mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
add exception for ibm granite, then keep using f16 kq mul for HIPBLAS only for now pending ROCM investigation re https://github.com/ggerganov/llama.cpp/pull/10015
This commit is contained in:
parent
5233e8ed1d
commit
c7e351bf41
1 changed files with 14 additions and 0 deletions
|
@ -9733,16 +9733,30 @@ static struct ggml_tensor * llm_build_kqv(
|
||||||
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
||||||
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) //workaround for speed regression on rocm
|
||||||
|
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2 || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||||
|
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||||
|
}
|
||||||
|
#else
|
||||||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||||
|
#endif
|
||||||
|
|
||||||
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
|
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
|
||||||
} else {
|
} else {
|
||||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||||
cb(kq, "kq", il);
|
cb(kq, "kq", il);
|
||||||
|
|
||||||
|
#if defined(GGML_USE_HIPBLAS) //workaround for speed regression on rocm
|
||||||
|
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||||
|
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||||||
|
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||||||
|
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||||
|
}
|
||||||
|
#else
|
||||||
// note: this op tends to require high floating point range
|
// note: this op tends to require high floating point range
|
||||||
// while for some models F16 is enough, for others it is not, so we default to F32 here
|
// while for some models F16 is enough, for others it is not, so we default to F32 here
|
||||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||||
|
#endif
|
||||||
|
|
||||||
if (model.arch == LLM_ARCH_GROK) {
|
if (model.arch == LLM_ARCH_GROK) {
|
||||||
// need to do the following:
|
// need to do the following:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue