vulkan: Support FA with any multiple of 8 head sizes (#15537)

The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
This commit is contained in:
Jeff Bolz 2025-08-24 04:24:25 -05:00 committed by GitHub
parent a9c6ffcbfa
commit c9a24fb932
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 143 additions and 137 deletions

View file

@ -115,6 +115,8 @@ struct vk_pipeline_struct {
uint32_t parameter_count;
std::array<uint32_t, 3> wg_denoms;
uint32_t align;
// true if fields have been set by ggml_vk_create_pipeline
bool initialized {};
// set to true to request the pipeline is compiled after the dryrun
bool needed {};
// set to true when the shader has been compiled
@ -227,21 +229,6 @@ enum vk_device_architecture {
NVIDIA_PRE_TURING,
};
// HSK x HSV
enum FaHeadSizes {
FA_HEAD_SIZE_64,
FA_HEAD_SIZE_80,
FA_HEAD_SIZE_96,
FA_HEAD_SIZE_112,
FA_HEAD_SIZE_128,
FA_HEAD_SIZE_192,
FA_HEAD_SIZE_192_128,
FA_HEAD_SIZE_256,
FA_HEAD_SIZE_576_512,
FA_HEAD_SIZE_UNSUPPORTED,
FA_HEAD_SIZE_COUNT = FA_HEAD_SIZE_UNSUPPORTED,
};
static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) {
vk::PhysicalDeviceProperties props = device.getProperties();
@ -351,6 +338,28 @@ enum dmmv_wg_sizes {
DMMV_WG_SIZE_COUNT,
};
enum FaCodePath {
FA_SCALAR,
FA_COOPMAT1,
FA_COOPMAT2,
};
struct vk_fa_pipeline_state {
vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, FaCodePath path, bool aligned, bool f32acc)
: HSK(HSK), HSV(HSV), small_rows(small_rows), path(path), aligned(aligned), f32acc(f32acc) {}
uint32_t HSK, HSV;
bool small_rows;
FaCodePath path;
bool aligned;
bool f32acc;
bool operator<(const vk_fa_pipeline_state &b) const {
return std::tie(HSK, HSV, small_rows, path, aligned, f32acc) <
std::tie(b.HSK, b.HSV, b.small_rows, b.path, b.aligned, b.f32acc);
}
};
static constexpr uint32_t num_argsort_pipelines = 11;
static constexpr uint32_t max_argsort_cols = 1 << (num_argsort_pipelines-1);
@ -541,16 +550,11 @@ struct vk_device_struct {
vk_pipeline pipeline_conv2d_dw_whcn_f32, pipeline_conv2d_dw_whcn_f16_f32;
vk_pipeline pipeline_conv2d_dw_cwhn_f32, pipeline_conv2d_dw_cwhn_f16_f32;
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
vk_pipeline pipeline_flash_attn_f32_f16_cm2[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16_cm1[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
vk_pipeline pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT][FA_HEAD_SIZE_COUNT][2][2][2];
std::map<vk_fa_pipeline_state, vk_pipeline> pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT];
vk_pipeline pipeline_flash_attn_split_k_reduce;
std::unordered_map<std::string, vk_pipeline_ref> pipelines;
std::vector<vk_pipeline_ref> all_pipelines;
std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
@ -581,15 +585,15 @@ struct vk_device_struct {
compute_queue.cmd_pool.destroy(device);
transfer_queue.cmd_pool.destroy(device);
for (auto& pipeline : pipelines) {
if (pipeline.second.expired()) {
for (auto& pipeline : all_pipelines) {
if (pipeline.expired()) {
continue;
}
vk_pipeline pl = pipeline.second.lock();
vk_pipeline pl = pipeline.lock();
ggml_vk_destroy_pipeline(device, pl);
}
pipelines.clear();
all_pipelines.clear();
device.destroyDescriptorSetLayout(dsl);
@ -1499,7 +1503,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
{
std::lock_guard<std::recursive_mutex> guard(device->mutex);
device->pipelines.insert({ pipeline->name, pipeline });
device->all_pipelines.push_back(pipeline);
}
{
@ -1974,47 +1978,12 @@ static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events
);
}
enum FaCodePath {
FA_SCALAR,
FA_COOPMAT1,
FA_COOPMAT2,
};
static FaHeadSizes fa_get_head_sizes(uint32_t hsk, uint32_t hsv) {
if (hsk != 192 && hsk != 576 && hsk != hsv) {
return FA_HEAD_SIZE_UNSUPPORTED;
}
switch (hsk) {
case 64: return FA_HEAD_SIZE_64;
case 80: return FA_HEAD_SIZE_80;
case 96: return FA_HEAD_SIZE_96;
case 112: return FA_HEAD_SIZE_112;
case 128: return FA_HEAD_SIZE_128;
case 192:
if (hsv == 192) {
return FA_HEAD_SIZE_192;
} else if (hsv == 128) {
return FA_HEAD_SIZE_192_128;
} else {
return FA_HEAD_SIZE_UNSUPPORTED;
}
case 256: return FA_HEAD_SIZE_256;
case 576:
if (hsv == 512) {
return FA_HEAD_SIZE_576_512;
} else {
return FA_HEAD_SIZE_UNSUPPORTED;
}
default: return FA_HEAD_SIZE_UNSUPPORTED;
}
}
// number of rows/cols for flash attention shader
static constexpr uint32_t flash_attention_num_small_rows = 32;
static constexpr uint32_t scalar_flash_attention_num_small_rows = 1;
static uint32_t get_fa_scalar_num_large_rows(uint32_t hsv) {
if (hsv >= 512) {
if (hsv >= 192) {
return 2;
} else {
return 8;
@ -2044,7 +2013,13 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
if (small_rows) {
return {scalar_flash_attention_num_small_rows, 64};
} else {
return {get_fa_scalar_num_large_rows(hsv), 32};
if ((hsv | hsk) & 8) {
// HSV/HSK not being a multiple of 16 makes D_split smaller, which makes cols_per_iter
// larger, and Bc needs to be >= cols_per_thread. 64 is large enough, 32 is not.
return {get_fa_scalar_num_large_rows(hsv), 64};
} else {
return {get_fa_scalar_num_large_rows(hsv), 32};
}
}
}
@ -2062,8 +2037,8 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
}
// small cols to reduce register count
if (ggml_is_quantized(type) || hsk >= 256) {
if (hsk >= 512) {
if (ggml_is_quantized(type) || hsk >= 256 || hsv >= 256) {
if (hsk >= 512 || hsv >= 512) {
return {32, 32};
} else {
return {64, 32};
@ -2072,6 +2047,10 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t hsk, uint3
return {64, 64};
}
static uint32_t fa_align(FaCodePath path, uint32_t hsk, uint32_t hsv, ggml_type type, bool small_rows) {
return fa_rows_cols(path, hsk, hsv, 0, type, small_rows)[1];
}
static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector<uint32_t>& warptile, bool mul_mat_id, ggml_type src0_type) {
uint32_t lut_size = 0;
@ -2337,11 +2316,14 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (!pipeline) {
pipeline = std::make_shared<vk_pipeline_struct>();
}
if (!pipeline->initialized) {
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;
pipeline->initialized = true;
}
if (!pipeline->needed || pipeline->compiled) {
@ -2387,26 +2369,30 @@ static void ggml_vk_load_shaders(vk_device& device) {
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split};
};
#define CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, HSK, HSV, HEAD_SIZES) \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][0][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][0][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f16acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,false), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][0][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,false), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][0][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f32acc" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,false), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,false), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,false)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][1][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][0][1][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f16acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,true), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][1][0], "flash_attn_f32_f16_" #HEAD_SIZES "_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,true), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16 ## SUFFIX[TYPE][FA_HEAD_SIZE_##HEAD_SIZES][1][1][1], "flash_attn_f32_f16_" #HEAD_SIZES "_aligned_f32acc_smallrows" #NAMELC #SUFFIX, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,true), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,true), fa_rows_cols(FAPATH,HSK,HSV,0,TYPE,true)[1], true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
#define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 64, 64, 64) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 80, 80, 80) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 96, 96, 96) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 112, 112, 112) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 128, 128, 128) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 192, 192, 192) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 192, 128, 192_128) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 256, 256, 256) \
CREATE_FA2(TYPE, NAMELC, FAPATH, SUFFIX, 576, 512, 576_512)
for (auto &fa : device->pipeline_flash_attn_f32_f16[TYPE]) { \
uint32_t HSK = fa.first.HSK; \
uint32_t HSV = fa.first.HSV; \
bool small_rows = fa.first.small_rows; \
FaCodePath path = fa.first.path; \
bool aligned = fa.first.aligned; \
bool f32acc = fa.first.f32acc; \
if (path == FAPATH) { \
if (aligned) { \
if (f32acc) { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_align(FAPATH,HSK,HSV,TYPE,small_rows), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
} else { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows), fa_align(FAPATH,HSK,HSV,TYPE,small_rows), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
} \
} else { \
if (f32acc) { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
} else { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? 32 : 0)); \
} \
} \
} \
}
CREATE_FA(GGML_TYPE_F16, f16, FA_SCALAR, )
CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_SCALAR, )
@ -2429,7 +2415,6 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_FA(GGML_TYPE_IQ4_NL, iq4_nl, FA_COOPMAT2, _cm2)
}
#endif
#undef CREATE_FA2
#undef CREATE_FA
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
@ -6731,18 +6716,21 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co
const uint32_t Br = coopmat1_flash_attention_num_large_rows;
const uint32_t Bc = scalar_flash_attention_Bc;
const uint32_t hsk_pad = ROUNDUP_POW2(hsk, 16);
const uint32_t acctype = f32acc ? 4 : 2;
const uint32_t f16vec4 = 8;
const uint32_t tmpsh = wg_size * sizeof(float);
const uint32_t tmpshv4 = wg_size * 4 * acctype;
const uint32_t Qf = Br * (hsk / 4 + 2) * f16vec4;
const uint32_t qstride = hsk_pad / 4 + 2;
const uint32_t Qf = Br * qstride * f16vec4;
const uint32_t sfshstride = (hsk <= 128) ? (Br + 8) : Br;
const uint32_t sfsh = Bc * sfshstride * acctype;
const uint32_t kshstride = hsk / 4 + 2;
const uint32_t kshstride = hsk_pad / 4 + 2;
const uint32_t ksh = Bc * kshstride * f16vec4;
const uint32_t slope = Br * sizeof(float);
@ -6853,7 +6841,6 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
workgroups_y /= N;
}
vk_pipeline *pipelines;
bool small_rows = N <= get_fa_num_small_rows(path);
// coopmat1 does not actually support "small rows" (it needs 16 rows).
@ -6873,37 +6860,36 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
small_rows = true;
}
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
FaHeadSizes head_sizes = fa_get_head_sizes(k->ne[0], v->ne[0]);
switch (path) {
case FA_SCALAR:
pipelines = &ctx->device->pipeline_flash_attn_f32_f16[k->type][head_sizes][f32acc][small_rows][0];
break;
case FA_COOPMAT1:
pipelines = &ctx->device->pipeline_flash_attn_f32_f16_cm1[k->type][head_sizes][f32acc][small_rows][0];
break;
case FA_COOPMAT2:
pipelines = &ctx->device->pipeline_flash_attn_f32_f16_cm2[k->type][head_sizes][f32acc][small_rows][0];
break;
default:
GGML_ASSERT(0);
}
assert(pipelines);
const uint32_t q_stride = (uint32_t)(nbq1 / ggml_type_size(q->type));
const uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
const uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
bool aligned = (KV % pipelines[1]->align) == 0 &&
uint32_t alignment = fa_align(path, HSK, HSV, k->type, small_rows);
bool aligned = (KV % alignment) == 0 &&
// the "aligned" shader variant will forcibly align strides, for performance
(q_stride & 7) == 0 && (k_stride & 7) == 0 && (v_stride & 7) == 0;
// Need to use the coopmat2 variant that clamps loads when HSK/HSV aren't sufficiently aligned.
if (((HSK | HSV) % 16) != 0 && path == FA_COOPMAT2) {
aligned = false;
}
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((nem1 % GGML_KQ_MASK_PAD) == 0);
vk_pipeline pipeline = pipelines[aligned];
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, path, aligned, f32acc);
vk_pipeline pipeline = nullptr;
auto &pipelines = ctx->device->pipeline_flash_attn_f32_f16[k->type];
auto it = pipelines.find(fa_pipeline_state);
if (it != pipelines.end()) {
pipeline = it->second;
} else {
pipelines[fa_pipeline_state] = pipeline = std::make_shared<vk_pipeline_struct>();
}
assert(pipeline);
uint32_t split_kv = KV;
@ -6919,7 +6905,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
if (split_k > 1) {
// Try to evenly split KV into split_k chunks, but it needs to be a multiple
// of "align", so recompute split_k based on that.
split_kv = ROUNDUP_POW2(std::max(1u, KV / split_k), pipelines[1]->align);
split_kv = ROUNDUP_POW2(std::max(1u, KV / split_k), alignment);
split_k = CEIL_DIV(KV, split_kv);
workgroups_x = split_k;
}
@ -11629,8 +11615,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
bool coopmat2 = device->coopmat2;
FaHeadSizes head_sizes = fa_get_head_sizes(op->src[1]->ne[0], op->src[2]->ne[0]);
if (head_sizes == FA_HEAD_SIZE_UNSUPPORTED) {
uint32_t HSK = op->src[1]->ne[0];
uint32_t HSV = op->src[2]->ne[0];
if ((HSK % 8) != 0 || (HSV % 8) != 0) {
return false;
}
if (op->src[4] && op->src[4]->type != GGML_TYPE_F32) {

View file

@ -9,6 +9,10 @@ layout (constant_id = 4) const uint32_t HSV = 32;
layout (constant_id = 5) const uint32_t Clamp = 0;
layout (constant_id = 6) const uint32_t D_split = 16;
// Round up head sizes to a multiple of 16, for coopmat1/coopmat2 paths
const uint32_t HSK_pad = (HSK + 15) & ~15;
const uint32_t HSV_pad = (HSV + 15) & ~15;
layout (push_constant) uniform parameter {
uint32_t N;
uint32_t KV;

View file

@ -46,14 +46,14 @@ const uint32_t MatBc = 16;
shared FLOAT_TYPE tmpsh[gl_WorkGroupSize.x];
shared ACC_TYPEV4 tmpshv4[gl_WorkGroupSize.x];
const uint32_t qstride = HSK / 4 + 2; // in units of f16vec4
const uint32_t qstride = HSK_pad / 4 + 2; // in units of f16vec4
shared f16vec4 Qf[Br * qstride];
// Avoid padding for hsk==256 to make it fit in 48KB shmem.
const uint32_t sfshstride = (HSK <= 128) ? (Br + 8) : Br;
shared ACC_TYPE sfsh[Bc * sfshstride];
const uint32_t kshstride = HSK / 4 + 2; // in units of f16vec4
const uint32_t kshstride = HSK_pad / 4 + 2; // in units of f16vec4
shared f16vec4 ksh[Bc * kshstride];
shared float slope[Br];
@ -74,6 +74,21 @@ void main() {
#define tile_row(r) (row_tid * rows_per_thread + (r))
// Zero-initialize shared memory for Q/K when HSK is not a multiple of 16 (HSK_pad > HSK).
if ((HSK % 16) != 0) {
[[unroll]] for (uint i = 0; i < Br * qstride; i += gl_WorkGroupSize.x) {
if (i + tid < Br * qstride) {
Qf[i + tid] = f16vec4(0);
}
}
[[unroll]] for (uint i = 0; i < Bc * kshstride; i += gl_WorkGroupSize.x) {
if (i + tid < Bc * kshstride) {
ksh[i + tid] = f16vec4(0);
}
}
barrier();
}
uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4;
[[unroll]] for (uint32_t idx = 0; idx < Br * HSK / 4; idx += gl_WorkGroupSize.x) {
@ -151,14 +166,14 @@ void main() {
}
barrier();
// K * Q^T -> S^T: Bc x HSK * HSK x Br -> Bc x Br
// K * Q^T -> S^T: Bc x HSK_pad * HSK_pad x Br -> Bc x Br
// Bc split across workgroup (four subgroups), loop over HSK in chunks of 16: 16 x 16 * 16 x 16 -> 16 x 16
// This is written transposed in order to allow for N being 8 if implementations need it
coopmat<ACC_TYPE, gl_ScopeSubgroup, MatBc, MatBr, gl_MatrixUseAccumulator> SfMat = coopmat<ACC_TYPE, gl_ScopeSubgroup, MatBc, MatBr, gl_MatrixUseAccumulator>(0);
coopmat<float16_t, gl_ScopeSubgroup, MatBc, 16, gl_MatrixUseA> KMat;
coopmat<float16_t, gl_ScopeSubgroup, 16, MatBr, gl_MatrixUseB> QMat;
for (uint32_t d = 0; d < HSK / 16; ++d) {
for (uint32_t d = 0; d < HSK_pad / 16; ++d) {
coopMatLoad(QMat, Qf, d * 16 / 4, qstride, gl_CooperativeMatrixLayoutColumnMajor);
uint coord = (gl_SubgroupID * MatBc) * kshstride + d * 16 / 4;

View file

@ -104,16 +104,16 @@ void main() {
tensorLayoutK = setTensorLayoutStrideNV(tensorLayoutK, k_stride, 1);
tensorLayoutV = setTensorLayoutStrideNV(tensorLayoutV, v_stride, 1);
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseAccumulator> Q;
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA> Qf16;
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, HSK_pad, gl_MatrixUseAccumulator> Q;
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK_pad, gl_MatrixUseA> Qf16;
uint32_t q_offset = iq2*p.nb02+iq3*p.nb03;
coopMatLoadTensorNV(Q, data_q, q_offset, sliceTensorLayoutNV(tensorLayoutQ, i * Br, Br, 0, HSK));
coopMatLoadTensorNV(Q, data_q, q_offset, sliceTensorLayoutNV(tensorLayoutQ, i * Br, Br, 0, HSK_pad));
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK, gl_MatrixUseA>(Q);
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK_pad, gl_MatrixUseA>(Q);
Qf16 *= float16_t(p.scale);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> L, M;
@ -140,10 +140,10 @@ void main() {
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> S = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
coopmat<float16_t, gl_ScopeWorkgroup, HSK, Bc, gl_MatrixUseB> K_T;
coopmat<float16_t, gl_ScopeWorkgroup, HSK_pad, Bc, gl_MatrixUseB> K_T;
uint32_t k_offset = ik2*p.nb12 + ik3*p.nb13;
coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK), tensorViewTranspose DECODEFUNC);
coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK_pad), tensorViewTranspose DECODEFUNC);
S = coopMatMulAdd(Qf16, K_T, S);
if (p.logit_softcap != 0.0f) {
@ -208,31 +208,31 @@ void main() {
rowsum = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0.0);
rowsum = coopMatMulAdd(P_A, One, rowsum);
coopmat<float16_t, gl_ScopeWorkgroup, Bc, HSV, gl_MatrixUseB> V;
coopmat<float16_t, gl_ScopeWorkgroup, Bc, HSV_pad, gl_MatrixUseB> V;
uint32_t v_offset = iv2*p.nb22 + iv3*p.nb23;
coopMatLoadTensorNV(V, data_v, v_offset, sliceTensorLayoutNV(tensorLayoutV, j * Bc, Bc, 0, HSV) DECODEFUNC);
coopMatLoadTensorNV(V, data_v, v_offset, sliceTensorLayoutNV(tensorLayoutV, j * Bc, Bc, 0, HSV_pad) DECODEFUNC);
L = eM*L + rowsum;
// This is the "diagonal" matrix in the paper, but since we do componentwise
// multiply rather than matrix multiply it has the diagonal element smeared
// across the row
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> eMdiag;
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> eMdiag;
// resize eM by using smear/reduce
coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce);
// multiply with fp16 accumulation, then add to O.
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(0);
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
PV = coopMatMulAdd(P_A, V, PV);
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(PV);
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(PV);
}
// If there is split_k, then the split_k resolve shader does the final
// division by L. Store the intermediate O value and per-row m and L values.
if (p.k_num > 1) {
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
uint32_t o_offset = HSV * p.ne1 * (split_k_index + iq3 * p.k_num);
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
@ -243,16 +243,16 @@ void main() {
return;
}
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Ldiag;
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> Ldiag;
// resize L by using smear/reduce
coopMatReduceNV(Ldiag, L, gl_CooperativeMatrixReduceRowNV, smearReduce);
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> S;
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> S;
coopMatPerElementNV(S, S, perElemOpGetSink, iq2);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Mr;
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> Mr;
// resize M by using smear/reduce
coopMatReduceNV(Mr, M, gl_CooperativeMatrixReduceRowNV, smearReduce);
@ -285,7 +285,7 @@ void main() {
uint32_t o_offset = iq3*p.ne2*p.ne1*HSV;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator>(O);
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
if (p.gqa_ratio > 1) {
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
} else {
@ -295,6 +295,6 @@ void main() {
// permute dimensions
tensorViewNV<3, false, 1, 0, 2> tensorViewPermute = createTensorViewNV(3, false, 1, 0, 2);
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, HSV), tensorViewPermute);
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, HSV_pad), tensorViewPermute);
}
}

View file

@ -6239,8 +6239,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_timestep_embedding());
test_cases.emplace_back(new test_leaky_relu());
for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
for (int hsk : { 40, 64, 80, 128, 192, 256, 576 }) {
for (int hsv : { 40, 64, 80, 128, 192, 256, 512 }) {
if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA