
void set_input(const llama_ubatch * ubatch) override; void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size] ggml_tensor * s_copy; // I32 [n_rs]
// views of s_copy, computed once per graph
// and shared across layers which use build_rs
ggml_tensor * s_copy_main; // I32 [n_seqs]
ggml_tensor * s_copy_extra; // I32 [n_rs - n_seqs]
const llama_memory_recurrent_context * mctx; const llama_memory_recurrent_context * mctx;
}; };
@ -418,7 +423,9 @@ struct llm_graph_params {
(!ubatch.embd && !other.ubatch.embd) (!ubatch.embd && !other.ubatch.embd)
); );
if (can_reuse_ubatch && !ubatch.equal_seqs()) { // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
// the reason is because the set of attention streams would be different for different sequences
if (can_reuse_ubatch && ubatch.equal_seqs()) {
if (!ubatch.data) { if (!ubatch.data) {
// if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
// therefore we cannot perform the sequence id check. normally should never happen // therefore we cannot perform the sequence id check. normally should never happen
@ -626,19 +633,8 @@ struct llm_graph_context {
bool scale_w, bool scale_w,
float w_scale, float w_scale,
llama_expert_gating_func_type gating_op, llama_expert_gating_func_type gating_op,
int il) const; int il,
ggml_tensor * probs_in = nullptr) const;
ggml_tensor * build_moe_ffn_from_probs(
ggml_tensor * cur,
ggml_tensor * probs,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llama_expert_gating_func_type gating_op,
int il) const;
// //
// inputs // inputs
@ -730,7 +726,6 @@ struct llm_graph_context {
// recurrent // recurrent
// //
// TODO: avoid notion of "kv"
// TODO: move this implementation to llama_memory_recurrent. // TODO: move this implementation to llama_memory_recurrent.
// this is analogous to llama_kv_cache_unified::cpy_k / cpy_v // this is analogous to llama_kv_cache_unified::cpy_k / cpy_v
// when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the // when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
@ -738,12 +733,13 @@ struct llm_graph_context {
// `llama_memory_recurrent` // `llama_memory_recurrent`
ggml_tensor * build_rs( ggml_tensor * build_rs(
ggml_tensor * s, ggml_tensor * s,
ggml_tensor * state_copy, ggml_tensor * state_copy_main,
ggml_tensor * state_copy_extra,
int32_t state_size, int32_t state_size,
int32_t n_seqs, int32_t n_seqs,
uint32_t n_kv, uint32_t n_rs,
uint32_t kv_head, uint32_t rs_head,
uint32_t kv_size, uint32_t rs_size,
int32_t rs_zero, int32_t rs_zero,
const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const; const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;

View file

@ -295,7 +295,7 @@ static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hpara
} }
// CPU: ACCEL -> GPU host -> CPU extra -> CPU // CPU: ACCEL -> GPU host -> CPU extra -> CPU
static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) { static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts) {
buft_list_t buft_list; buft_list_t buft_list;
// add ACCEL buffer types // add ACCEL buffer types
@ -324,21 +324,22 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
} }
} }
// add extra buffer types, only if no GPU device is present // add extra buffer types
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094 if (use_extra_bufts) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
if (cpu_dev == nullptr) { if (cpu_dev == nullptr) {
throw std::runtime_error(format("%s: no CPU backend found", __func__)); throw std::runtime_error(format("%s: no CPU backend found", __func__));
} }
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts"); ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) { if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev); ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) { while (extra_bufts && *extra_bufts) {
buft_list.emplace_back(cpu_dev, *extra_bufts); buft_list.emplace_back(cpu_dev, *extra_bufts);
++extra_bufts; ++extra_bufts;
}
} }
} }
@ -874,6 +875,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.causal_attn = false; hparams.causal_attn = false;
} }
break; break;
case LLM_ARCH_LLADA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
// LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
switch (hparams.n_layer) {
case 32:
type = LLM_TYPE_8B;
break;
default:
type = LLM_TYPE_UNKNOWN;
}
// Set non-causal attention for diffusion models
hparams.causal_attn = false;
}
break;
case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN2MOE:
{ {
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
@ -1749,6 +1765,18 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN; default: type = LLM_TYPE_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_HUNYUAN_DENSE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_embd) {
case 1024: type = LLM_TYPE_0_5B; break;
case 2048: type = LLM_TYPE_1_8B; break;
case 3072: type = LLM_TYPE_4B; break;
case 4096: type = LLM_TYPE_7B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_SMOLLM3: case LLM_ARCH_SMOLLM3:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -1829,7 +1857,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false"); LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
// build a list of buffer types for the CPU and GPU devices // build a list of buffer types for the CPU and GPU devices
pimpl->cpu_buft_list = make_cpu_buft_list(devices); pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts);
for (auto * dev : devices) { for (auto * dev : devices) {
buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split); buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
// add CPU buffer types as a fallback // add CPU buffer types as a fallback
@ -2045,7 +2073,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) { for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
std::regex pattern(overrides->pattern); std::regex pattern(overrides->pattern);
if (std::regex_search(tensor_name, pattern)) { if (std::regex_search(tensor_name, pattern)) {
buft = overrides->buft; if (overrides->buft == ggml_backend_cpu_buffer_type()) {
// when overriding to a CPU buffer, consider the extra buffer types
buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
} else {
buft = overrides->buft;
}
LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n", LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
tensor_name.c_str(), tensor_name.c_str(),
ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type), ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
@ -2207,6 +2241,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} }
} }
} break; } break;
case LLM_ARCH_LLADA:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output =
create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
// Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
layer.wq =
create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
// No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
layer.wo =
create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
// optional MLP bias
layer.ffn_gate_b =
create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
layer.ffn_down_b =
create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
}
}
break;
case LLM_ARCH_LLAMA4: case LLM_ARCH_LLAMA4:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -5222,6 +5303,39 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0); layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
} }
} break; } break;
case LLM_ARCH_HUNYUAN_DENSE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
case LLM_ARCH_SMOLLM3: case LLM_ARCH_SMOLLM3:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -8142,6 +8256,106 @@ struct llm_build_dream : public llm_graph_context {
} }
}; };
struct llm_build_llada : public llm_graph_context {
llm_build_llada(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr,
1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_qwen2vl : public llm_graph_context { struct llm_build_qwen2vl : public llm_graph_context {
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
@ -16861,6 +17075,144 @@ struct llm_build_hunyuan_moe : public llm_graph_context {
} }
}; };
struct llm_build_hunyuan_dense : public llm_graph_context {
llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, nullptr,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_norm", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, nullptr,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_norm", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_mlp, "ffn_out", il);
cur = ggml_add(ctx0, cur_mlp, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_smollm3 : public llm_graph_context { struct llm_build_smollm3 : public llm_graph_context {
llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
@ -17258,10 +17610,18 @@ struct llm_build_smallthinker : public llm_graph_context{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
ggml_tensor * ffn_out = build_moe_ffn_from_probs(cur, probs, model.layers[il].ffn_up_exps, ggml_tensor * ffn_out =
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, build_moe_ffn(cur,
nullptr, n_expert, n_expert_used, nullptr,
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il); model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_RELU, true,
false, 0.0,
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
il, probs);
cb(ffn_out, "ffn_out", il); cb(ffn_out, "ffn_out", il);
cur = ffn_out; cur = ffn_out;
@ -17301,6 +17661,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
case LLM_ARCH_NEO_BERT: case LLM_ARCH_NEO_BERT:
case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
{ {
res = nullptr; res = nullptr;
} break; } break;
@ -17467,6 +17828,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_dream>(*this, params); llm = std::make_unique<llm_build_dream>(*this, params);
} }
break; break;
case LLM_ARCH_LLADA:
{
llm = std::make_unique<llm_build_llada>(*this, params);
}
break;
case LLM_ARCH_QWEN2VL: case LLM_ARCH_QWEN2VL:
{ {
llm = std::make_unique<llm_build_qwen2vl>(*this, params); llm = std::make_unique<llm_build_qwen2vl>(*this, params);
@ -17714,6 +18080,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{ {
llm = std::make_unique<llm_build_hunyuan_moe>(*this, params); llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
} break; } break;
case LLM_ARCH_HUNYUAN_DENSE:
{
llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
} break;
case LLM_ARCH_SMOLLM3: case LLM_ARCH_SMOLLM3:
{ {
llm = std::make_unique<llm_build_smollm3>(*this, params); llm = std::make_unique<llm_build_smollm3>(*this, params);
@ -17763,6 +18133,7 @@ llama_model_params llama_model_default_params() {
/*.use_mmap =*/ true, /*.use_mmap =*/ true,
/*.use_mlock =*/ false, /*.use_mlock =*/ false,
/*.check_tensors =*/ false, /*.check_tensors =*/ false,
/*.use_extra_bufts =*/ true,
}; };
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
@ -17865,6 +18236,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values // use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLAMA4: case LLM_ARCH_LLAMA4:
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN: case LLM_ARCH_BAICHUAN:
@ -17931,6 +18303,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_MINICPM3: case LLM_ARCH_MINICPM3:
case LLM_ARCH_DOTS1: case LLM_ARCH_DOTS1:
case LLM_ARCH_HUNYUAN_MOE: case LLM_ARCH_HUNYUAN_MOE:
case LLM_ARCH_HUNYUAN_DENSE:
case LLM_ARCH_LFM2: case LLM_ARCH_LFM2:
case LLM_ARCH_SMALLTHINKER: case LLM_ARCH_SMALLTHINKER:
return LLAMA_ROPE_TYPE_NEOX; return LLAMA_ROPE_TYPE_NEOX;
@ -18043,6 +18416,10 @@ bool llama_model_is_recurrent(const llama_model * model) {
return llm_arch_is_recurrent(model->arch); return llm_arch_is_recurrent(model->arch);
} }
bool llama_model_is_diffusion(const llama_model * model) {
return llm_arch_is_diffusion(model->arch);
}
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) { const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
return model->tensors_by_name; return model->tensors_by_name;
} }

View file

@ -878,9 +878,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// get more optimal quantization type based on the tensor shape, layer, etc. // get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) { if (!params->pure && ggml_is_quantized(default_type)) {
int fallback = qs.n_fallback;
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
// unless the user specifies a type // unless the user specifies a type, and the tensor geometry will not require fallback quantisation
if (params->tensor_types) { if (params->tensor_types && qs.n_fallback - fallback == 0) {
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types); const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
const std::string tensor_name(tensor->name); const std::string tensor_name(tensor->name);
for (const auto & [tname, qtype] : tensor_types) { for (const auto & [tname, qtype] : tensor_types) {
@ -893,7 +894,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
} }
} }
} }
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type; new_type = params->token_embedding_type;
} }

View file

@ -532,6 +532,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
}; };
break; break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM: case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE:
regex_exprs = { regex_exprs = {
"\\p{N}{1,3}", "\\p{N}{1,3}",
"[一-龥぀-ゟ゠-ヿ]+", "[一-龥぀-ゟ゠-ヿ]+",
@ -2200,6 +2201,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "hunyuan") { tokenizer_pre == "hunyuan") {
pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN; pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
clean_spaces = false; clean_spaces = false;
} else if (
tokenizer_pre == "hunyuan-dense") {
pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE;
clean_spaces = false;
} else if ( } else if (
tokenizer_pre == "kimi-k2") { tokenizer_pre == "kimi-k2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2; pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2;

View file

@ -47,6 +47,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35, LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36, LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36,
LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37, LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
}; };
struct LLM_KV; struct LLM_KV;

View file

@ -893,10 +893,16 @@ struct clip_graph {
int n_head = n_embd/d_head; int n_head = n_embd/d_head;
int num_query = 96; int num_query = 96;
if (ctx->model.hparams.minicpmv_version == 2) { if (ctx->model.hparams.minicpmv_version == 2) {
// MiniCPM-V 2.5
num_query = 96; num_query = 96;
} else if (ctx->model.hparams.minicpmv_version == 3) { } else if (ctx->model.hparams.minicpmv_version == 3) {
// MiniCPM-V 2.6
num_query = 64; num_query = 64;
} else if (ctx->model.hparams.minicpmv_version == 4) { } else if (ctx->model.hparams.minicpmv_version == 4) {
// MiniCPM-o 2.6
num_query = 64;
} else if (ctx->model.hparams.minicpmv_version == 5) {
// MiniCPM-V 4.0
num_query = 64; num_query = 64;
} }
@ -3727,10 +3733,16 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
case PROJECTOR_TYPE_MINICPMV: case PROJECTOR_TYPE_MINICPMV:
{ {
if (params.minicpmv_version == 2) { if (params.minicpmv_version == 2) {
// MiniCPM-V 2.5
n_patches_sq = 96; n_patches_sq = 96;
} else if (params.minicpmv_version == 3) { } else if (params.minicpmv_version == 3) {
// MiniCPM-V 2.6
n_patches_sq = 64; n_patches_sq = 64;
} else if (params.minicpmv_version == 4) { } else if (params.minicpmv_version == 4) {
// MiniCPM-o 2.6
n_patches_sq = 64;
} else if (params.minicpmv_version == 5) {
// MiniCPM-V 4.0
n_patches_sq = 64; n_patches_sq = 64;
} else { } else {
GGML_ABORT("Unknown minicpmv version"); GGML_ABORT("Unknown minicpmv version");
@ -4459,11 +4471,17 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->model.mm_3_b->ne[0]; return ctx->model.mm_3_b->ne[0];
case PROJECTOR_TYPE_MINICPMV: case PROJECTOR_TYPE_MINICPMV:
if (hparams.minicpmv_version == 2) { if (hparams.minicpmv_version == 2) {
// MiniCPM-V 2.5
return 4096; return 4096;
} else if (hparams.minicpmv_version == 3) { } else if (hparams.minicpmv_version == 3) {
// MiniCPM-V 2.6
return 3584; return 3584;
} else if (hparams.minicpmv_version == 4) { } else if (hparams.minicpmv_version == 4) {
// MiniCPM-o 2.6
return 3584; return 3584;
} else if (hparams.minicpmv_version == 5) {
// MiniCPM-V 4.0
return 2560;
} }
GGML_ABORT("Unknown minicpmv version"); GGML_ABORT("Unknown minicpmv version");
case PROJECTOR_TYPE_GLM_EDGE: case PROJECTOR_TYPE_GLM_EDGE:

View file

@ -497,11 +497,11 @@ ap.add_argument("--projector-type", help="Type of projector. Possible values: ml
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
default_image_mean = [0.48145466, 0.4578275, 0.40821073] default_image_mean = [0.5, 0.5, 0.5]
default_image_std = [0.26862954, 0.26130258, 0.27577711] default_image_std = [0.5, 0.5, 0.5]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2) ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4; MiniCPM-V 4.0 use 5; MiniCPM-o-4.0 use 6', default=2)
# with proper # with proper
args = ap.parse_args() args = ap.parse_args()
@ -517,6 +517,17 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None # output in the same directory as the model if output_dir is None
dir_model = args.model_dir dir_model = args.model_dir
# If minicpmv_projector is not specified but the default path exists, use the default path
if args.minicpmv_projector is None:
default_projector_path = os.path.join(dir_model, "minicpmv.projector")
if os.path.isfile(default_projector_path):
args.minicpmv_projector = default_projector_path
print(f"Found default projector file: {default_projector_path}")
# If output_dir is not specified, use model_dir as the default value
if args.output_dir is None:
args.output_dir = dir_model
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
vocab = None vocab = None
tokens = None tokens = None
@ -546,18 +557,21 @@ if args.use_f32:
minicpmv_version = args.minicpmv_version minicpmv_version = args.minicpmv_version
emb_dim = 4096 emb_dim = 4096
block_count = 26 block_count = 26
if minicpmv_version == 1: if minicpmv_version == 1: # MiniCPM-V 2.0
emb_dim = 2304 emb_dim = 2304
block_count = 26 block_count = 26
elif minicpmv_version == 2: elif minicpmv_version == 2: # MiniCPM-V 2.5
emb_dim = 4096 emb_dim = 4096
block_count = 27 block_count = 27
elif minicpmv_version == 3: elif minicpmv_version == 3: # MiniCPM-V 2.6
emb_dim = 3584 emb_dim = 3584
block_count = 27 block_count = 27
elif minicpmv_version == 4: elif minicpmv_version == 4: # MiniCPM-o 2.6
emb_dim = 3584 emb_dim = 3584
block_count = 27 block_count = 27
elif minicpmv_version == 5: # MiniCPM-V 4.0
emb_dim = 2560
block_count = 27
default_vision_config = { default_vision_config = {
"hidden_size": 1152, "hidden_size": 1152,
@ -577,6 +591,10 @@ if minicpmv_version == 3:
elif minicpmv_version == 4: elif minicpmv_version == 4:
vision_config = SiglipVisionConfig(**default_vision_config) vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config) model = SiglipVisionTransformer(vision_config)
elif minicpmv_version == 5:
default_vision_config["model_type"] = "siglip_vision_model"
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
processor = None processor = None
# if model.attn_pool is not None: # if model.attn_pool is not None:
@ -603,7 +621,7 @@ elif args.vision_only:
else: else:
fname_middle = "" fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "") output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")

View file

@ -207,7 +207,7 @@ struct mtmd_context {
tok_row_end_trail = false; // no trailing end-of-row token tok_row_end_trail = false; // no trailing end-of-row token
ov_img_first = true; ov_img_first = true;
} else if (minicpmv_version == 3 || minicpmv_version == 4) { } else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5) {
// minicpmv 2.6 format: // minicpmv 2.6 format:
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ... // <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6; slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;

View file

@ -312,7 +312,7 @@ static int load_imatrix(const std::string & imatrix_file, std::vector<std::strin
int64_t n_datasets = gguf_get_arr_n(ctx_gguf, dataset_idx); int64_t n_datasets = gguf_get_arr_n(ctx_gguf, dataset_idx);
imatrix_datasets.reserve(n_datasets); imatrix_datasets.reserve(n_datasets);
for (int64_t i = 0; i < n_datasets; ++i) { for (int64_t i = 0; i < n_datasets; ++i) {
imatrix_datasets.push_back(gguf_get_val_str(ctx_gguf, dataset_idx)); imatrix_datasets.push_back(gguf_get_arr_str(ctx_gguf, dataset_idx, i));
} }
printf("%s: imatrix datasets=['%s'", __func__, imatrix_datasets[0].c_str()); printf("%s: imatrix datasets=['%s'", __func__, imatrix_datasets[0].c_str());
for (size_t i = 1; i < imatrix_datasets.size(); ++i) { for (size_t i = 1; i < imatrix_datasets.size(); ++i) {

View file

@ -138,6 +138,9 @@ struct slot_params {
std::string oaicompat_cmpl_id; std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax; common_chat_syntax oaicompat_chat_syntax;
// Embeddings
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
json to_json() const { json to_json() const {
std::vector<std::string> samplers; std::vector<std::string> samplers;
samplers.reserve(sampling.samplers.size()); samplers.reserve(sampling.samplers.size());
@ -470,6 +473,33 @@ struct server_task {
} }
} }
} }
} else if (logit_bias != data.end() && logit_bias->is_object()) {
const int n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & el : logit_bias->items()) {
float bias;
const auto & key = el.key();
const auto & value = el.value();
if (value.is_number()) {
bias = value.get<float>();
} else if (value.is_boolean() && !value.get<bool>()) {
bias = -INFINITY;
} else {
continue;
}
char *end;
llama_token tok = strtol(key.c_str(), &end, 10);
if (*end == 0) {
if (tok >= 0 && tok < n_vocab) {
params.sampling.logit_bias.push_back({tok, bias});
}
} else {
auto toks = common_tokenize(vocab, key, false);
for (auto tok : toks) {
params.sampling.logit_bias.push_back({tok, bias});
}
}
}
} }
params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos); params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
@ -1899,6 +1929,7 @@ struct server_context {
mtmd_context * mctx = nullptr; mtmd_context * mctx = nullptr;
const llama_vocab * vocab = nullptr; const llama_vocab * vocab = nullptr;
bool vocab_dft_compatible = true;
llama_model * model_dft = nullptr; llama_model * model_dft = nullptr;
@ -1989,10 +2020,9 @@ struct server_context {
return false; return false;
} }
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) { vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str()); if (!vocab_dft_compatible) {
SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
return false;
} }
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get()); const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
@ -2082,11 +2112,14 @@ struct server_context {
return; return;
} }
slot.spec = common_speculative_init(slot.ctx_dft); slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
if (slot.spec == nullptr) { if (slot.spec == nullptr) {
SRV_ERR("%s", "failed to create speculator\n"); SRV_ERR("%s", "failed to create speculator\n");
return; return;
} }
for (auto &pair : params_base.speculative.replacements) {
common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
}
} }
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx); SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
@ -2601,7 +2634,7 @@ struct server_context {
// normalize only when there is pooling // normalize only when there is pooling
if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) { if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
common_embd_normalize(embd, embd_res.data(), n_embd, 2); common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
res->embedding.push_back(embd_res); res->embedding.push_back(embd_res);
break; break;
} else { } else {
@ -4614,6 +4647,14 @@ int main(int argc, char ** argv) {
} }
} }
int embd_normalize = 2; // default to Euclidean/L2 norm
if (body.count("embd_normalize") != 0) {
embd_normalize = body.at("embd_normalize");
if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
}
}
// create and queue the task // create and queue the task
json responses = json::array(); json responses = json::array();
bool error = false; bool error = false;
@ -4629,6 +4670,7 @@ int main(int argc, char ** argv) {
// OAI-compat // OAI-compat
task.params.oaicompat = oaicompat; task.params.oaicompat = oaicompat;
task.params.embd_normalize = embd_normalize;
tasks.push_back(std::move(task)); tasks.push_back(std::move(task));
} }

View file

@ -351,3 +351,32 @@ def test_logprobs_stream():
assert token.top_logprobs is not None assert token.top_logprobs is not None
assert len(token.top_logprobs) > 0 assert len(token.top_logprobs) > 0
assert aggregated_text == output_text assert aggregated_text == output_text
def test_logit_bias():
global server
server.start()
exclude = ["i", "I", "the", "The", "to", "a", "an", "be", "is", "was", "but", "But", "and", "And", "so", "So", "you", "You", "he", "He", "she", "She", "we", "We", "they", "They", "it", "It", "his", "His", "her", "Her", "book", "Book"]
res = server.make_request("POST", "/tokenize", data={
"content": " " + " ".join(exclude) + " ",
})
assert res.status_code == 200
tokens = res.body["tokens"]
logit_bias = {tok: -100 for tok in tokens}
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.0,
messages=[
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
max_tokens=64,
logit_bias=logit_bias
)
output_text = res.choices[0].message.content
assert output_text
assert all(output_text.find(" " + tok + " ") == -1 for tok in exclude)

View file

@ -444,6 +444,39 @@ def test_n_probs_post_sampling():
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"]) assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])
@pytest.mark.parametrize("tokenize,openai_style", [(False, False), (False, True), (True, False), (True, True)])
def test_logit_bias(tokenize, openai_style):
global server
server.start()
exclude = ["i", "I", "the", "The", "to", "a", "an", "be", "is", "was", "but", "But", "and", "And", "so", "So", "you", "You", "he", "He", "she", "She", "we", "We", "they", "They", "it", "It", "his", "His", "her", "Her", "book", "Book"]
logit_bias = []
if tokenize:
res = server.make_request("POST", "/tokenize", data={
"content": " " + " ".join(exclude) + " ",
})
assert res.status_code == 200
tokens = res.body["tokens"]
logit_bias = [[tok, -100] for tok in tokens]
else:
logit_bias = [[" " + tok + " ", -100] for tok in exclude]
if openai_style:
logit_bias = {el[0]: -100 for el in logit_bias}
res = server.make_request("POST", "/completion", data={
"n_predict": 64,
"prompt": "What is the best book",
"logit_bias": logit_bias,
"temperature": 0.0
})
assert res.status_code == 200
output_text = res.body["content"]
assert all(output_text.find(" " + tok + " ") == -1 for tok in exclude)
def test_cancel_request(): def test_cancel_request():
global server global server
server.n_ctx = 4096 server.n_ctx = 4096

View file

@ -162,10 +162,15 @@ class chat_template {
}), false); }), false);
caps_.supports_tools = contains(out, "some_tool"); caps_.supports_tools = contains(out, "some_tool");
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
json j_null;
auto make_tool_calls_msg = [&](const json & tool_calls) { auto make_tool_calls_msg = [&](const json & tool_calls) {
return json { return json {
{"role", "assistant"}, {"role", "assistant"},
{"content", nullptr}, {"content", caps_.requires_non_null_content? "" : j_null},
{"tool_calls", tool_calls}, {"tool_calls", tool_calls},
}; };
}; };
@ -195,9 +200,6 @@ class chat_template {
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments; caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments; caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
if (caps_.supports_tool_calls) { if (caps_.supports_tool_calls) {
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump()); auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
@ -234,7 +236,7 @@ class chat_template {
}; };
const json tool_call_msg { const json tool_call_msg {
{"role", "assistant"}, {"role", "assistant"},
{"content", nullptr}, {"content", caps_.requires_non_null_content ? "" : j_null},
{"tool_calls", json::array({ {"tool_calls", json::array({
{ {
// TODO: detect if requires numerical id or fixed length == 6 like Nemo // TODO: detect if requires numerical id or fixed length == 6 like Nemo

View file

@ -1355,8 +1355,13 @@ public:
case Op::Gt: return l > r; case Op::Gt: return l > r;
case Op::Le: return l <= r; case Op::Le: return l <= r;
case Op::Ge: return l >= r; case Op::Ge: return l >= r;
case Op::In: return (r.is_array() || r.is_object()) && r.contains(l); case Op::In: return (((r.is_array() || r.is_object()) && r.contains(l)) ||
case Op::NotIn: return !(r.is_array() && r.contains(l)); (l.is_string() && r.is_string() &&
r.to_str().find(l.to_str()) != std::string::npos));
case Op::NotIn:
return !(((r.is_array() || r.is_object()) && r.contains(l)) ||
(l.is_string() && r.is_string() &&
r.to_str().find(l.to_str()) != std::string::npos));
default: break; default: break;
} }
throw std::runtime_error("Unknown binary operator"); throw std::runtime_error("Unknown binary operator");
@ -1552,6 +1557,19 @@ public:
else res[i] = std::tolower(res[i]); else res[i] = std::tolower(res[i]);
} }
return res; return res;
} else if (method->get_name() == "replace") {
vargs.expectArgs("replace method", {2, 3}, {0, 0});
auto before = vargs.args[0].get<std::string>();
auto after = vargs.args[1].get<std::string>();
auto count = vargs.args.size() == 3 ? vargs.args[2].get<int64_t>()
: str.length();
size_t start_pos = 0;
while ((start_pos = str.find(before, start_pos)) != std::string::npos &&
count-- > 0) {
str.replace(start_pos, before.length(), after);
start_pos += after.length();
}
return str;
} }
} }
throw std::runtime_error("Unknown method: " + method->get_name()); throw std::runtime_error("Unknown method: " + method->get_name());
@ -2128,7 +2146,7 @@ private:
} }
} }
if ((has_first_colon || has_second_colon) && (start || end || step)) { if ((has_first_colon || has_second_colon)) {
index = std::make_shared<SliceExpr>(slice_loc, std::move(start), std::move(end), std::move(step)); index = std::make_shared<SliceExpr>(slice_loc, std::move(start), std::move(end), std::move(step));
} else { } else {
index = std::move(start); index = std::move(start);