mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-13 02:19:41 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # docs/backend/CANN.md # docs/multimodal/minicpmo2.6.md # docs/multimodal/minicpmv2.5.md # docs/multimodal/minicpmv2.6.md # examples/speculative-simple/speculative-simple.cpp # ggml/cmake/ggml-config.cmake.in # ggml/src/ggml-cann/aclnn_ops.cpp # ggml/src/ggml-cann/ggml-cann.cpp # ggml/src/ggml-cpu/repack.cpp # ggml/src/ggml-opencl/CMakeLists.txt # ggml/src/ggml-opencl/ggml-opencl.cpp # ggml/src/ggml-opencl/kernels/add.cl # ggml/src/ggml-opencl/kernels/mul.cl # scripts/compare-commits.sh # scripts/compare-llama-bench.py # scripts/sync-ggml.last # tools/server/README.md
This commit is contained in:
commit
f430916a71
57 changed files with 6028 additions and 731 deletions
|
@ -979,6 +979,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
|||
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
|
||||
string_process_escapes(seq_breaker);
|
||||
}
|
||||
for (auto & pair : params.speculative.replacements) {
|
||||
string_process_escapes(pair.first);
|
||||
string_process_escapes(pair.second);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
|
@ -2093,6 +2097,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.no_kv_offload = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
|
||||
add_opt(common_arg(
|
||||
{"-nr", "--no-repack"},
|
||||
"disable weight repacking",
|
||||
[](common_params & params) {
|
||||
params.no_extra_bufts = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_REPACK"));
|
||||
add_opt(common_arg(
|
||||
{"-ctk", "--cache-type-k"}, "TYPE",
|
||||
string_format(
|
||||
|
@ -2371,6 +2382,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-moe"},
|
||||
"use CPU for Mixture of Experts (MoE) weights",
|
||||
[](common_params & params) {
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_up_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_down_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
params.tensor_buft_overrides.push_back({"\\.ffn_gate_exps\\.weight$", ggml_backend_cpu_buffer_type()});
|
||||
}
|
||||
).set_env("LLAMA_ARG_CPU_MOE"));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
|
@ -3251,6 +3271,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.speculative.model.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
{"--spec-replace"}, "TARGET", "DRAFT",
|
||||
"translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
|
||||
[](common_params & params, const std::string & tgt, const std::string & dft) {
|
||||
params.speculative.replacements.push_back({ tgt, dft });
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
|
@ -3440,28 +3467,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// diffusion parameters
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-steps" }, "N",
|
||||
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
|
||||
[](common_params & params, int value) { params.diffusion.steps = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-visual" },
|
||||
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
|
||||
|
@ -3469,5 +3479,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
[](common_params & params) { params.diffusion.visual_mode = true; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-block-length" }, "N",
|
||||
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
|
||||
[](common_params & params, int value) { params.diffusion.block_length = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-cfg-scale" }, "F",
|
||||
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-add-gumbel-noise" }, "F",
|
||||
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue