mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-16 03:49:42 +00:00
model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE * Fix Flake errors. * Properly encode/decode MoE layer step * Correct tensor mappings (.weight) * Pass and read n_ff_exp * n_ff_shexp calculation and further minor changes * Rope fixes. * .gitignore fix * Add unit32 cast for Linux builds * Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Further fixes from code review * Fix trailing whitespace * Reenable missing experts error * Code style from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Fix non-MoE regression Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
parent
d6fb3f6b49
commit
cb887f1bc1
7 changed files with 373 additions and 26 deletions
|
@ -2861,7 +2861,8 @@ class Ernie4_5Model(TextModel):
|
|||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
num_heads = self.hparams["num_attention_heads"]
|
||||
num_kv_heads = self.hparams["num_key_value_heads"]
|
||||
head_dim = self.hparams["head_dim"]
|
||||
if (head_dim := self.hparams.get("head_dim")) is None:
|
||||
head_dim = self.hparams["hidden_size"] // num_heads
|
||||
|
||||
if "ernie." in name:
|
||||
name = name.replace("ernie.", "model.")
|
||||
|
@ -2894,6 +2895,92 @@ class Ernie4_5Model(TextModel):
|
|||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("Ernie4_5_MoeForCausalLM")
|
||||
class Ernie4_5MoeModel(Ernie4_5Model):
|
||||
model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
|
||||
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
|
||||
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
|
||||
if (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# Modify correction bias name as in DeepseekV2
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
||||
# skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
|
||||
match = re.match(r"model.mtp_block.(\d+)", name)
|
||||
if match:
|
||||
return []
|
||||
|
||||
# skip all other MTP tensors for now
|
||||
match = re.match(r"model.mtp_emb_norm.(\d+)", name)
|
||||
if match:
|
||||
return []
|
||||
|
||||
match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
|
||||
if match:
|
||||
return []
|
||||
|
||||
match = re.match(r"model.mtp_linear_proj.(\d+)", name)
|
||||
if match:
|
||||
return []
|
||||
|
||||
# process the experts separately
|
||||
if name.find("mlp.experts") != -1:
|
||||
n_experts = self.hparams["moe_num_experts"]
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
tensors: list[tuple[str, Tensor]] = []
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for w_name in ["gate_proj", "up_proj", "down_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
|
||||
datas.append(self._experts[bid][ename_to_retrieve])
|
||||
del self._experts[bid][ename_to_retrieve]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
return tensors
|
||||
else:
|
||||
return []
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
|
||||
if self._experts is not None:
|
||||
# flatten `list[dict[str, Tensor]]` into `list[str]`
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register(
|
||||
"Qwen2VLModel",
|
||||
"Qwen2VLForConditionalGeneration",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue