add PROJECTOR_TYPE_QWEN2_5_VL

This commit is contained in:
HimariO 2025-04-26 00:03:02 +08:00
parent a3cd0e52f2
commit caa7e57ec5
3 changed files with 280 additions and 4 deletions

View file

@ -107,6 +107,7 @@ enum projector_type {
PROJECTOR_TYPE_GEMMA3, PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3, PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL, PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN2_5_VL,
PROJECTOR_TYPE_UNKNOWN, PROJECTOR_TYPE_UNKNOWN,
}; };
@ -117,6 +118,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_RESAMPLER, "resampler"}, { PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"}, { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"}, { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN2_5_VL,"qwen2.5vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"}, { PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"}, { PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"}, { PROJECTOR_TYPE_PIXTRAL, "pixtral"},

View file

@ -780,6 +780,273 @@ static ggml_cgraph * clip_image_build_graph_pixtral(clip_ctx * ctx, const clip_i
return gf; return gf;
} }
static ggml_cgraph * clip_image_build_graph_qwen2_5_vl(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
image_size_width = imgs.entries[0]->nx;
image_size_height = imgs.entries[0]->ny;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int patches_w = image_size_width / patch_size;
const int patches_h = image_size_height / patch_size;
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const float eps = hparams.eps;
const bool use_window_attn = hparams.full_attn_layers.size() > 0;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
const int batch_size = imgs.entries.size();
GGML_ASSERT(batch_size == 1);
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
ggml_context_ptr ctx0_ptr(ggml_init(params));
auto ctx0 = ctx0_ptr.get();
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, patches_h, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
hidden_size, patches_w * patches_h, batch_size);
if (model.patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
}
struct ggml_tensor * embeddings = inp;
struct ggml_tensor * pos_embed = nullptr;
struct ggml_tensor * window_mask = nullptr;
struct ggml_tensor * window_idx = nullptr;
struct ggml_tensor * inv_window_idx = nullptr;
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
// pre-layernorm
if (model.pre_ln_w) {
if (ctx->use_rms_norm) {
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_mul(ctx0, embeddings, model.pre_ln_w);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "pre_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
}
std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
if (use_window_attn) {
// handle window attention inputs
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
ggml_set_name(inv_window_idx, "inv_window_idx");
ggml_set_input(inv_window_idx);
// mask for window attention
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, num_positions, num_positions);
ggml_set_name(window_mask, "window_mask");
ggml_set_input(window_mask);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hidden_size * 4, patches_w * patches_h * batch_size / 4);
embeddings = ggml_get_rows(ctx0, embeddings, inv_window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, patches_w * patches_h, batch_size);
}
// loop over layers
for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// rmsnorm1
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.layers[il].ln_1_w);
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
Q = ggml_rope_multi(
ctx0, Q, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * K =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_rope_multi(
ctx0, K, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * V =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
const bool inlist = std::find(hparams.full_attn_layers.begin(), hparams.full_attn_layers.end(), il) != hparams.full_attn_layers.end();
const bool full_attn = use_window_attn ? inlist : true;
if (full_attn) {
KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
} else {
KQ = ggml_soft_max_ext(ctx0, KQ, window_mask, 1.0f / sqrtf((float)d_head), 0.0f);
}
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
}
// attention output
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
embeddings = cur; // embeddings = residual, cur = hidden_states
// rms norm2
cur = ggml_rms_norm(ctx0, cur, eps);
cur = ggml_mul(ctx0, cur, model.layers[il].ln_2_w);
// mlp
// ffn_up
auto cur_up = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur_up = ggml_add(ctx0, cur_up, model.layers[il].ff_o_b);
auto cur_gate = ggml_mul_mat(ctx0, model.layers[il].ff_g_w, cur);
cur_gate = ggml_add(ctx0, cur_gate, model.layers[il].ff_g_b);
if (ctx->use_gelu) {
cur_gate = ggml_gelu_inplace(ctx0, cur_gate);
} else if (ctx->use_silu) {
cur_gate = ggml_silu_inplace(ctx0, cur_gate);
} else {
cur_gate = ggml_gelu_quick_inplace(ctx0, cur_gate);
}
cur = ggml_mul(ctx0, cur_gate, cur_up);
// ffn_down
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
if (model.post_ln_w) {
if (ctx->use_rms_norm) {
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_mul(ctx0, embeddings, model.post_ln_w);
} else {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
}
// final layer is a vision feature layer
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
if (use_window_attn) {
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions / 4);
ggml_set_name(window_idx, "window_idx");
ggml_set_input(window_idx);
// embeddings shape: [hidden_size, patches_w * patches_h, batch_size]
GGML_ASSERT(batch_size == 1);
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4);
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, patches_w * patches_h / 4, batch_size);
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) { static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) { if (!ctx->has_vision_encoder) {
LOG_ERR("This gguf file seems to have no vision encoder\n"); LOG_ERR("This gguf file seems to have no vision encoder\n");
@ -1441,6 +1708,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{ {
res = clip_image_build_graph_pixtral(ctx, imgs); res = clip_image_build_graph_pixtral(ctx, imgs);
} break; } break;
case PROJECTOR_TYPE_QWEN2_5_VL:
{
res = clip_image_build_graph_qwen2_5_vl(ctx, imgs);
} break;
default: default:
{ {
// TODO: we should have one build_* function per model // TODO: we should have one build_* function per model
@ -1699,7 +1970,7 @@ struct clip_model_loader {
// legacy naming (the in and out is reversed! don't ask me why) // legacy naming (the in and out is reversed! don't ask me why)
layer.ff_i_w = layer.ff_down_w; layer.ff_i_w = layer.ff_down_w;
layer.ff_o_w = layer.ff_up_w; layer.ff_o_w = layer.ff_up_w;
layer.ff_g_w = layer.ff_gate_b; layer.ff_g_w = layer.ff_gate_w;
layer.ff_i_b = layer.ff_down_b; layer.ff_i_b = layer.ff_down_b;
layer.ff_o_b = layer.ff_up_b; layer.ff_o_b = layer.ff_up_b;
layer.ff_g_b = layer.ff_gate_b; layer.ff_g_b = layer.ff_gate_b;
@ -1801,6 +2072,7 @@ struct clip_model_loader {
vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight")); vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
} break; } break;
case PROJECTOR_TYPE_MERGER: case PROJECTOR_TYPE_MERGER:
case PROJECTOR_TYPE_QWEN2_5_VL:
{ {
vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
@ -2754,7 +3026,7 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
else if (ctx->minicpmv_version == 4) { else if (ctx->minicpmv_version == 4) {
n_patches = 64; n_patches = 64;
} }
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER || ctx->proj_type == PROJECTOR_TYPE_QWEN2_5_VL) {
int patch_size = params.patch_size * 2; int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
@ -3165,7 +3437,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
} }
} }
if (hparams.attn_window_size > 0 && ctx->has_qwen2vl_merger) { // TODO: add use_window_attn? if (hparams.attn_window_size > 0 && ctx->proj_type == PROJECTOR_TYPE_QWEN2_5_VL) {
struct ggml_tensor * window_idx = ggml_graph_get_tensor(gf, "window_idx"); struct ggml_tensor * window_idx = ggml_graph_get_tensor(gf, "window_idx");
struct ggml_tensor * inv_window_idx = ggml_graph_get_tensor(gf, "inv_window_idx"); struct ggml_tensor * inv_window_idx = ggml_graph_get_tensor(gf, "inv_window_idx");
struct ggml_tensor * window_mask = ggml_graph_get_tensor(gf, "window_mask"); struct ggml_tensor * window_mask = ggml_graph_get_tensor(gf, "window_mask");
@ -3398,6 +3670,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
case PROJECTOR_TYPE_GLM_EDGE: case PROJECTOR_TYPE_GLM_EDGE:
return ctx->vision_model.mm_model_mlp_3_w->ne[1]; return ctx->vision_model.mm_model_mlp_3_w->ne[1];
case PROJECTOR_TYPE_MERGER: case PROJECTOR_TYPE_MERGER:
case PROJECTOR_TYPE_QWEN2_5_VL:
return ctx->vision_model.mm_1_b->ne[0]; return ctx->vision_model.mm_1_b->ne[0];
case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_GEMMA3:
return ctx->vision_model.mm_input_proj_w->ne[0]; return ctx->vision_model.mm_input_proj_w->ne[0];

View file

@ -140,7 +140,6 @@ def main(args):
fout.add_bool("clip.has_text_encoder", False) fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True) fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_qwen2vl_merger", True) fout.add_bool("clip.has_qwen2vl_merger", True)
fout.add_string("clip.projector_type", "qwen2vl_merger")
print(cfg.vision_config) print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower(): if 'silu' in cfg.vision_config.hidden_act.lower():
@ -159,7 +158,9 @@ def main(args):
fout.add_uint32("clip.vision.window_size", vcfg.window_size) fout.add_uint32("clip.vision.window_size", vcfg.window_size)
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.hidden_size)
fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size) fout.add_uint32("clip.vision.projection_dim", vcfg.out_hidden_size)
fout.add_string("clip.projector_type", "qwen2.5vl_merger")
else: else:
fout.add_string("clip.projector_type", "qwen2vl_merger")
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim) fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size) fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)