Revert "merge missing functions from sdcpp"

This reverts commit 19e1c518f1.
This commit is contained in:
Concedo 2024-03-05 15:38:51 +08:00
parent b67a906244
commit c952b4f192
4 changed files with 7 additions and 325 deletions

192
ggml.c
View file

@ -1822,8 +1822,6 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"POOL_2D",
"UPSCALE",
"PAD",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
"LEAKY_RELU",
@ -1852,7 +1850,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1910,8 +1908,6 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"pool_2d(x)",
"upscale(x)",
"pad(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
"leaky_relu(x)",
@ -1940,7 +1936,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -5903,55 +5899,6 @@ struct ggml_tensor * ggml_upscale(
return ggml_upscale_impl(ctx, a, scale_factor);
}
struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step) {
GGML_ASSERT(stop > start);
int64_t steps = (int64_t)ceil((stop - start) / step);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
result->op = GGML_OP_ARANGE;
((float *)(result->op_params))[0] = start;
((float *)(result->op_params))[1] = stop;
((float *)(result->op_params))[2] = step;
return result;
}
struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period) {
bool is_node = false;
if (timesteps->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
int acutual_dim = dim;
if (dim % 2 != 0) {
acutual_dim = dim + 1;
}
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, acutual_dim, timesteps->ne[0]);
result->op = GGML_OP_TIMESTEP_EMBEDDING;
result->op_params[0] = dim;
result->op_params[1] = max_period;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = timesteps;
return result;
}
// ggml_argsort
struct ggml_tensor * ggml_argsort(
@ -10300,11 +10247,11 @@ static void ggml_compute_forward_group_norm_f32(
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00] / (ne00 * ne01 * step);
sum += (ggml_float)x[i00];
}
}
}
float mean = sum;
float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
@ -10316,11 +10263,11 @@ static void ggml_compute_forward_group_norm_f32(
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v * v) / (ne00 * ne01 * step);
sum2 += (ggml_float)(v * v);
}
}
}
float variance = sum2;
float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) {
@ -13601,109 +13548,6 @@ static void ggml_compute_forward_pad(
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const float start = ((float*)dst->op_params)[0];
const float stop = ((float*)dst->op_params)[1];
const float step = ((float*)dst->op_params)[2];
int64_t steps = (int64_t)ceil((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
static void ggml_compute_forward_arange(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
int acutual_dim = dim;
if (dim % 2 != 0) {
acutual_dim = dim + 1;
}
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)exp(-log(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cos(arg);
embed_data[j + half] = sin(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
static void ggml_compute_forward_timestep_embedding(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32(
@ -15772,14 +15616,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_pad(params, tensor);
} break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor->src[0], tensor);
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
ggml_compute_forward_timestep_embedding(params, tensor->src[0], tensor);
} break;
case GGML_OP_ARGSORT:
{
ggml_compute_forward_argsort(params, tensor);
@ -16782,14 +16618,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(false); // TODO: not implemented
@ -17541,14 +17369,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{
n_tasks = n_threads;
} break;
case GGML_OP_ARANGE:
{
n_tasks = n_threads;
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
n_tasks = n_threads;
} break;
case GGML_OP_ARGSORT:
{
n_tasks = n_threads;