remove not so often use qwen2vl-cli debug functions

This commit is contained in:
HimariO 2025-04-04 15:21:04 +08:00
parent c4898d3dee
commit dde96b4774

View file

@ -486,280 +486,6 @@ static void debug_test_mrope_2d() {
ggml_backend_free(backend);
}
static void debug_patch_layout() {
// 1. Initialize backend
ggml_backend_t backend = NULL;
std::string backend_name = "";
// #ifdef GGML_USE_CUDA
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
// backend = ggml_backend_cuda_init(0); // init device 0
// backend_name = "cuda";
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
backend_name = "cpu";
}
// Calculate the size needed to allocate
size_t ctx_size = 0;
ctx_size += 2 * ggml_tensor_overhead(); // tensors
// no need to allocate anything else!
// 2. Allocate `ggml_context` to store tensor data
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
const int patches_w = 14;
const int patches_h = 10;
const int c = 2;
const int batch_size = 1;
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, patches_w, patches_h, c, batch_size);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
std::vector<float> dummy_q;
dummy_q.resize(patches_w * patches_h * c * batch_size);
for (size_t i = 0; i < patches_h * patches_w * c; i++)
{
dummy_q[i] = i;
}
// std::fill(dummy_q.begin(), dummy_q.end(), 0.1);
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw));
// 4. Allocate a `ggml_backend_buffer` to store all tensors
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// 5. Copy tensor data from main memory (RAM) to backend buffer
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw));
// 6. Create a `ggml_cgraph` for mul_mat operation
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx0 = NULL;
// create a temporally context to build the graph
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx0 = ggml_init(params0);
gf = ggml_new_graph(ctx0);
/*
Compute graph
*/
struct ggml_tensor * inp = ggml_cont(ctx0, ggml_permute(ctx0, inp_raw, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
c * 2, patches_w / 2, patches_h, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
c * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
c, patches_w * patches_h, batch_size);
// Add "result" tensor and all of its dependencies to the cgraph
ggml_build_forward_expand(gf, inp);
// 7. Create a `ggml_gallocr` for cgraph computation
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
// 9. Run the computation
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
ggml_backend_graph_compute(backend, gf);
// 10. Retrieve results (output tensors)
// in this example, output tensor is always the last tensor in the graph
struct ggml_tensor * result = inp;
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
float * result_data = (float *)malloc(ggml_nbytes(result));
// because the tensor data is stored in device buffer, we need to copy it back to RAM
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
const std::string bin_file = "patch_layout_" + backend_name +".bin";
std::ofstream outFile(bin_file, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result));
outFile.close();
std::cout << "Data successfully written to " + bin_file << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
free(result_data);
// 11. Free memory and exit
ggml_free(ctx0);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
static void debug_test_get_rows() {
// 1. Initialize backend
ggml_backend_t backend = NULL;
std::string backend_name = "";
// #ifdef GGML_USE_CUDA
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
// backend = ggml_backend_cuda_init(0); // init device 0
// backend_name = "cuda";
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
backend_name = "cpu";
}
// Calculate the size needed to allocate
size_t ctx_size = 0;
ctx_size += 128 * ggml_tensor_overhead(); // tensors
// no need to allocate anything else!
// 2. Allocate `ggml_context` to store tensor data
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
const int tokens = 30;
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 3, tokens * 2);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * pos = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, 4, tokens);
// struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, tokens * 4);
ggml_set_name(pos, "pos");
ggml_set_input(pos);
struct ggml_tensor * ind = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, tokens);
ggml_set_name(ind, "ind");
ggml_set_input(ind);
struct ggml_tensor * ind_2d = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, 1, tokens);
ggml_set_name(ind_2d, "ind_2d");
ggml_set_input(ind_2d);
std::vector<float> dummy_q;
dummy_q.resize(128 * 3 * inp_raw->ne[2]);
for (int i = 0; i < inp_raw->ne[2]; i ++) {
for (int j = 0; j < 3; j ++) {
int offset = i * 128 * 3 + j * 128;
std::fill(dummy_q.begin() + offset, dummy_q.begin() + offset + 128, 0.1 * i);
}
}
// std::fill(dummy_q.begin(), dummy_q.end(), 0.1);
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw));
std::vector<int> pos_id;
pos_id.resize(tokens * 4);
for (int i = 0; i < tokens; i ++) {
pos_id[i] = i;
pos_id[i + tokens * 1] = i + 10;
pos_id[i + tokens * 2] = i + 20;
pos_id[i + tokens * 3] = i + 30;
}
std::vector<int> remap_ind;
remap_ind.resize(tokens * 4);
for (int i = 0; i < tokens; i ++) {
remap_ind[i] = tokens - i - 1;
}
// 4. Allocate a `ggml_backend_buffer` to store all tensors
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// 5. Copy tensor data from main memory (RAM) to backend buffer
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw));
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos));
ggml_backend_tensor_set(ind, remap_ind.data(), 0, ggml_nbytes(ind));
ggml_backend_tensor_set(ind_2d, remap_ind.data(), 0, ggml_nbytes(ind_2d));
// 6. Create a `ggml_cgraph` for mul_mat operation
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
// create a temporally context to build the graph
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
// ne = [128, 1, 30, 1]
auto x = ggml_reshape_2d(ctx_cgraph, inp_raw, 128 * 3 * 2, tokens);
struct ggml_tensor * result0 = ggml_get_rows(
ctx_cgraph, x, ind);
result0 = ggml_reshape_3d(ctx_cgraph, result0, 128, 3, tokens * 2);
struct ggml_tensor * result1 = ggml_get_rows(
ctx_cgraph, pos, ind);
// Add "result" tensor and all of its dependencies to the cgraph
ggml_build_forward_expand(gf, result0);
ggml_build_forward_expand(gf, result1);
// 7. Create a `ggml_gallocr` for cgraph computation
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
// 9. Run the computation
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
ggml_backend_graph_compute(backend, gf);
// 10. Retrieve results (output tensors)
// in this example, output tensor is always the last tensor in the graph
struct ggml_tensor * result = result0;
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
float * result_data = (float *)malloc(ggml_nbytes(result));
// because the tensor data is stored in device buffer, we need to copy it back to RAM
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
const std::string bin_file = "getrows_" + backend_name +"_0.bin";
std::ofstream outFile(bin_file, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result));
outFile.close();
std::cout << "Data successfully written to " + bin_file << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
free(result_data);
// 11. Free memory and exit
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
enum model_output_type {
conv3d,
patch_embed,
@ -955,9 +681,6 @@ int main(int argc, char ** argv) {
// debug_test_mrope_2d();
debug_dump_img_embed(ctx_llava, model_output_type::final_layer);
// debug_dump_img_embed(ctx_llava, model_output_type::last_attn_layer);
// debug_test_get_rows();
// dump_win_attn_mask();
// debug_patch_layout();
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;