move kcpp params out

This commit is contained in:
Concedo 2024-09-10 16:30:12 +08:00
parent fc7fe2e7a0
commit eee67281be
3 changed files with 192 additions and 330 deletions

View file

@ -95,13 +95,10 @@ static std::vector<llava_image> llava_images;
static std::string llava_composite_image_signature = ""; //for identifying when the llava images change, we need to invalidate the cache static std::string llava_composite_image_signature = ""; //for identifying when the llava images change, we need to invalidate the cache
static int current_llava_identifier = LLAVA_TOKEN_IDENTIFIER_A; static int current_llava_identifier = LLAVA_TOKEN_IDENTIFIER_A;
static gpt_params * kcpp_params = nullptr; static kcpp_params * kcpp_data = nullptr;
static int max_context_limit_at_load = 0; static int max_context_limit_at_load = 0;
static int n_past = 0; static int n_past = 0;
static bool useSmartContext = false;
static bool useContextShift = false;
static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall static int debugmode = 0; //-1 = hide all, 0 = normal, 1 = showall
static std::string modelname;
static std::vector<gpt_vocab::id> last_n_tokens; static std::vector<gpt_vocab::id> last_n_tokens;
static std::vector<gpt_vocab::id> current_context_tokens; static std::vector<gpt_vocab::id> current_context_tokens;
static size_t mem_per_token = 0; static size_t mem_per_token = 0;
@ -1567,19 +1564,19 @@ static float CalcGradientAIRopeFreqBase(float original_rope_base, int n_ctx_trai
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format, FileFormatExtraMeta in_file_format_meta) ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format, FileFormatExtraMeta in_file_format_meta)
{ {
ggml_time_init(); ggml_time_init();
kcpp_params = new gpt_params(); //allocate on heap to avoid linux segfault. yes this leaks memory. kcpp_data = new kcpp_params(); //allocate on heap to avoid linux segfault. yes this leaks memory.
file_format = in_file_format; file_format = in_file_format;
file_format_meta = in_file_format_meta; file_format_meta = in_file_format_meta;
kcpp_params->cpuparams.n_threads = inputs.threads; kcpp_data->n_threads = inputs.threads;
kcpp_params->cpuparams_batch.n_threads = inputs.blasthreads; kcpp_data->n_blasthreads = inputs.blasthreads;
bool isGguf = (file_format == FileFormat::GGUF_GENERIC); bool isGguf = (file_format == FileFormat::GGUF_GENERIC);
kcpp_params->n_batch = GetBatchSize(inputs.blasbatchsize, in_file_format); kcpp_data->n_batch = GetBatchSize(inputs.blasbatchsize, in_file_format);
kcpp_params->n_ubatch = kcpp_params->n_batch; kcpp_data->n_ubatch = kcpp_data->n_batch;
kcpp_params->flash_attn = inputs.flash_attention; kcpp_data->flash_attn = inputs.flash_attention;
modelname = kcpp_params->model = inputs.model_filename; kcpp_data->model_filename = inputs.model_filename;
useSmartContext = inputs.use_smartcontext; kcpp_data->use_smartcontext = inputs.use_smartcontext;
useContextShift = inputs.use_contextshift; kcpp_data->use_contextshift = inputs.use_contextshift;
debugmode = inputs.debugmode; debugmode = inputs.debugmode;
auto clamped_max_context_length = inputs.max_context_length; auto clamped_max_context_length = inputs.max_context_length;
@ -1591,13 +1588,13 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
clamped_max_context_length = 16384; clamped_max_context_length = 16384;
} }
kcpp_params->n_ctx = clamped_max_context_length; kcpp_data->n_ctx = clamped_max_context_length;
max_context_limit_at_load = clamped_max_context_length; max_context_limit_at_load = clamped_max_context_length;
neox_ctx_v2.hparams.n_ctx = neox_ctx_v3.hparams.n_ctx neox_ctx_v2.hparams.n_ctx = neox_ctx_v3.hparams.n_ctx
= gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx
= gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = gpt2_ctx_v3.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = gpt2_ctx_v3.hparams.n_ctx
= mpt_ctx_v3.hparams.n_ctx = kcpp_params->n_ctx; = mpt_ctx_v3.hparams.n_ctx = kcpp_data->n_ctx;
//determine rope scaling params //determine rope scaling params
float rope_freq_scale = 1.0f; float rope_freq_scale = 1.0f;
@ -1613,7 +1610,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
else else
{ {
//Set freq base for all, including non GGUF. If we are using GGUF, this will be overwritten with more accurate values later. //Set freq base for all, including non GGUF. If we are using GGUF, this will be overwritten with more accurate values later.
rope_freq_base = CalcGradientAIRopeFreqBase(10000.0f,2048,kcpp_params->n_ctx, GGUFArch::ARCH_DEFAULT); rope_freq_base = CalcGradientAIRopeFreqBase(10000.0f,2048,kcpp_data->n_ctx, GGUFArch::ARCH_DEFAULT);
if(file_format==FileFormat::GGUF_GENERIC) if(file_format==FileFormat::GGUF_GENERIC)
{ {
printf("Using automatic RoPE scaling for GGUF. If the model has custom RoPE settings, they'll be used directly instead!\n"); printf("Using automatic RoPE scaling for GGUF. If the model has custom RoPE settings, they'll be used directly instead!\n");
@ -1658,11 +1655,11 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llama_ctx_params_v2.use_mlock = inputs.use_mlock; llama_ctx_params_v2.use_mlock = inputs.use_mlock;
llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers; llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers;
llama_ctx_v2 = llama_v2_init_from_file(modelname.c_str(), llama_ctx_params_v2); llama_ctx_v2 = llama_v2_init_from_file(kcpp_data->model_filename.c_str(), llama_ctx_params_v2);
if (llama_ctx_v2 == NULL) if (llama_ctx_v2 == NULL)
{ {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
return ModelLoadResult::FAIL; return ModelLoadResult::FAIL;
} }
@ -1681,7 +1678,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
int err = llama_v2_apply_lora_from_file(llama_ctx_v2, int err = llama_v2_apply_lora_from_file(llama_ctx_v2,
lora_filename.c_str(), lora_filename.c_str(),
lora_base_arg, lora_base_arg,
kcpp_params->cpuparams.n_threads); kcpp_data->n_threads);
if (err != 0) if (err != 0)
{ {
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
@ -1693,7 +1690,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//determine mem per token //determine mem per token
const std::vector<int> tmp = {1, 2, 3, 4}; const std::vector<int> tmp = {1, 2, 3, 4};
llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, kcpp_params->cpuparams.n_threads); llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, kcpp_data->n_threads);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else if(file_format == FileFormat::GGJT_3) else if(file_format == FileFormat::GGJT_3)
@ -1711,7 +1708,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llama_ctx_params.main_gpu = cu_parseinfo_maindevice; llama_ctx_params.main_gpu = cu_parseinfo_maindevice;
llama_ctx_params.rope_freq_base = rope_freq_base; llama_ctx_params.rope_freq_base = rope_freq_base;
llama_ctx_params.rope_freq_scale = rope_freq_scale; llama_ctx_params.rope_freq_scale = rope_freq_scale;
llama_ctx_params.n_batch = kcpp_params->n_batch; llama_ctx_params.n_batch = kcpp_data->n_batch;
#if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) #if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
bool ts_all_zero = true; bool ts_all_zero = true;
@ -1728,11 +1725,11 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
} }
#endif #endif
llama_ctx_v3 = llama_v3_init_from_file(modelname.c_str(), llama_ctx_params); llama_ctx_v3 = llama_v3_init_from_file(kcpp_data->model_filename.c_str(), llama_ctx_params);
if (llama_ctx_v3 == NULL) if (llama_ctx_v3 == NULL)
{ {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
return ModelLoadResult::FAIL; return ModelLoadResult::FAIL;
} }
if (lora_filename != "") if (lora_filename != "")
@ -1748,7 +1745,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
int err = llama_v3_apply_lora_from_file(llama_ctx_v3, int err = llama_v3_apply_lora_from_file(llama_ctx_v3,
lora_filename.c_str(), lora_filename.c_str(),
lora_base_arg, lora_base_arg,
kcpp_params->cpuparams.n_threads); kcpp_data->n_threads);
if (err != 0) if (err != 0)
{ {
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
@ -1760,7 +1757,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//determine mem per token //determine mem per token
const std::vector<int> tmp = {1, 2, 3, 4}; const std::vector<int> tmp = {1, 2, 3, 4};
auto er = llama_v3_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, kcpp_params->cpuparams.n_threads); auto er = llama_v3_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, kcpp_data->n_threads);
if(er!=0) if(er!=0)
{ {
printf("\nLLAMA EVAL returned nonzero!\n"); printf("\nLLAMA EVAL returned nonzero!\n");
@ -1774,7 +1771,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
llama_context_params llama_ctx_params = llama_context_default_params(); llama_context_params llama_ctx_params = llama_context_default_params();
llama_ctx_params.n_ctx = clamped_max_context_length; llama_ctx_params.n_ctx = clamped_max_context_length;
if(useContextShift) if(kcpp_data->use_contextshift)
{ {
llama_ctx_params.n_ctx += extra_context_handle_fragmentation; llama_ctx_params.n_ctx += extra_context_handle_fragmentation;
} }
@ -1806,7 +1803,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
printf("CUBLAS: Set main device to %d\n",cu_parseinfo_maindevice); printf("CUBLAS: Set main device to %d\n",cu_parseinfo_maindevice);
} }
ggml_cuda_set_mul_mat_q(inputs.use_mmq); ggml_cuda_set_mul_mat_q(inputs.use_mmq);
if(file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2 && !kcpp_params->flash_attn) if(file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2 && !kcpp_data->flash_attn)
{ {
printf("CUBLAS: Warning, you are running Qwen2 without Flash Attention and may observe incoherent output.\n"); printf("CUBLAS: Warning, you are running Qwen2 without Flash Attention and may observe incoherent output.\n");
} }
@ -1819,10 +1816,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER; model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER;
#endif #endif
llama_ctx_params.n_batch = kcpp_params->n_batch; llama_ctx_params.n_batch = kcpp_data->n_batch;
llama_ctx_params.n_ubatch = kcpp_params->n_ubatch; llama_ctx_params.n_ubatch = kcpp_data->n_ubatch;
llama_ctx_params.n_threads = kcpp_params->cpuparams.n_threads; llama_ctx_params.n_threads = kcpp_data->n_threads;
llama_ctx_params.n_threads_batch = kcpp_params->cpuparams_batch.n_threads; llama_ctx_params.n_threads_batch = kcpp_data->n_blasthreads;
#if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) #if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
bool ts_all_zero = true; bool ts_all_zero = true;
@ -1847,7 +1844,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
OldBPETokenizerMode = true; OldBPETokenizerMode = true;
} }
llama_model * llamamodel = llama_load_model_from_file(modelname.c_str(), model_params); llama_model * llamamodel = llama_load_model_from_file(kcpp_data->model_filename.c_str(), model_params);
if(overwriteRope) if(overwriteRope)
{ {
llama_ctx_params.rope_freq_base = rope_freq_base; llama_ctx_params.rope_freq_base = rope_freq_base;
@ -1866,7 +1863,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
else else
{ {
//Calculate rope_freq_base using the gradientAI formula, solar requires ctx *8 for correct scaling //Calculate rope_freq_base using the gradientAI formula, solar requires ctx *8 for correct scaling
rope_freq_base = CalcGradientAIRopeFreqBase(llamamodel->hparams.rope_freq_base_train, file_format_meta.n_ctx_train, kcpp_params->n_ctx, file_format_meta.model_architecture); rope_freq_base = CalcGradientAIRopeFreqBase(llamamodel->hparams.rope_freq_base_train, file_format_meta.n_ctx_train, kcpp_data->n_ctx, file_format_meta.model_architecture);
llama_ctx_params.rope_freq_base = rope_freq_base; llama_ctx_params.rope_freq_base = rope_freq_base;
llama_ctx_params.rope_freq_scale = rope_freq_scale; llama_ctx_params.rope_freq_scale = rope_freq_scale;
printf("Automatic RoPE Scaling: Using (scale:%.3f, base:%.1f).\n", rope_freq_scale, rope_freq_base); printf("Automatic RoPE Scaling: Using (scale:%.3f, base:%.1f).\n", rope_freq_scale, rope_freq_base);
@ -1879,14 +1876,14 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llamamodel->vocab.special_bos_id = llamamodel->vocab.special_eos_id = 0; llamamodel->vocab.special_bos_id = llamamodel->vocab.special_eos_id = 0;
} }
llama_ctx_params.flash_attn = kcpp_params->flash_attn; llama_ctx_params.flash_attn = kcpp_data->flash_attn;
llama_ctx_params.type_k = (inputs.quant_k>1?GGML_TYPE_Q4_0:(inputs.quant_k==1?GGML_TYPE_Q8_0:GGML_TYPE_F16)); llama_ctx_params.type_k = (inputs.quant_k>1?GGML_TYPE_Q4_0:(inputs.quant_k==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
llama_ctx_params.type_v = (inputs.quant_v>1?GGML_TYPE_Q4_0:(inputs.quant_v==1?GGML_TYPE_Q8_0:GGML_TYPE_F16)); llama_ctx_params.type_v = (inputs.quant_v>1?GGML_TYPE_Q4_0:(inputs.quant_v==1?GGML_TYPE_Q8_0:GGML_TYPE_F16));
llama_ctx_v4 = llama_new_context_with_model(llamamodel, llama_ctx_params); llama_ctx_v4 = llama_new_context_with_model(llamamodel, llama_ctx_params);
if (llama_ctx_v4 == NULL) if (llama_ctx_v4 == NULL)
{ {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, kcpp_data->model_filename.c_str());
return ModelLoadResult::FAIL; return ModelLoadResult::FAIL;
} }
if (lora_filename != "") if (lora_filename != "")
@ -1942,11 +1939,11 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
bool useWorldTokenizer = false; bool useWorldTokenizer = false;
if (file_format == FileFormat::RWKV_1) if (file_format == FileFormat::RWKV_1)
{ {
rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), kcpp_params->cpuparams.n_threads); rwkv_ctx_v2 = rwkv_v2_init_from_file(kcpp_data->model_filename.c_str(), kcpp_data->n_threads);
} }
else //rwkv_2 else //rwkv_2
{ {
rwkv_ctx_v3 = rwkv_init_from_file(modelname.c_str(), kcpp_params->cpuparams.n_threads); rwkv_ctx_v3 = rwkv_init_from_file(kcpp_data->model_filename.c_str(), kcpp_data->n_threads);
if(inputs.gpulayers>0) if(inputs.gpulayers>0)
{ {
@ -2025,7 +2022,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz); rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz);
rwkv_ctx_v3->state_in = nullptr; rwkv_ctx_v3->state_in = nullptr;
bool testeval = rwkv_eval(rwkv_ctx_v3, kcpp_params->cpuparams.n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); bool testeval = rwkv_eval(rwkv_ctx_v3, kcpp_data->n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
if (!testeval) if (!testeval)
{ {
printf("\nError: RWKV Init Eval Failed!\n"); printf("\nError: RWKV Init Eval Failed!\n");
@ -2042,10 +2039,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
} }
else if (file_format == FileFormat::GPT2_1) else if (file_format == FileFormat::GPT2_1)
{ {
ModelLoadResult res = legacy_gpt2_model_load(kcpp_params->model, gpt2_ctx_v1, vocab, file_format); ModelLoadResult res = legacy_gpt2_model_load(kcpp_data->model_filename, gpt2_ctx_v1, vocab, file_format);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2057,17 +2054,17 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v1.hparams.n_vocab; n_vocab = gpt2_ctx_v1.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
legacy_gpt2_eval(gpt2_ctx_v1, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); legacy_gpt2_eval(gpt2_ctx_v1, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4) else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4)
{ {
if(file_format==FileFormat::GPT2_4) if(file_format==FileFormat::GPT2_4)
{ {
ModelLoadResult res = gpt2_model_load(kcpp_params->model, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers); ModelLoadResult res = gpt2_model_load(kcpp_data->model_filename, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2079,7 +2076,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v3.hparams.n_vocab; n_vocab = gpt2_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gpt2_eval(gpt2_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch); gpt2_eval(gpt2_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else else
@ -2087,10 +2084,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//newer format has bit unshuffling //newer format has bit unshuffling
SetQuantsUnshuffled(file_format == FileFormat::GPT2_3); SetQuantsUnshuffled(file_format == FileFormat::GPT2_3);
ModelLoadResult res = gpt2_v2_model_load(kcpp_params->model, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers); ModelLoadResult res = gpt2_v2_model_load(kcpp_data->model_filename, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2102,16 +2099,16 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v2.hparams.n_vocab; n_vocab = gpt2_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gpt2_v2_eval(gpt2_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); gpt2_v2_eval(gpt2_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
} }
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
{ {
ModelLoadResult res = legacy_gptj_model_load(kcpp_params->model, gptj_ctx_v1, vocab, file_format); ModelLoadResult res = legacy_gptj_model_load(kcpp_data->model_filename, gptj_ctx_v1, vocab, file_format);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2123,7 +2120,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v1.hparams.n_vocab; n_vocab = gptj_ctx_v1.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
legacy_gptj_eval(gptj_ctx_v1, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); legacy_gptj_eval(gptj_ctx_v1, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
//if the logits are NAN or duplicated, it means the model is incompatible //if the logits are NAN or duplicated, it means the model is incompatible
if(logits.size()>0 && IsNanCheck(logits[0])) if(logits.size()>0 && IsNanCheck(logits[0]))
@ -2139,10 +2136,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
{ {
if(file_format == FileFormat::GPTJ_5) if(file_format == FileFormat::GPTJ_5)
{ {
ModelLoadResult loadresult = gptj_model_load(kcpp_params->model, gptj_ctx_v3, vocab, inputs.gpulayers); ModelLoadResult loadresult = gptj_model_load(kcpp_data->model_filename, gptj_ctx_v3, vocab, inputs.gpulayers);
if (loadresult == ModelLoadResult::FAIL) if (loadresult == ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return loadresult; return loadresult;
} }
else if (loadresult == ModelLoadResult::RETRY_LOAD) else if (loadresult == ModelLoadResult::RETRY_LOAD)
@ -2154,14 +2151,14 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v3.hparams.n_vocab; n_vocab = gptj_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gptj_eval(gptj_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch); gptj_eval(gptj_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
//if the logits are NAN or duplicated, it means the model is incompatible //if the logits are NAN or duplicated, it means the model is incompatible
std::vector<float> oldlogits(logits); std::vector<float> oldlogits(logits);
//this is another hack because they change the library - we run the eval through the model //this is another hack because they change the library - we run the eval through the model
//twice and compare logits. if they give the same logits for different inputs, model is broken //twice and compare logits. if they give the same logits for different inputs, model is broken
gptj_eval(gptj_ctx_v3, kcpp_params->cpuparams.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token, v3_use_scratch); gptj_eval(gptj_ctx_v3, kcpp_data->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token, v3_use_scratch);
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits))) if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
{ {
@ -2177,10 +2174,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//newer format has bit unshuffling //newer format has bit unshuffling
SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4); SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4);
ModelLoadResult loadresult = gptj_v2_model_load(kcpp_params->model, gptj_ctx_v2, vocab, inputs.gpulayers); ModelLoadResult loadresult = gptj_v2_model_load(kcpp_data->model_filename, gptj_ctx_v2, vocab, inputs.gpulayers);
if (loadresult == ModelLoadResult::FAIL) if (loadresult == ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return loadresult; return loadresult;
} }
else if (loadresult == ModelLoadResult::RETRY_LOAD) else if (loadresult == ModelLoadResult::RETRY_LOAD)
@ -2192,14 +2189,14 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v2.hparams.n_vocab; n_vocab = gptj_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gptj_v2_eval(gptj_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); gptj_v2_eval(gptj_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
//if the logits are NAN or duplicated, it means the model is incompatible //if the logits are NAN or duplicated, it means the model is incompatible
std::vector<float> oldlogits(logits); std::vector<float> oldlogits(logits);
//this is another hack because they change the library - we run the eval through the model //this is another hack because they change the library - we run the eval through the model
//twice and compare logits. if they give the same logits for different inputs, model is broken //twice and compare logits. if they give the same logits for different inputs, model is broken
gptj_v2_eval(gptj_ctx_v2, kcpp_params->cpuparams.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token); gptj_v2_eval(gptj_ctx_v2, kcpp_data->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits))) if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
{ {
@ -2215,10 +2212,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
{ {
if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7) if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
{ {
ModelLoadResult res = gpt_neox_model_load(kcpp_params->model, neox_ctx_v3, vocab, file_format, inputs.gpulayers); ModelLoadResult res = gpt_neox_model_load(kcpp_data->model_filename, neox_ctx_v3, vocab, file_format, inputs.gpulayers);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2230,7 +2227,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = neox_ctx_v3.hparams.n_vocab; n_vocab = neox_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gpt_neox_eval(neox_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch); gpt_neox_eval(neox_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
@ -2239,10 +2236,10 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//newer format has bit unshuffling //newer format has bit unshuffling
SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5); SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5);
ModelLoadResult res = gpt_neox_v2_model_load(kcpp_params->model, neox_ctx_v2, vocab, file_format); ModelLoadResult res = gpt_neox_v2_model_load(kcpp_data->model_filename, neox_ctx_v2, vocab, file_format);
if(res==ModelLoadResult::FAIL) if(res==ModelLoadResult::FAIL)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return res; return res;
} }
else if(res==ModelLoadResult::RETRY_LOAD) else if(res==ModelLoadResult::RETRY_LOAD)
@ -2254,7 +2251,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = neox_ctx_v2.hparams.n_vocab; n_vocab = neox_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); gpt_neox_v2_eval(neox_ctx_v2, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0])) if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
{ {
@ -2262,7 +2259,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7"); std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
auto orig_par_res = neox_ctx_v2.hparams.par_res; auto orig_par_res = neox_ctx_v2.hparams.par_res;
neox_ctx_v2.hparams.par_res = 0; //test with residual false neox_ctx_v2.hparams.par_res = 0; //test with residual false
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->cpuparams.n_threads, 0, test_embd, logits, mem_per_token); gpt_neox_v2_eval(neox_ctx_v2, kcpp_data->n_threads, 0, test_embd, logits, mem_per_token);
neox_ctx_v2.hparams.par_res = orig_par_res; neox_ctx_v2.hparams.par_res = orig_par_res;
int topid = std::max_element(logits.begin(),logits.end())-logits.begin(); int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
std::string predicted = vocab.id_to_token[topid].c_str(); std::string predicted = vocab.id_to_token[topid].c_str();
@ -2281,17 +2278,17 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
} }
else if(file_format==FileFormat::MPT_1) else if(file_format==FileFormat::MPT_1)
{ {
bool res = mpt_model_load(kcpp_params->model, mpt_ctx_v3, vocab, inputs.gpulayers); bool res = mpt_model_load(kcpp_data->model_filename, mpt_ctx_v3, vocab, inputs.gpulayers);
if(res==false) if(res==false)
{ {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_params->model.c_str()); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, kcpp_data->model_filename.c_str());
return ModelLoadResult::FAIL; return ModelLoadResult::FAIL;
} }
n_vocab = mpt_ctx_v3.hparams.n_vocab; n_vocab = mpt_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token: // determine the required inference memory per token:
mpt_eval(mpt_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token, v3_use_scratch); mpt_eval(mpt_ctx_v3, kcpp_data->n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS; return ModelLoadResult::SUCCESS;
} }
else else
@ -2304,7 +2301,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
bool gpttype_generate_abort() bool gpttype_generate_abort()
{ {
if(kcpp_params==nullptr) if(kcpp_data==nullptr)
{ {
printf("\nWarning: KCPP text generation not initialized!\n"); printf("\nWarning: KCPP text generation not initialized!\n");
} }
@ -2316,7 +2313,7 @@ bool gpttype_generate_abort()
std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos) std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos)
{ {
std::vector<int> toks; std::vector<int> toks;
if(kcpp_params==nullptr) if(kcpp_data==nullptr)
{ {
printf("\nWarning: KCPP text generation not initialized!\n"); printf("\nWarning: KCPP text generation not initialized!\n");
return toks; return toks;
@ -2336,7 +2333,7 @@ std::vector<int> gpttype_get_token_arr(const std::string & input, bool addbos)
const std::string & gpttype_get_pending_output() const std::string & gpttype_get_pending_output()
{ {
if(kcpp_params==nullptr) if(kcpp_data==nullptr)
{ {
printf("\nWarning: KCPP text generation not initialized!\n"); printf("\nWarning: KCPP text generation not initialized!\n");
return concat_output_reader_copy_poll; return concat_output_reader_copy_poll;
@ -2369,17 +2366,17 @@ int GetThreadsToUse(bool blasmode)
} }
else else
{ {
return kcpp_params->cpuparams_batch.n_threads; return kcpp_data->n_blasthreads;
} }
} }
return kcpp_params->cpuparams.n_threads; return kcpp_data->n_threads;
} }
generation_outputs gpttype_generate(const generation_inputs inputs) generation_outputs gpttype_generate(const generation_inputs inputs)
{ {
generation_outputs output; generation_outputs output;
if(kcpp_params==nullptr) if(kcpp_data==nullptr)
{ {
printf("\nWarning: KCPP text generation not initialized!\n"); printf("\nWarning: KCPP text generation not initialized!\n");
output.text = nullptr; output.text = nullptr;
@ -2516,48 +2513,48 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
} }
kcpp_params->prompt = inputs.prompt; kcpp_data->prompt = inputs.prompt;
kcpp_params->seed = inputs.seed; kcpp_data->seed = inputs.seed;
kcpp_params->n_predict = inputs.max_length; kcpp_data->n_predict = inputs.max_length;
kcpp_params->top_k = inputs.top_k; kcpp_data->top_k = inputs.top_k;
kcpp_params->top_p = inputs.top_p; kcpp_data->top_p = inputs.top_p;
kcpp_params->min_p = inputs.min_p; kcpp_data->min_p = inputs.min_p;
kcpp_params->typical_p = inputs.typical_p; kcpp_data->typical_p = inputs.typical_p;
kcpp_params->tfs_z = inputs.tfs; kcpp_data->tfs_z = inputs.tfs;
kcpp_params->temp = inputs.temperature; kcpp_data->temp = inputs.temperature;
kcpp_params->repeat_last_n = inputs.rep_pen_range; kcpp_data->repeat_last_n = inputs.rep_pen_range;
kcpp_params->rep_pen_slope = inputs.rep_pen_slope; kcpp_data->rep_pen_slope = inputs.rep_pen_slope;
kcpp_params->repeat_penalty = inputs.rep_pen; kcpp_data->repeat_penalty = inputs.rep_pen;
kcpp_params->presence_penalty = inputs.presence_penalty; kcpp_data->presence_penalty = inputs.presence_penalty;
kcpp_params->mirostat = inputs.mirostat; kcpp_data->mirostat = inputs.mirostat;
kcpp_params->mirostat_eta = inputs.mirostat_eta; kcpp_data->mirostat_eta = inputs.mirostat_eta;
kcpp_params->mirostat_tau = inputs.mirostat_tau; kcpp_data->mirostat_tau = inputs.mirostat_tau;
kcpp_params->dry_multiplier = inputs.dry_multiplier; kcpp_data->dry_multiplier = inputs.dry_multiplier;
kcpp_params->dry_base = inputs.dry_base; kcpp_data->dry_base = inputs.dry_base;
kcpp_params->dry_allowed_length = inputs.dry_allowed_length; kcpp_data->dry_allowed_length = inputs.dry_allowed_length;
kcpp_params->dry_penalty_last_n = inputs.dry_penalty_last_n; kcpp_data->dry_penalty_last_n = inputs.dry_penalty_last_n;
kcpp_params->xtc_threshold = inputs.xtc_threshold; kcpp_data->xtc_threshold = inputs.xtc_threshold;
kcpp_params->xtc_probability = inputs.xtc_probability; kcpp_data->xtc_probability = inputs.xtc_probability;
kcpp_params->dynatemp_range = inputs.dynatemp_range; kcpp_data->dynatemp_range = inputs.dynatemp_range;
kcpp_params->dynatemp_exponent = inputs.dynatemp_exponent; kcpp_data->dynatemp_exponent = inputs.dynatemp_exponent;
kcpp_params->n_ctx = inputs.max_context_length; kcpp_data->n_ctx = inputs.max_context_length;
kcpp_params->smoothing_factor = inputs.smoothing_factor; kcpp_data->smoothing_factor = inputs.smoothing_factor;
// Parse dry sequence breakers / restart sequences // Parse dry sequence breakers / restart sequences
kcpp_params->dry_sequence_breakers.clear(); kcpp_data->dry_sequence_breakers.clear();
dry_sequence_breakers.clear(); dry_sequence_breakers.clear();
if (kcpp_params->dry_multiplier > 0) if (kcpp_data->dry_multiplier > 0)
{ {
for (int x = 0; x < dry_seq_break_max; ++x) for (int x = 0; x < dry_seq_break_max; ++x)
{ {
std::string word = inputs.dry_sequence_breakers[x]; std::string word = inputs.dry_sequence_breakers[x];
if (word != "") if (word != "")
{ {
kcpp_params->dry_sequence_breakers.push_back(word); kcpp_data->dry_sequence_breakers.push_back(word);
} }
} }
if (kcpp_params->dry_sequence_breakers.size() > 0) if (kcpp_data->dry_sequence_breakers.size() > 0)
{ {
// Restrict the maximum length of sequences used as sequence breakers. There are // Restrict the maximum length of sequences used as sequence breakers. There are
// very few use cases for a long sequence breaker, and limiting the max length // very few use cases for a long sequence breaker, and limiting the max length
@ -2568,9 +2565,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if (debugmode == 1) if (debugmode == 1)
{ {
printf("\nProcessing %zu dry break strings...", kcpp_params->dry_sequence_breakers.size()); printf("\nProcessing %zu dry break strings...", kcpp_data->dry_sequence_breakers.size());
} }
for (auto sequence_break : kcpp_params->dry_sequence_breakers) for (auto sequence_break : kcpp_data->dry_sequence_breakers)
{ {
if (sequence_break.size() > MAX_CHAR_LEN) if (sequence_break.size() > MAX_CHAR_LEN)
{ {
@ -2618,24 +2615,24 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
current_grammar = grammarstr; current_grammar = grammarstr;
if (kcpp_params->repeat_last_n < 1) if (kcpp_data->repeat_last_n < 1)
{ {
kcpp_params->repeat_last_n = 1; kcpp_data->repeat_last_n = 1;
} }
if (kcpp_params->rep_pen_slope > 1 || kcpp_params->rep_pen_slope<=0) if (kcpp_data->rep_pen_slope > 1 || kcpp_data->rep_pen_slope<=0)
{ {
kcpp_params->rep_pen_slope = 1; kcpp_data->rep_pen_slope = 1;
} }
if (kcpp_params->top_k < 1) if (kcpp_data->top_k < 1)
{ {
kcpp_params->top_k = n_vocab; // all tokens in the vocabulary should be considered if top k is disabled kcpp_data->top_k = n_vocab; // all tokens in the vocabulary should be considered if top k is disabled
} }
if (kcpp_params->seed <= 0 || kcpp_params->seed==0xFFFFFFFF) if (kcpp_data->seed <= 0 || kcpp_data->seed==0xFFFFFFFF)
{ {
kcpp_params->seed = (((uint32_t)time(NULL)) % 1000000u); kcpp_data->seed = (((uint32_t)time(NULL)) % 1000000u);
if(debugmode==1) if(debugmode==1)
{ {
printf("\nUsing Seed: %d",kcpp_params->seed); printf("\nUsing Seed: %d",kcpp_data->seed);
} }
} }
@ -2645,9 +2642,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
std::vector<int> llava_mem; //for storing dummy tokens that will be consumed by llava std::vector<int> llava_mem; //for storing dummy tokens that will be consumed by llava
std::vector<int> llava_sep; //to separate between different llava images std::vector<int> llava_sep; //to separate between different llava images
int32_t nctx = kcpp_params->n_ctx; int32_t nctx = kcpp_data->n_ctx;
TokenizeString(kcpp_params->prompt, embd_inp, file_format); TokenizeString(kcpp_data->prompt, embd_inp, file_format);
if(clp_ctx!=nullptr && clp_img_data!=nullptr) if(clp_ctx!=nullptr && clp_img_data!=nullptr)
{ {
@ -2666,7 +2663,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
else else
{ {
llava_images[i].clp_image_tokens = 0; llava_images[i].clp_image_tokens = 0;
if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_params->cpuparams.n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) { if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_data->n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
printf("\nError: Clip image %d failed to create embd!",i); printf("\nError: Clip image %d failed to create embd!",i);
} }
if(debugmode==1) if(debugmode==1)
@ -2695,12 +2692,12 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
//truncate to front of the prompt if its too long //truncate to front of the prompt if its too long
if (embd_inp.size() + kcpp_params->n_predict > nctx) if (embd_inp.size() + kcpp_data->n_predict > nctx)
{ {
//get bos token //get bos token
std::vector<int> bos; std::vector<int> bos;
TokenizeString("", bos, file_format); TokenizeString("", bos, file_format);
int offset = embd_inp.size() - nctx + kcpp_params->n_predict; int offset = embd_inp.size() - nctx + kcpp_data->n_predict;
embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end()); embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end());
//replace bos into front if exists //replace bos into front if exists
if(bos.size()>0 && embd_inp.size()>0) if(bos.size()>0 && embd_inp.size()>0)
@ -2711,7 +2708,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if(llava_mem.size()>0) //stick the llava mem before the added mem if(llava_mem.size()>0) //stick the llava mem before the added mem
{ {
if(llava_mem.size() + kcpp_params->n_predict + 4 > nctx) if(llava_mem.size() + kcpp_data->n_predict + 4 > nctx)
{ {
printf("\nWarning: Too many LLaVA tokens, max context exceeded! They will be ignored!\n"); printf("\nWarning: Too many LLaVA tokens, max context exceeded! They will be ignored!\n");
} }
@ -2734,9 +2731,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
//shorten memory if needed //shorten memory if needed
if (embd_inp_mem.size() + kcpp_params->n_predict + 4 > nctx) if (embd_inp_mem.size() + kcpp_data->n_predict + 4 > nctx)
{ {
int limit = nctx - (kcpp_params->n_predict + 4); int limit = nctx - (kcpp_data->n_predict + 4);
if (embd_inp_mem.size() > limit) { if (embd_inp_mem.size() > limit) {
embd_inp_mem.resize(limit); embd_inp_mem.resize(limit);
} }
@ -2755,9 +2752,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
//shorten memory if needed //shorten memory if needed
if (embd_inp_mem.size() + kcpp_params->n_predict + 4 > nctx) if (embd_inp_mem.size() + kcpp_data->n_predict + 4 > nctx)
{ {
int offset = embd_inp_mem.size() - nctx + kcpp_params->n_predict + 4; int offset = embd_inp_mem.size() - nctx + kcpp_data->n_predict + 4;
embd_inp_mem = std::vector<int>(embd_inp_mem.begin() + offset, embd_inp_mem.end()); embd_inp_mem = std::vector<int>(embd_inp_mem.begin() + offset, embd_inp_mem.end());
//replace bos into front if exists //replace bos into front if exists
if(bos.size()>0 && embd_inp_mem.size()>0) if(bos.size()>0 && embd_inp_mem.size()>0)
@ -2768,7 +2765,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
//shorten main prompt by trimming the front if needed //shorten main prompt by trimming the front if needed
int addmemtokens = embd_inp_mem.size(); int addmemtokens = embd_inp_mem.size();
int totalsize = (addmemtokens + embd_inp.size() + kcpp_params->n_predict); int totalsize = (addmemtokens + embd_inp.size() + kcpp_data->n_predict);
if(totalsize > nctx) if(totalsize > nctx)
{ {
int excess = totalsize - nctx; int excess = totalsize - nctx;
@ -2786,7 +2783,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
//determine how much npast we have to rewind from the current state //determine how much npast we have to rewind from the current state
std::vector<gpt_vocab::id> embd; std::vector<gpt_vocab::id> embd;
int last_n_size = kcpp_params->repeat_last_n; int last_n_size = kcpp_data->repeat_last_n;
last_n_tokens.resize(last_n_size); last_n_tokens.resize(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
@ -2801,7 +2798,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
bool is_mamba = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_MAMBA); bool is_mamba = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture==GGUFArch::ARCH_MAMBA);
bool blank_prompt = (addedmemory=="" && kcpp_params->prompt==""); bool blank_prompt = (addedmemory=="" && kcpp_data->prompt=="");
if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2 || is_mamba) if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2 || is_mamba)
{ {
@ -2824,10 +2821,10 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
else else
{ {
bool triggersc = useSmartContext; bool triggersc = kcpp_data->use_smartcontext;
if(!blank_prompt) //special case for blank prompts, no fast forward or shifts if(!blank_prompt) //special case for blank prompts, no fast forward or shifts
{ {
if(useContextShift && (file_format == FileFormat::GGUF_GENERIC)) if(kcpp_data->use_contextshift && (file_format == FileFormat::GGUF_GENERIC))
{ {
PurgeMissingTokens(llama_ctx_v4, current_context_tokens, embd_inp, inputs.max_length, nctx); PurgeMissingTokens(llama_ctx_v4, current_context_tokens, embd_inp, inputs.max_length, nctx);
triggersc = false; triggersc = false;
@ -2840,14 +2837,14 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
} }
bool blasmode = (embd_inp.size() >= 32 && ggml_cpu_has_blas() && kcpp_params->n_batch>=32); bool blasmode = (embd_inp.size() >= 32 && ggml_cpu_has_blas() && kcpp_data->n_batch>=32);
current_context_tokens.resize(n_past); current_context_tokens.resize(n_past);
remaining_tokens = kcpp_params->n_predict; remaining_tokens = kcpp_data->n_predict;
stopper_unused_tokens = 0; stopper_unused_tokens = 0;
int input_consumed = 0; int input_consumed = 0;
std::mt19937 rng(kcpp_params->seed); std::mt19937 rng(kcpp_data->seed);
//prepare sampler order //prepare sampler order
std::vector<samplers> sampler_order; std::vector<samplers> sampler_order;
@ -3040,18 +3037,18 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if ((int)embd_inp.size() <= input_consumed) if ((int)embd_inp.size() <= input_consumed)
{ {
// out of user input, sample next token // out of user input, sample next token
const float top_k = kcpp_params->top_k; const float top_k = kcpp_data->top_k;
const float top_p = kcpp_params->top_p; const float top_p = kcpp_data->top_p;
const float min_p = kcpp_params->min_p; const float min_p = kcpp_data->min_p;
const float temp = kcpp_params->temp; const float temp = kcpp_data->temp;
const float top_a = inputs.top_a; const float top_a = inputs.top_a;
const float repeat_penalty = kcpp_params->repeat_penalty; const float repeat_penalty = kcpp_data->repeat_penalty;
const float presence_penalty = kcpp_params->presence_penalty; const float presence_penalty = kcpp_data->presence_penalty;
const float typical_p = kcpp_params->typical_p; const float typical_p = kcpp_data->typical_p;
const float tfs_z = kcpp_params->tfs_z; const float tfs_z = kcpp_data->tfs_z;
const float dynatemp_range = kcpp_params->dynatemp_range; const float dynatemp_range = kcpp_data->dynatemp_range;
const float dynatemp_exponent = kcpp_params->dynatemp_exponent; const float dynatemp_exponent = kcpp_data->dynatemp_exponent;
const float smoothing_factor = kcpp_params->smoothing_factor; const float smoothing_factor = kcpp_data->smoothing_factor;
if (!startedsampling) if (!startedsampling)
{ {
@ -3111,11 +3108,11 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
} }
} }
id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, kcpp_params->rep_pen_slope, presence_penalty, id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, kcpp_data->rep_pen_slope, presence_penalty,
top_k, top_a, top_p, min_p, typical_p, tfs_z, temp, rng, top_k, top_a, top_p, min_p, typical_p, tfs_z, temp, rng,
kcpp_params->mirostat, kcpp_params->mirostat_tau, kcpp_params->mirostat_eta, kcpp_data->mirostat, kcpp_data->mirostat_tau, kcpp_data->mirostat_eta,
kcpp_params->dry_multiplier, kcpp_params->dry_base, kcpp_data->dry_multiplier, kcpp_data->dry_base,
kcpp_params->dry_allowed_length, kcpp_params->dry_penalty_last_n, kcpp_params->xtc_threshold, kcpp_params->xtc_probability, kcpp_data->dry_allowed_length, kcpp_data->dry_penalty_last_n, kcpp_data->xtc_threshold, kcpp_data->xtc_probability,
sampler_order, grammar, dynatemp_range, dynatemp_exponent, smoothing_factor); sampler_order, grammar, dynatemp_range, dynatemp_exponent, smoothing_factor);
if (grammar != nullptr) { if (grammar != nullptr) {
@ -3150,7 +3147,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
if (startedsampling && allow_regular_prints) if (startedsampling && allow_regular_prints)
{ {
printf("\rGenerating (%d / %d tokens)", (kcpp_params->n_predict - remaining_tokens), kcpp_params->n_predict); printf("\rGenerating (%d / %d tokens)", (kcpp_data->n_predict - remaining_tokens), kcpp_data->n_predict);
} }
if(debugmode==1 && top_picks.size()>0) if(debugmode==1 && top_picks.size()>0)
{ {
@ -3274,7 +3271,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
{ {
printf("\rProcessing LLaVa Embedding %d (%d tokens)",(i+1), llava_images[i].clp_image_tokens); printf("\rProcessing LLaVa Embedding %d (%d tokens)",(i+1), llava_images[i].clp_image_tokens);
} }
bool err = kcpp_eval_image(llama_ctx_v4,llava_images[i].clp_img_embd,llava_images[i].clp_image_tokens,kcpp_params->n_batch,&n_past); bool err = kcpp_eval_image(llama_ctx_v4,llava_images[i].clp_img_embd,llava_images[i].clp_image_tokens,kcpp_data->n_batch,&n_past);
llavatokensevaled += llava_images[i].clp_image_tokens; llavatokensevaled += llava_images[i].clp_image_tokens;
if(!err) if(!err)
{ {
@ -3306,7 +3303,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
last_n_tokens.push_back(currtoken); last_n_tokens.push_back(currtoken);
current_context_tokens.push_back(currtoken); current_context_tokens.push_back(currtoken);
++input_consumed; ++input_consumed;
if ((int)embd.size() >= kcpp_params->n_batch) if ((int)embd.size() >= kcpp_data->n_batch)
{ {
break; break;
} }
@ -3325,11 +3322,11 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
time2 = timer_check(); time2 = timer_check();
float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size())); float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size()));
float ts1 = (1000.0/pt1); float ts1 = (1000.0/pt1);
int realnpredict = kcpp_params->n_predict-stopper_unused_tokens; int realnpredict = kcpp_data->n_predict-stopper_unused_tokens;
float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict)); float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict));
float ts2 = (1000.0/pt2); float ts2 = (1000.0/pt2);
float tokens_per_second = (realnpredict == 0 ? 0 : realnpredict / (time1 + time2)); float tokens_per_second = (realnpredict == 0 ? 0 : realnpredict / (time1 + time2));
printf("\nCtxLimit:%d/%d, Amt:%d/%d, Init:%.2fs, Process:%.2fs (%.1fms/T = %.2fT/s), Generate:%.2fs (%.1fms/T = %.2fT/s), Total:%.2fs (%.2fT/s)",(int)current_context_tokens.size(),(int)nctx, realnpredict, kcpp_params->n_predict, time0, time1, pt1, ts1, time2, pt2, ts2, (time1 + time2), tokens_per_second); printf("\nCtxLimit:%d/%d, Amt:%d/%d, Init:%.2fs, Process:%.2fs (%.1fms/T = %.2fT/s), Generate:%.2fs (%.1fms/T = %.2fT/s), Total:%.2fs (%.2fT/s)",(int)current_context_tokens.size(),(int)nctx, realnpredict, kcpp_data->n_predict, time0, time1, pt1, ts1, time2, pt2, ts2, (time1 + time2), tokens_per_second);
fflush(stdout); fflush(stdout);
output.status = 1; output.status = 1;
output.stopreason = last_stop_reason; output.stopreason = last_stop_reason;
@ -3337,7 +3334,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
last_eval_time = pt2; last_eval_time = pt2;
last_process_time = pt1; last_process_time = pt1;
last_token_count = realnpredict; last_token_count = realnpredict;
last_seed = kcpp_params->seed; last_seed = kcpp_data->seed;
total_gens += 1; total_gens += 1;
concat_output_mtx.lock(); concat_output_mtx.lock();
concat_output_reader_copy_res = concat_output; concat_output_reader_copy_res = concat_output;

View file

@ -14,6 +14,47 @@
#include "utils.h" #include "utils.h"
#include "model_adapter.h" #include "model_adapter.h"
//for sampler params
struct kcpp_params {
uint32_t seed = 0xFFFFFFFF; // RNG seed
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int n_threads = -1;
int n_blasthreads = -1;
// sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.0f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float smoothing_factor = 0.00f; // 0.00 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float rep_pen_slope = 1.0f;
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
float dry_multiplier = 0.0f; // penalty multiplier, 0.0 = disabled
float dry_base = 1.75f; // exponential base
int32_t dry_allowed_length = 2; // repeated sequences longer than this are penalized
int32_t dry_penalty_last_n = 0; // how many tokens to scan for repetitions (0 = entire context)
std::vector<std::string> dry_sequence_breakers; // DRY sequence breakers
float xtc_threshold = 0;
float xtc_probability = 0;
float dynatemp_range = 0.0f; // enables DynaTemp if greater than 0. dynatemp_min = temperature - dt_range, dynatemp_max = temperature + dt_range
float dynatemp_exponent = 1.0f;
std::string model_filename = ""; // model path
std::string prompt = "";
bool flash_attn = false; // flash attention
bool use_smartcontext = false;
bool use_contextshift = false;
};
// default hparams (GPT-J 6B) // default hparams (GPT-J 6B)
struct gptj_hparams { struct gptj_hparams {

View file

@ -1,176 +0,0 @@
int mainfn() {
kcpp_params = new gpt_params();
int argc = 11;
char* argv[11] = {
"E:\\LLaMA\\llamacpp\\main.exe",
"-ngl",
"99",
"-n",
"32",
"-m",
"E:\\LLaMA\\models\\airoboros-mistral2.2-7b.Q4_K_S.gguf",
"-c",
"2128",
"-p",
"Niko the kobold stalked carefully down the alley,"
};
if (!gpt_params_parse(argc, argv, *kcpp_params)) {
return 1;
}
llama_sampling_params & sparams = kcpp_params->sparams;
if (kcpp_params->seed == LLAMA_DEFAULT_SEED) {
kcpp_params->seed = time(NULL);
}
LOG_TEE("%s: seed = %u\n", __func__, kcpp_params->seed);
std::mt19937 rng(kcpp_params->seed);
LOG("%s: llama backend init\n", __func__);
llama_backend_init(kcpp_params->numa);
llama_model * model;
// load the model and apply lora adapter, if any
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
std::tie(model, llama_ctx_v4) = llama_init_from_gpt_params(*kcpp_params);
llama_reset_timings(llama_ctx_v4);
if (model == NULL) {
LOG_TEE("%s: error: unable to load model\n", __func__);
return 1;
}
const int n_ctx = llama_n_ctx(llama_ctx_v4);
const bool add_bos = true;
std::vector<llama_token> embd_inp;
embd_inp = ::llama_tokenize(llama_ctx_v4, kcpp_params->prompt, add_bos, true);
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(model));
}
// number of tokens to keep when resetting context
if (kcpp_params->n_keep < 0 || kcpp_params->n_keep > (int) embd_inp.size() || kcpp_params->instruct || kcpp_params->chatml) {
kcpp_params->n_keep = (int)embd_inp.size();
}
int n_past = 0;
int n_remain = kcpp_params->n_predict;
bool startedpred = false;
int predamt = 0;
int n_consumed = 0;
std::vector<int> input_tokens;
std::vector<int> output_tokens;
std::ostringstream output_ss;
std::vector<llama_token> embd;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
while (n_remain != 0) {
// predict
if (!embd.empty()) {
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
}
{
if (n_past + (int) embd.size() > n_ctx) {
if (kcpp_params->n_predict == -2) {
break;
}
const int n_left = n_past - kcpp_params->n_keep - 1;
const int n_discard = n_left/2;
llama_kv_cache_seq_rm (llama_ctx_v4, 0, kcpp_params->n_keep + 1 , kcpp_params->n_keep + n_discard + 1);
llama_kv_cache_seq_add(llama_ctx_v4, 0, kcpp_params->n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
}
}
for (int i = 0; i < (int) embd.size(); i += kcpp_params->n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > kcpp_params->n_batch) {
n_eval = kcpp_params->n_batch;
}
if (llama_decode(llama_ctx_v4, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed) {
const llama_token id = llama_sampling_sample(ctx_sampling, llama_ctx_v4, nullptr);
llama_sampling_accept(ctx_sampling, llama_ctx_v4, id, true);
embd.push_back(id);
// decrement remaining sampling budget
--n_remain;
if(!startedpred)
{
startedpred = true;
timer_start();
predamt += 1;
}else
{
predamt += 1;
}
} else {
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
llama_sampling_accept(ctx_sampling, llama_ctx_v4, embd_inp[n_consumed], false);
++n_consumed;
if ((int) embd.size() >= kcpp_params->n_batch) {
break;
}
}
}
// display text
{
for (auto id : embd) {
const std::string token_str = llama_token_to_piece(llama_ctx_v4, id);
printf("%s", token_str.c_str());
if (embd.size() > 1) {
input_tokens.push_back(id);
} else {
output_tokens.push_back(id);
output_ss << token_str;
}
}
fflush(stdout);
}
}
auto tt = timer_check();
float pt1 = (tt*1000.0/(predamt));
float ts1 = (1000.0/pt1);
printf("\n\n Time:%.2fs (%.1fms/T = %.2fT/s) tokens: %d",tt,pt1,ts1,predamt);
llama_print_timings(llama_ctx_v4);
llama_free(llama_ctx_v4);
llama_free_model(model);
llama_sampling_free(ctx_sampling);
llama_backend_free();
return 0;
}