Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.devops/full-cuda.Dockerfile
#	.devops/llama-cli-cuda.Dockerfile
#	.devops/llama-server-cuda.Dockerfile
#	.devops/llama-server-intel.Dockerfile
#	.devops/llama-server-rocm.Dockerfile
#	.devops/llama-server-vulkan.Dockerfile
#	.devops/llama-server.Dockerfile
#	.github/workflows/docker.yml
#	docs/docker.md
#	examples/llama-bench/llama-bench.cpp
#	flake.lock
#	ggml/include/ggml.h
#	ggml/src/CMakeLists.txt
#	scripts/sync-ggml.last
#	src/llama.cpp
#	tests/test-backend-ops.cpp
#	tests/test-grad0.cpp
#	tests/test-rope.cpp
This commit is contained in:
Concedo 2024-08-30 10:37:39 +08:00
commit d220495dd4
42 changed files with 100585 additions and 99448 deletions

View file

@ -1173,8 +1173,8 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
file_format = in_file_format;
file_format_meta = in_file_format_meta;
kcpp_params->n_threads = inputs.threads;
kcpp_params->n_threads_batch = inputs.blasthreads;
kcpp_params->cpuparams.n_threads = inputs.threads;
kcpp_params->cpuparams_batch.n_threads = inputs.blasthreads;
bool isGguf = (file_format == FileFormat::GGUF_GENERIC);
kcpp_params->n_batch = GetBatchSize(inputs.blasbatchsize, in_file_format);
kcpp_params->n_ubatch = kcpp_params->n_batch;
@ -1283,7 +1283,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
int err = llama_v2_apply_lora_from_file(llama_ctx_v2,
lora_filename.c_str(),
lora_base_arg,
kcpp_params->n_threads);
kcpp_params->cpuparams.n_threads);
if (err != 0)
{
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
@ -1295,7 +1295,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//determine mem per token
const std::vector<int> tmp = {1, 2, 3, 4};
llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, kcpp_params->n_threads);
llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, kcpp_params->cpuparams.n_threads);
return ModelLoadResult::SUCCESS;
}
else if(file_format == FileFormat::GGJT_3)
@ -1350,7 +1350,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
int err = llama_v3_apply_lora_from_file(llama_ctx_v3,
lora_filename.c_str(),
lora_base_arg,
kcpp_params->n_threads);
kcpp_params->cpuparams.n_threads);
if (err != 0)
{
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
@ -1362,7 +1362,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
//determine mem per token
const std::vector<int> tmp = {1, 2, 3, 4};
auto er = llama_v3_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, kcpp_params->n_threads);
auto er = llama_v3_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, kcpp_params->cpuparams.n_threads);
if(er!=0)
{
printf("\nLLAMA EVAL returned nonzero!\n");
@ -1424,8 +1424,8 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
llama_ctx_params.n_batch = kcpp_params->n_batch;
llama_ctx_params.n_ubatch = kcpp_params->n_ubatch;
llama_ctx_params.n_threads = kcpp_params->n_threads;
llama_ctx_params.n_threads_batch = kcpp_params->n_threads_batch;
llama_ctx_params.n_threads = kcpp_params->cpuparams.n_threads;
llama_ctx_params.n_threads_batch = kcpp_params->cpuparams_batch.n_threads;
#if defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN)
bool ts_all_zero = true;
@ -1539,11 +1539,11 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
bool useWorldTokenizer = false;
if (file_format == FileFormat::RWKV_1)
{
rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), kcpp_params->n_threads);
rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), kcpp_params->cpuparams.n_threads);
}
else //rwkv_2
{
rwkv_ctx_v3 = rwkv_init_from_file(modelname.c_str(), kcpp_params->n_threads);
rwkv_ctx_v3 = rwkv_init_from_file(modelname.c_str(), kcpp_params->cpuparams.n_threads);
if(inputs.gpulayers>0)
{
@ -1622,7 +1622,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz);
rwkv_ctx_v3->state_in = nullptr;
bool testeval = rwkv_eval(rwkv_ctx_v3, kcpp_params->n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
bool testeval = rwkv_eval(rwkv_ctx_v3, kcpp_params->cpuparams.n_threads, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
if (!testeval)
{
printf("\nError: RWKV Init Eval Failed!\n");
@ -1654,7 +1654,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v1.hparams.n_vocab;
// determine the required inference memory per token:
legacy_gpt2_eval(gpt2_ctx_v1, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
legacy_gpt2_eval(gpt2_ctx_v1, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS;
}
else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4)
@ -1676,7 +1676,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token:
gpt2_eval(gpt2_ctx_v3, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
gpt2_eval(gpt2_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS;
}
else
@ -1699,7 +1699,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gpt2_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token:
gpt2_v2_eval(gpt2_ctx_v2, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
gpt2_v2_eval(gpt2_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
return ModelLoadResult::SUCCESS;
}
}
@ -1720,7 +1720,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v1.hparams.n_vocab;
// determine the required inference memory per token:
legacy_gptj_eval(gptj_ctx_v1, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
legacy_gptj_eval(gptj_ctx_v1, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
//if the logits are NAN or duplicated, it means the model is incompatible
if(logits.size()>0 && IsNanCheck(logits[0]))
@ -1751,14 +1751,14 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token:
gptj_eval(gptj_ctx_v3, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
gptj_eval(gptj_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
//if the logits are NAN or duplicated, it means the model is incompatible
std::vector<float> oldlogits(logits);
//this is another hack because they change the library - we run the eval through the model
//twice and compare logits. if they give the same logits for different inputs, model is broken
gptj_eval(gptj_ctx_v3, kcpp_params->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token, v3_use_scratch);
gptj_eval(gptj_ctx_v3, kcpp_params->cpuparams.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token, v3_use_scratch);
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
{
@ -1789,14 +1789,14 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = gptj_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token:
gptj_v2_eval(gptj_ctx_v2, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
gptj_v2_eval(gptj_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
//if the logits are NAN or duplicated, it means the model is incompatible
std::vector<float> oldlogits(logits);
//this is another hack because they change the library - we run the eval through the model
//twice and compare logits. if they give the same logits for different inputs, model is broken
gptj_v2_eval(gptj_ctx_v2, kcpp_params->n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
gptj_v2_eval(gptj_ctx_v2, kcpp_params->cpuparams.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
{
@ -1827,7 +1827,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = neox_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token:
gpt_neox_eval(neox_ctx_v3, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
gpt_neox_eval(neox_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS;
}
@ -1851,7 +1851,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = neox_ctx_v2.hparams.n_vocab;
// determine the required inference memory per token:
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
{
@ -1859,7 +1859,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
auto orig_par_res = neox_ctx_v2.hparams.par_res;
neox_ctx_v2.hparams.par_res = 0; //test with residual false
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->n_threads, 0, test_embd, logits, mem_per_token);
gpt_neox_v2_eval(neox_ctx_v2, kcpp_params->cpuparams.n_threads, 0, test_embd, logits, mem_per_token);
neox_ctx_v2.hparams.par_res = orig_par_res;
int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
std::string predicted = vocab.id_to_token[topid].c_str();
@ -1888,7 +1888,7 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
n_vocab = mpt_ctx_v3.hparams.n_vocab;
// determine the required inference memory per token:
mpt_eval(mpt_ctx_v3, kcpp_params->n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token, v3_use_scratch);
mpt_eval(mpt_ctx_v3, kcpp_params->cpuparams.n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token, v3_use_scratch);
return ModelLoadResult::SUCCESS;
}
else
@ -1966,10 +1966,10 @@ int GetThreadsToUse(bool blasmode)
}
else
{
return kcpp_params->n_threads_batch;
return kcpp_params->cpuparams_batch.n_threads;
}
}
return kcpp_params->n_threads;
return kcpp_params->cpuparams.n_threads;
}
generation_outputs gpttype_generate(const generation_inputs inputs)
@ -2263,7 +2263,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
else
{
llava_images[i].clp_image_tokens = 0;
if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_params->n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
if (!llava_image_embed_make_with_clip_img(clp_ctx, kcpp_params->cpuparams.n_threads, clp_img_data, &llava_images[i].clp_img_embd, &llava_images[i].clp_image_tokens)) {
printf("\nError: Clip image %d failed to create embd!",i);
}
if(debugmode==1)