Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	common/CMakeLists.txt
#	ggml/src/ggml-cann/ggml-cann.cpp
#	ggml/src/ggml-opencl/ggml-opencl.cpp
#	ggml/src/ggml-opencl/kernels/scale.cl
#	ggml/src/ggml-sycl/backend.hpp
#	ggml/src/ggml-sycl/ggml-sycl.cpp
#	tests/test-backend-ops.cpp
This commit is contained in:
Concedo 2025-07-10 17:43:08 +08:00
commit c52cbdce52
22 changed files with 774 additions and 496 deletions

View file

@ -1123,6 +1123,26 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_JAMBA:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
}
switch (hparams.n_layer) {
// TODO: Jamba layers are a bit heterogenous, so naming this is hard.
case 12: // 900M 8x???M
case 32: // 51B 16x?B
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_XVERSE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -3327,10 +3347,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed, duplicated to allow offloading
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
}
@ -3357,6 +3377,87 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
}
} break;
case LLM_ARCH_JAMBA:
{
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
// only an expansion factor of 2 is supported for now
GGML_ASSERT(2 * n_embd == d_inner);
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
{
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed, duplicated to allow offloading
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
}
for (int i = 0; i < n_layer; ++i) {
const int64_t n_head_kv = hparams.n_head_kv(i);
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
auto & layer = layers[i];
// norm
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
if (n_head_kv == 0) {
// Mamba layer
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
// no "weight" suffix for these
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
// out_proj
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
} else {
// Attention layers
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
}
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_inp) {
// MoE
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
} else {
// FFN (no MoE)
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
}
} break;
case LLM_ARCH_XVERSE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -5007,16 +5108,6 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
}
if (arch == LLM_ARCH_MAMBA || arch == LLM_ARCH_MAMBA2) {
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
if (!classifier_labels.empty()) {
LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
@ -5027,6 +5118,18 @@ void llama_model::print_info() const {
}
}
if (arch == LLM_ARCH_MAMBA ||
arch == LLM_ARCH_MAMBA2 ||
arch == LLM_ARCH_JAMBA ||
arch == LLM_ARCH_FALCON_H1) {
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
}
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
if (pimpl->n_elements >= 1e12) {
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
@ -9482,8 +9585,6 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
const int n_layer_sparsity = 10; // number of layers using activation sparsity
const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
ggml_tensor * one; // containing single element 1.0f
llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf)
: llm_graph_context(params),
model(model),
@ -9495,14 +9596,6 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
ggml_tensor * cur;
ggml_tensor * inpL;
// TODO: remove this when ggml_scale_add is implemented
one = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
{
auto inp = std::make_unique<llm_graph_input_one>();
inp->one = one;
res->add_input(std::move(inp));
}
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
@ -9892,7 +9985,7 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
cb(innovation, "innovation", il);
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
all_coefs = ggml_add(ctx0, all_coefs, one);
all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
cb(all_coefs, "all_coefs", il);
all_coefs = ggml_cont(ctx0, ggml_transpose(ctx0, all_coefs)); // [n_tokens, n_altup]
all_coefs = ggml_reshape_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
@ -10035,62 +10128,8 @@ struct llm_build_starcoder2 : public llm_graph_context {
}
};
struct llm_build_mamba : public llm_graph_context {
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (model.arch == LLM_ARCH_MAMBA2) {
cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
} else {
cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * build_mamba_layer(
llm_graph_input_rs * inp,
@ -10098,11 +10137,14 @@ struct llm_build_mamba : public llm_graph_context {
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
int il) {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const auto & layer = model.layers[il];
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
@ -10112,8 +10154,6 @@ struct llm_build_mamba : public llm_graph_context {
const int64_t n_seqs = ubatch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
// Use the same RMS norm as the final layer norm
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
@ -10131,7 +10171,7 @@ struct llm_build_mamba : public llm_graph_context {
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
// split the above in two
// => {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
@ -10160,10 +10200,10 @@ struct llm_build_mamba : public llm_graph_context {
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
// bias
x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
x = ggml_silu(ctx0, x);
}
@ -10171,27 +10211,27 @@ struct llm_build_mamba : public llm_graph_context {
// ssm
{
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
// split
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
// Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms) {
dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
B = ggml_rms_norm(ctx0, B, norm_rms_eps);
C = ggml_rms_norm(ctx0, C, norm_rms_eps);
// Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
}
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = build_lora_mm(model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
dt = build_lora_mm(layer.ssm_dt, dt);
dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
cur = x;
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
ggml_tensor * A = model.layers[il].ssm_a;
ggml_tensor * A = layer.ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
@ -10217,16 +10257,15 @@ struct llm_build_mamba : public llm_graph_context {
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(model.layers[il].ssm_out, y);
cur = build_lora_mm(layer.ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
// cb(cur, "mamba_out", il);
return cur;
}
@ -10238,7 +10277,8 @@ struct llm_build_mamba : public llm_graph_context {
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
@ -10342,11 +10382,14 @@ struct llm_build_mamba : public llm_graph_context {
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// grouped RMS norm
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
if (model.layers[il].ssm_norm) {
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
}
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
@ -10361,6 +10404,172 @@ struct llm_build_mamba : public llm_graph_context {
}
};
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (model.arch == LLM_ARCH_MAMBA2) {
cur = build_mamba2_layer(rs_inp, gf, cur, model, ubatch, il);
} else {
cur = build_mamba_layer(rs_inp, gf, cur, model, ubatch, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (n_head_kv == 0) {
cur = build_mamba_layer(inp_hybrid->get_recr(), gf, cur, model, ubatch, il);
} else {
// Attention
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// No RoPE :)
cur = build_attn(inp_hybrid->get_attn(), gf, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
cb(cur, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// FFN
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
// residual
cur = ggml_add(ctx0, ffn_inp, cur);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_command_r : public llm_graph_context {
llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -14806,10 +15015,8 @@ struct llm_build_ernie4_5 : public llm_graph_context {
}
};
struct llm_build_falcon_h1 : public llm_graph_context {
const llama_model & model;
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
@ -14865,7 +15072,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
cb(Kcur, "Kcur-post-rope", il);
cb(Vcur, "Vcur-post-rope", il);
ggml_tensor * attn_out = build_attn(inp, gf,
ggml_tensor * attn_out = build_attn(inp->get_attn(), gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(attn_out, "attn_out", il);
@ -14876,7 +15083,7 @@ struct llm_build_falcon_h1 : public llm_graph_context {
// Mamba2 layer
cb(cur, "ssm_in", il);
ggml_tensor * ssm_out = build_mamba2_layer(inp, gf, cur, ubatch, il);
ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), gf, cur, model, ubatch, il);
cb(ssm_out, "ssm_out", il);
// // Aggregation
@ -14932,139 +15139,6 @@ struct llm_build_falcon_h1 : public llm_graph_context {
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * build_mamba2_layer(
llm_graph_input_mem_hybrid * inp,
ggml_cgraph * gf,
ggml_tensor * cur,
const llama_ubatch & ubatch,
int il) const {
const auto * kv_state = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
const auto kv_head = kv_state->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_head = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs);
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = kv_state->get_r_l(il);
ggml_tensor * ssm_states_all = kv_state->get_s_l(il);
ggml_tensor * conv = build_rs(inp, gf, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
cb(zxBCdt, "zxBCdt", il);
// split the above in three
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
// bias
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
xBC = ggml_silu(ctx0, xBC);
}
// ssm
{
// These correspond to V K Q in SSM/attention duality
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
// {n_head, n_seq_tokens, n_seqs}
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
ggml_tensor * A = model.layers[il].ssm_a;
// use the states and the indices provided by build_rs
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, kv_state->get_size());
// TODO: use semistructured matrices to implement state-space duality
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, gf, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// grouped RMS norm
if (model.layers[il].ssm_norm) {
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
}
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(model.layers[il].ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}
};
struct llm_build_arcee : public llm_graph_context {
@ -15741,6 +15815,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_mamba>(*this, params, gf);
} break;
case LLM_ARCH_JAMBA:
{
llm = std::make_unique<llm_build_jamba>(*this, params, gf);
} break;
case LLM_ARCH_XVERSE:
{
llm = std::make_unique<llm_build_xverse>(*this, params, gf);
@ -16011,6 +16089,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_BLOOM:
case LLM_ARCH_MAMBA:
case LLM_ARCH_MAMBA2:
case LLM_ARCH_JAMBA:
case LLM_ARCH_JINA_BERT_V2:
case LLM_ARCH_T5:
case LLM_ARCH_T5ENCODER: