model: support GLM 4.5 family of models (#14939)

* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
Sam 2025-08-05 04:29:25 +10:00 committed by GitHub
parent 2721257e3e
commit ef0144c087
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 594 additions and 8 deletions

View file

@ -678,6 +678,9 @@ class TextModel(ModelBase):
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
# ref: https://huggingface.co/zai-org/GLM-4.5-Air
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
@ -6696,6 +6699,139 @@ class Glm4Model(TextModel):
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Glm4MoeForCausalLM")
class Glm4MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4_MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
# Patch broken chat template
if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
special_vocab.chat_template = special_vocab.chat_template.replace(
"""{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
"""{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = (
self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
)
self.gguf_writer.add_rope_dimension_count(
int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
)
# MoE parameters - Use only routed expert count (shared experts handled separately)
if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
self.gguf_writer.add_expert_count(n_routed_experts)
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
self.gguf_writer.add_expert_shared_count(n_shared_experts)
if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
# Expert gating function (sigmoid for GLM4_MOE)
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
# Routed scaling factor
if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
# Normalise topk probabilities
if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
# NextN/MTP prediction layers
if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."): # ignore visual part
return []
elif name.startswith("model.language_model."):
name = name.replace("language_model.", "") # for multimodal variants
# Handle main token embedding (but not layer-specific NextN embeddings)
if name == "model.embed_tokens.weight" and ".layers." not in name:
return [(self.map_tensor_name("token_embd.weight"), data_torch)]
# Handle routed experts
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
new_name = self.map_tensor_name(name)
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(TextModel):
model_arch = gguf.MODEL_ARCH.CHATGLM

View file

@ -147,6 +147,7 @@ pre_computed_hashes = [
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},

View file

@ -105,6 +105,7 @@ class Keys:
EXPERT_WEIGHTS_NORM = "{arch}.expert_weights_norm"
EXPERT_GATING_FUNC = "{arch}.expert_gating_func"
MOE_EVERY_N_LAYERS = "{arch}.moe_every_n_layers"
NEXTN_PREDICT_LAYERS = "{arch}.nextn_predict_layers"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
@ -357,6 +358,7 @@ class MODEL_ARCH(IntEnum):
DEEPSEEK2 = auto()
CHATGLM = auto()
GLM4 = auto()
GLM4_MOE = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
@ -614,6 +616,13 @@ class MODEL_TENSOR(IntEnum):
A_MMPROJ_FC = auto()
A_MM_NORM_PRE = auto()
A_MM_NORM_MID = auto()
# nextn/mtp
NEXTN_EH_PROJ = auto()
NEXTN_EMBED_TOKENS = auto()
NEXTN_ENORM = auto()
NEXTN_HNORM = auto()
NEXTN_SHARED_HEAD_HEAD = auto()
NEXTN_SHARED_HEAD_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -678,6 +687,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4: "glm4",
MODEL_ARCH.GLM4_MOE: "glm4moe",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
@ -936,6 +946,13 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.A_MMPROJ_FC: "mm.a.fc",
MODEL_TENSOR.A_MM_NORM_PRE: "mm.a.norm_pre",
MODEL_TENSOR.A_MM_NORM_MID: "mm.a.norm_mid",
# NextN/MTP
MODEL_TENSOR.NEXTN_EH_PROJ: "blk.{bid}.nextn.eh_proj",
MODEL_TENSOR.NEXTN_EMBED_TOKENS: "blk.{bid}.nextn.embed_tokens",
MODEL_TENSOR.NEXTN_ENORM: "blk.{bid}.nextn.enorm",
MODEL_TENSOR.NEXTN_HNORM: "blk.{bid}.nextn.hnorm",
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: "blk.{bid}.nextn.shared_head_head",
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: "blk.{bid}.nextn.shared_head_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -2124,6 +2141,37 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.GLM4_MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
# NextN/MTP tensors - preserved but unused
MODEL_TENSOR.NEXTN_EH_PROJ,
MODEL_TENSOR.NEXTN_EMBED_TOKENS,
MODEL_TENSOR.NEXTN_ENORM,
MODEL_TENSOR.NEXTN_HNORM,
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,

View file

@ -753,6 +753,9 @@ class GGUFWriter:
def add_moe_every_n_layers(self, value: int) -> None:
self.add_uint32(Keys.LLM.MOE_EVERY_N_LAYERS.format(arch=self.arch), value)
def add_nextn_predict_layers(self, count: int) -> None:
self.add_uint32(Keys.LLM.NEXTN_PREDICT_LAYERS.format(arch=self.arch), count)
def add_swin_norm(self, value: bool) -> None:
self.add_bool(Keys.LLM.SWIN_NORM.format(arch=self.arch), value)

View file

@ -1369,6 +1369,31 @@ class TensorNameMap:
MODEL_TENSOR.A_MM_NORM_MID: (
"audio.multi_modal_projector.ln_mid", # ultravox
),
# NextN/MTP tensors for GLM4_MOE
MODEL_TENSOR.NEXTN_EH_PROJ: (
"model.layers.{bid}.eh_proj",
),
MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
"model.layers.{bid}.embed_tokens",
),
MODEL_TENSOR.NEXTN_ENORM: (
"model.layers.{bid}.enorm",
),
MODEL_TENSOR.NEXTN_HNORM: (
"model.layers.{bid}.hnorm",
),
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
"model.layers.{bid}.shared_head.head",
),
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
"model.layers.{bid}.shared_head.norm",
),
}
# architecture-specific block mappings

View file

@ -21,4 +21,5 @@ These templates can be updated with the following commands:
./scripts/get_chat_template.py Qwen/Qwen2.5-7B-Instruct > models/templates/Qwen-Qwen2.5-7B-Instruct.jinja
./scripts/get_chat_template.py Qwen/QwQ-32B > models/templates/Qwen-QwQ-32B.jinja
./scripts/get_chat_template.py Qwen/Qwen3-0.6B > models/templates/Qwen-Qwen3-0.6B.jinja
./scripts/get_chat_template.py zai-org/GLM-4.5 > models/templates/zai-org-GLM-4.5.jinja
```

View file

@ -62,6 +62,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_GLM4, "glm4" },
{ LLM_ARCH_GLM4_MOE, "glm4moe" },
{ LLM_ARCH_BITNET, "bitnet" },
{ LLM_ARCH_T5, "t5" },
{ LLM_ARCH_T5ENCODER, "t5encoder" },
@ -127,6 +128,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_WEIGHTS_NORM, "%s.expert_weights_norm" },
{ LLM_KV_EXPERT_GATING_FUNC, "%s.expert_gating_func" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@ -1391,6 +1393,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_GLM4_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
// NextN/MTP tensors - preserved but unused (in final layer, dynamic layer number)
{ LLM_TENSOR_NEXTN_EH_PROJ, "blk.%d.nextn.eh_proj" },
{ LLM_TENSOR_NEXTN_EMBED_TOKENS, "blk.%d.nextn.embed_tokens" },
{ LLM_TENSOR_NEXTN_ENORM, "blk.%d.nextn.enorm" },
{ LLM_TENSOR_NEXTN_HNORM, "blk.%d.nextn.hnorm" },
{ LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "blk.%d.nextn.shared_head_head" },
{ LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "blk.%d.nextn.shared_head_norm" },
},
},
{
LLM_ARCH_BITNET,
{
@ -2181,6 +2217,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
{LLM_TENSOR_NEXTN_EMBED_TOKENS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_NEXTN_ENORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}},
{LLM_TENSOR_NEXTN_HNORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}},
{LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},
{LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}},
};
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}

View file

@ -66,6 +66,7 @@ enum llm_arch {
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_GLM4,
LLM_ARCH_GLM4_MOE,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
@ -131,6 +132,7 @@ enum llm_kv {
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@ -409,6 +411,12 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,
LLM_TENSOR_NEXTN_HNORM,
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
enum llm_tensor_layer {

View file

@ -749,8 +749,8 @@ ggml_tensor * llm_graph_context::build_ffn(
if (down) {
cur = build_lora_mm(down, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
// GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}
@ -1391,8 +1391,8 @@ ggml_tensor * llm_graph_context::build_attn(
if (wo) {
cur = build_lora_mm(wo, cur);
if (arch == LLM_ARCH_GLM4) {
// GLM4 seems to have numerical issues with half-precision accumulators
if (arch == LLM_ARCH_GLM4 || arch == LLM_ARCH_GLM4_MOE) {
// GLM4 and GLM4_MOE seem to have numerical issues with half-precision accumulators
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
}
}

View file

@ -73,6 +73,7 @@ struct llama_hparams {
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
uint32_t moe_every_n_layers = 0;
uint32_t nextn_predict_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;

View file

@ -39,6 +39,10 @@ llama_kv_cache_unified::llama_kv_cache_unified(
if (model.arch == LLM_ARCH_GEMMA3N) {
n_layer_cache = 20;
}
if (model.arch == LLM_ARCH_GLM4_MOE) {
// GLM-4.5: Only process up to last layer, skip final NextN layer
n_layer_cache = hparams.n_layer - hparams.nextn_predict_layers;
}
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;

View file

@ -58,8 +58,9 @@ struct llama_model_loader {
}
};
static const int TENSOR_NOT_REQUIRED = 1;
static const int TENSOR_DUPLICATED = 2;
static const int TENSOR_NOT_REQUIRED = 1 << 0;
static const int TENSOR_DUPLICATED = 1 << 1;
static const int TENSOR_SKIP = 1 << 2;
int n_kv = 0;
int n_tensors = 0;

View file

@ -109,8 +109,10 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_A13B: return "A13B";
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
case LLM_TYPE_300B_A47B: return "300B.A47B";
case LLM_TYPE_355B_A32B: return "355B.A32B";
case LLM_TYPE_E2B: return "E2B";
case LLM_TYPE_E4B: return "E4B";
default: return "?B";
@ -1434,6 +1436,34 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GLM4_MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
// MoE parameters
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
// Expert gating function (GLM-4.5 uses sigmoid)
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
}
// NextN/MTP parameters
ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
switch (hparams.n_layer) {
case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -1949,6 +1979,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
// create tensors for the weights
{
@ -2004,7 +2035,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
// skip unused tensors
if (info.op == GGML_OP_NONE) {
if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
const size_t nbytes = ggml_nbytes(t_meta);
LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
@ -4427,6 +4458,105 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_GLM4_MOE:
{
const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used;
const int64_t n_expert_shared = hparams.n_expert_shared;
GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
}
// Load ALL tensors including NextN layer to satisfy total tensor count
// but only PROCESS up to last layer (skipping final NextN layer) in forward pass
for (int i = 0; i < n_layer; ++i) {
int flags = 0;
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
// skip all tensors in the NextN layers
flags |= TENSOR_SKIP;
}
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
// GLM-style attention with bias terms
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
// K/Q norm tensors (optional for GLM-4.5 355B variant)
layer.attn_q_norm = create_tensor(
tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
layer.attn_k_norm = create_tensor(
tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
// Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
// GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
if (use_moe) {
// MoE layers
layer.ffn_gate_inp =
create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
layer.ffn_gate_exps = create_tensor(
tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
layer.ffn_down_exps = create_tensor(
tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
layer.ffn_up_exps = create_tensor(
tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
// Shared expert
if (n_expert_shared > 0) {
const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
layer.ffn_gate_shexp = create_tensor(
tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
layer.ffn_down_shexp = create_tensor(
tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
layer.ffn_up_shexp = create_tensor(
tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
}
} else {
// Dense layers (first k layers) - GLM uses separate gate/up projections
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
}
// NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags);
layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags);
layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags);
}
}
}
break;
case LLM_ARCH_NEMOTRON:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -13564,6 +13694,169 @@ struct llm_build_glm4 : public llm_graph_context {
}
};
struct llm_build_glm4_moe : public llm_graph_context {
llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Only process up to last layer (skip final NextN layer)
// Final layer tensors are loaded but not processed in forward pass
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// Post-attention norm
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE layer with shared experts
const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used;
// Process routed experts using existing MoE infrastructure
ggml_tensor * routed_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input
ggml_tensor * shared_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -17877,6 +18170,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_glm4>(*this, params);
} break;
case LLM_ARCH_GLM4_MOE:
{
llm = std::make_unique<llm_build_glm4_moe>(*this, params);
} break;
case LLM_ARCH_BITNET:
{
llm = std::make_unique<llm_build_bitnet>(*this, params);
@ -18208,6 +18505,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_HUNYUAN_DENSE:
case LLM_ARCH_LFM2:
case LLM_ARCH_SMALLTHINKER:
case LLM_ARCH_GLM4_MOE:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:

View file

@ -101,8 +101,10 @@ enum llm_type {
LLM_TYPE_A13B,
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_355B_A32B, // GLM-4.5
LLM_TYPE_E2B,
LLM_TYPE_E4B,
};
@ -166,6 +168,15 @@ struct llama_layer_shortconv {
struct ggml_tensor * out_proj = nullptr;
};
struct llama_layer_nextn {
struct ggml_tensor * eh_proj = nullptr;
struct ggml_tensor * embed_tokens = nullptr;
struct ggml_tensor * enorm = nullptr;
struct ggml_tensor * hnorm = nullptr;
struct ggml_tensor * shared_head_head = nullptr;
struct ggml_tensor * shared_head_norm = nullptr;
};
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm = nullptr;
@ -354,6 +365,8 @@ struct llama_layer {
struct llama_layer_convnext convnext;
struct llama_layer_shortconv shortconv;
struct llama_layer_nextn nextn;
};
struct llama_model {

View file

@ -2191,6 +2191,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<fim▁begin>" // DeepSeek
|| t.first == "<PRE>"
|| t.first == "▁<PRE>" // CodeLlama
|| t.first == "<|code_prefix|>" // GLM-4.5
) {
special_fim_pre_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@ -2210,6 +2211,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<fim▁hole>" // DeepSeek
|| t.first == "<SUF>"
|| t.first == "▁<SUF>" // CodeLlama
|| t.first == "<|code_suffix|>" // GLM-4.5
) {
special_fim_suf_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@ -2229,6 +2231,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<fim▁end>" // DeepSeek
|| t.first == "<MID>"
|| t.first == "▁<MID>" // CodeLlama
|| t.first == "<|code_middle|>" // GLM-4.5
) {
special_fim_mid_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {