diff --git a/common/arg.cpp b/common/arg.cpp index df127bc18..7e1bbc659 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -299,6 +299,27 @@ static void common_params_print_usage(common_params_context & ctx_arg) { print_options(specific_options); } +static std::vector parse_device_list(const std::string & value) { + std::vector devices; + auto dev_names = string_split(value, ','); + if (dev_names.empty()) { + throw std::invalid_argument("no devices specified"); + } + if (dev_names.size() == 1 && dev_names[0] == "none") { + devices.push_back(nullptr); + } else { + for (const auto & device : dev_names) { + auto * dev = ggml_backend_dev_by_name(device.c_str()); + if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) { + throw std::invalid_argument(string_format("invalid device: %s", device.c_str())); + } + devices.push_back(dev); + } + devices.push_back(nullptr); + } + return devices; +} + bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) { auto ctx_arg = common_params_parser_init(params, ex, print_usage); const common_params params_org = ctx_arg.params; // the example can modify the default params @@ -325,6 +346,9 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e } common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) { + // load dynamic backends + ggml_backend_load_all(); + common_params_context ctx_arg(params); ctx_arg.print_usage = print_usage; ctx_arg.ex = ex; @@ -1313,6 +1337,30 @@ common_params_context common_params_parser_init(common_params & params, llama_ex else { throw std::invalid_argument("invalid value"); } } ).set_env("LLAMA_ARG_NUMA")); + add_opt(common_arg( + {"-dev", "--device"}, "", + "comma-separated list of devices to use for offloading (none = don't offload)\n" + "use --list-devices to see a list of available devices", + [](common_params & params, const std::string & value) { + params.devices = parse_device_list(value); + } + ).set_env("LLAMA_ARG_DEVICE")); + add_opt(common_arg( + {"--list-devices"}, + "print list of available devices and exit", + [](common_params &) { + printf("Available devices:\n"); + for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { + auto * dev = ggml_backend_dev_get(i); + if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) { + size_t free, total; + ggml_backend_dev_memory(dev, &free, &total); + printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024); + } + } + exit(0); + } + )); add_opt(common_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", "number of layers to store in VRAM", @@ -1337,10 +1385,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { -#ifdef GGML_USE_SYCL - fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); - exit(1); -#endif // GGML_USE_SYCL params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { throw std::invalid_argument("invalid value"); @@ -2043,6 +2087,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex params.speculative.n_ctx = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); + add_opt(common_arg( + {"-devd", "--device-draft"}, "", + "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n" + "use --list-devices to see a list of available devices", + [](common_params & params, const std::string & value) { + params.speculative.devices = parse_device_list(value); + } + ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER})); add_opt(common_arg( {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", "number of layers to store in VRAM for the draft model", diff --git a/common/common.cpp b/common/common.cpp index 94f41a8ca..e7e2b0885 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -981,9 +981,12 @@ void common_lora_adapters_apply(struct llama_context * ctx, std::vector devices; // devices to use for offloading int32_t n_ctx = 0; // draft context size int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding @@ -174,9 +175,6 @@ struct common_params { int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_parallel = 1; // number of parallel sequences to decode int32_t n_sequences = 1; // number of sequences to decode - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs int32_t grp_attn_n = 1; // group-attention factor int32_t grp_attn_w = 512; // group-attention width int32_t n_print = -1; // print token count every n tokens (-1 = disabled) @@ -189,6 +187,13 @@ struct common_params { int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = 0.1f; // KV cache defragmentation threshold + // offload params + std::vector devices; // devices to use for offloading + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs + enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs + struct cpu_params cpuparams; struct cpu_params cpuparams_batch; @@ -197,7 +202,6 @@ struct common_params { ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; - enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings @@ -458,7 +462,7 @@ struct common_init_result { struct common_init_result common_init_from_params(common_params & params); -struct llama_model_params common_model_params_to_llama (const common_params & params); +struct llama_model_params common_model_params_to_llama ( common_params & params); struct llama_context_params common_context_params_to_llama(const common_params & params); struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params); diff --git a/common/speculative.cpp b/common/speculative.cpp index fe315a270..e559675c4 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -90,9 +90,10 @@ bool common_speculative_are_compatible( if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || llama_token_bos(model_tgt) != llama_token_bos(model_dft) || - llama_token_eos(model_tgt) != llama_token_eos(model_dft) - ) { + llama_token_eos(model_tgt) != llama_token_eos(model_dft)) { LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); + LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt)); + LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft)); return false; } diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 80a179b86..b931049d1 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -3040,9 +3040,9 @@ class OlmoModel(Model): return [(self.map_tensor_name(name), data_torch)] -@Model.register("Olmo1124ForCausalLM") -class Olmo1124Model(Model): - model_arch = gguf.MODEL_ARCH.OLMO_1124 +@Model.register("Olmo2ForCausalLM") +class Olmo2Model(Model): + model_arch = gguf.MODEL_ARCH.OLMO2 @Model.register("OlmoeForCausalLM") diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 25837d950..76c17bd42 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -166,6 +166,10 @@ int main(int argc, char ** argv) { LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads); + auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); + auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new"); + auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free"); + struct ggml_threadpool_params tpp_batch = ggml_threadpool_params_from_cpu_params(params.cpuparams_batch); struct ggml_threadpool_params tpp = @@ -175,7 +179,7 @@ int main(int argc, char ** argv) { struct ggml_threadpool * threadpool_batch = NULL; if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) { - threadpool_batch = ggml_threadpool_new(&tpp_batch); + threadpool_batch = ggml_threadpool_new_fn(&tpp_batch); if (!threadpool_batch) { LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads); return 1; @@ -185,7 +189,7 @@ int main(int argc, char ** argv) { tpp.paused = true; } - struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp); + struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp); if (!threadpool) { LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); return 1; @@ -891,8 +895,8 @@ int main(int argc, char ** argv) { llama_backend_free(); - ggml_threadpool_free(threadpool); - ggml_threadpool_free(threadpool_batch); + ggml_threadpool_free_fn(threadpool); + ggml_threadpool_free_fn(threadpool_batch); return 0; } diff --git a/examples/server/public/index.html b/examples/server/public/index.html index 6216c0841..c54260867 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -81,7 +81,13 @@ - +