Merge commit 'ccf58aa3ec' into concedo_experimental

# Conflicts:
#	.gitignore
#	Makefile
#	README-sycl.md
#	ggml-cuda.cu
This commit is contained in:
Concedo 2024-04-06 17:52:53 +08:00
commit c348223dff
14 changed files with 4472 additions and 3161 deletions

View file

@ -21,6 +21,7 @@ else()
add_subdirectory(embedding)
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(gguf-split)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)

View file

@ -0,0 +1,5 @@
set(TARGET gguf-split)
add_executable(${TARGET} gguf-split.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,9 @@
## GGUF split Example
CLI to split / merge GGUF files.
**Command line options:**
- `--split`: split GGUF to multiple GGUF, default operation.
- `--split-max-tensors`: maximum tensors in each split: default(128)
- `--merge`: merge multiple GGUF to a single GGUF.

View file

@ -0,0 +1,489 @@
#include "llama.h"
#include "ggml.h"
#include "common.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <fstream>
#include <ios>
#include <string>
#include <vector>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
enum split_operation : uint8_t {
SPLIT_OP_SPLIT,
SPLIT_OP_MERGE,
};
static const char * const LLM_KV_GENERAL_SPLIT_I_SPLIT = "general.split";
static const char * const LLM_KV_GENERAL_SPLIT_N_SPLIT = "general.split_count";
static const int SPLIT_FILENAME_MAX = 256;
static const char * const SPLIT_FILENAME_FORMAT = "%s-%05d-of-%05d.gguf";
struct split_params {
split_operation operation = SPLIT_OP_SPLIT;
int n_split_tensors = 128;
std::string input;
std::string output;
};
static void split_print_usage(const char * executable) {
const split_params default_params;
printf("\n");
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
printf("\n");
printf("Apply a GGUF operation on IN to OUT.");
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" --split split GGUF to multiple GGUF (default)\n");
printf(" --split-max-tensors max tensors in each split: default(%d)\n", default_params.n_split_tensors);
printf(" --merge merge multiple GGUF to a single GGUF\n");
printf("\n");
}
static bool split_params_parse_ex(int argc, const char ** argv, split_params & params) {
std::string arg;
const std::string arg_prefix = "--";
bool invalid_param = false;
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
arg = argv[arg_idx];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
bool arg_found = false;
if (arg == "-h" || arg == "--help") {
split_print_usage(argv[0]);
exit(0);
}
if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
}
if (arg == "--merge") {
arg_found = true;
params.operation = SPLIT_OP_MERGE;
}
if (arg == "--split") {
arg_found = true;
params.operation = SPLIT_OP_SPLIT;
}
if (arg == "--split-max-tensors") {
if (++arg_idx >= argc) {
invalid_param = true;
break;
}
arg_found = true;
params.n_split_tensors = atoi(argv[arg_idx]);
}
if (!arg_found) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (argc - arg_idx < 2) {
printf("%s: bad arguments\n", argv[0]);
split_print_usage(argv[0]);
return false;
}
params.input = argv[arg_idx++];
params.output = argv[arg_idx++];
return true;
}
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
bool result = true;
try {
if (!split_params_parse_ex(argc, argv, params)) {
split_print_usage(argv[0]);
exit(1);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
split_print_usage(argv[0]);
exit(1);
}
return result;
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
static std::string split_file_name(const std::string & path, int i_split, int n_split) {
char f_split[SPLIT_FILENAME_MAX] = {0};
snprintf(f_split, sizeof(f_split), SPLIT_FILENAME_FORMAT, path.c_str(), i_split + 1, n_split);
return std::string(f_split);
}
struct split_strategy {
const split_params params;
std::ifstream & f_input;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_meta = NULL;
const int n_tensors;
const int n_split;
int i_split = 0;
int i_tensor = 0;
std::vector<uint8_t> read_data;
struct gguf_context * ctx_out;
std::ofstream fout;
split_strategy(const split_params & params,
std::ifstream & f_input,
struct gguf_context * ctx_gguf,
struct ggml_context * ctx_meta) :
params(params),
f_input(f_input),
ctx_gguf(ctx_gguf),
ctx_meta(ctx_meta),
n_tensors(gguf_get_n_tensors(ctx_gguf)),
n_split(std::ceil(1. * n_tensors / params.n_split_tensors)) {
}
bool should_split() const {
return i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
}
void split_start() {
ctx_out = gguf_init_empty();
// Save all metadata in first split only
if (i_split == 0) {
gguf_set_kv(ctx_out, ctx_gguf);
}
gguf_set_val_u8(ctx_out, LLM_KV_GENERAL_SPLIT_I_SPLIT, i_split);
gguf_set_val_u8(ctx_out, LLM_KV_GENERAL_SPLIT_N_SPLIT, n_split);
// populate the original tensors, so we get an initial metadata
for (int i = i_split * params.n_split_tensors; i < n_tensors && i < (i_split + 1) * params.n_split_tensors; ++i) {
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
gguf_add_tensor(ctx_out, meta);
}
auto split_name = split_file_name(params.output, i_split, n_split);
fprintf(stderr, "%s: %s ...", __func__, split_name.c_str());
fout = std::ofstream(split_name, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto meta_size = gguf_get_meta_size(ctx_out);
// placeholder for the meta data
::zeros(fout, meta_size);
i_split++;
}
void next_tensor() {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
if (read_data.size() < n_bytes) {
read_data.resize(n_bytes);
}
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
t->data = read_data.data();
// write tensor data + padding
fout.write((const char *)t->data, n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
i_tensor++;
}
void split_end() {
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
fprintf(stderr, "\033[3Ddone\n");
}
};
static void gguf_split(const split_params & split_params) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
exit(1);
}
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(1);
}
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
fprintf(stderr, "%s: %s -> %s (%d tensors per file)\n",
__func__, split_params.input.c_str(),
split_file_name(split_params.output, strategy.i_split, strategy.n_split).c_str(),
split_params.n_split_tensors);
strategy.split_start();
while (strategy.i_tensor < strategy.n_tensors) {
strategy.next_tensor();
if (strategy.should_split()) {
strategy.split_end();
strategy.split_start();
}
}
strategy.split_end();
gguf_free(ctx_gguf);
f_input.close();
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
__func__, strategy.n_split, strategy.n_tensors);
}
static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "%s: %s -> %s\n",
__func__, split_params.input.c_str(),
split_params.output.c_str());
int n_split = 1;
int total_tensors = 0;
auto * ctx_out = gguf_init_empty();
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
std::vector<uint8_t> read_data;
std::vector<ggml_context *> ctx_metas;
std::vector<gguf_context *> ctx_ggufs;
std::string split_prefix;
// First pass to find KV and tensors metadata
for (int i_split = 0; i_split < n_split; i_split++) {
struct ggml_context * ctx_meta = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
};
auto split_name = split_params.input;
if (i_split > 0) {
split_name = split_file_name(split_prefix, i_split, n_split);
}
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_name.c_str());
auto * ctx_gguf = gguf_init_from_file(split_name.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
exit(1);
}
ctx_ggufs.push_back(ctx_gguf);
ctx_metas.push_back(ctx_meta);
if (i_split == 0) {
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_GENERAL_SPLIT_N_SPLIT);
if (key_n_split < 0) {
fprintf(stderr,
"\n%s: input file does not contain %s metadata\n",
__func__,
LLM_KV_GENERAL_SPLIT_N_SPLIT);
gguf_free(ctx_gguf);
gguf_free(ctx_out);
fout.close();
exit(1);
}
n_split = gguf_get_val_u8(ctx_gguf, key_n_split);
if (n_split < 1) {
fprintf(stderr,
"\n%s: input file does not contain a valid split count %d\n",
__func__,
n_split);
gguf_free(ctx_gguf);
gguf_free(ctx_out);
fout.close();
exit(1);
}
// Do not trigger merge if we try to merge again the output
gguf_set_val_u8(ctx_out, LLM_KV_GENERAL_SPLIT_N_SPLIT, 0);
// Set metadata from the first split
gguf_set_kv(ctx_out, ctx_gguf);
}
// Verify the file naming
{
int i_split_file = 0;
int n_split_file = 0;
const char * i_split_format = "-00000-of-00000.gguf";
if (split_name.size() < strlen(i_split_format)) {
fprintf(stderr, "\n%s: unexpected input file name: %s\n", __func__, split_params.input.c_str());
for (auto * _ctx_gguf : ctx_ggufs) {
gguf_free(_ctx_gguf);
}
gguf_free(ctx_out);
fout.close();
exit(1);
}
split_prefix = split_name.substr(0, split_name.size() - strlen(i_split_format));
const char * split_name_c_str = split_name.c_str();
int n_part = sscanf(&split_name_c_str[0] + split_prefix.size(), "-%d-of-%d", &i_split_file, &n_split_file);
if (n_part != 2 || i_split_file - 1 != i_split || n_split_file != n_split) {
fprintf(stderr, "\n%s: unexpected input file name: %s"
" i_split=%d i_split_file=%d"
" n_split=%d n_split_file=%d\n", __func__,
split_params.input.c_str(),
i_split, i_split_file,
n_split, n_split_file);
for (auto * _ctx_gguf : ctx_ggufs) {
gguf_free(_ctx_gguf);
}
gguf_free(ctx_out);
fout.close();
exit(1);
}
}
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
gguf_add_tensor(ctx_out, t);
}
total_tensors += n_tensors;
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
// Write tensors data
for (int i_split = 0; i_split < n_split; i_split++) {
auto split_name = split_file_name(split_prefix, i_split, n_split);
std::ifstream f_input(split_name.c_str(), std::ios::binary);
if (!f_input.is_open()) {
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_name.c_str());
for (auto * _ctx_gguf : ctx_ggufs) {
gguf_free(_ctx_gguf);
}
gguf_free(ctx_out);
fout.close();
exit(1);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_name.c_str());
auto * ctx_gguf = ctx_ggufs[i_split];
auto * ctx_meta = ctx_metas[i_split];
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
auto n_bytes = ggml_nbytes(t);
if (read_data.size() < n_bytes) {
read_data.resize(n_bytes);
}
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
f_input.close();
fprintf(stderr, "\033[3Ddone\n");
}
{
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);
}
int main(int argc, const char ** argv) {
if (argc < 3) {
split_print_usage(argv[0]);
}
split_params params;
split_params_parse(argc, argv, params);
switch (params.operation) {
case SPLIT_OP_SPLIT: gguf_split(params);
break;
case SPLIT_OP_MERGE: gguf_merge(params);
break;
default:split_print_usage(argv[0]);
exit(1);
}
return 0;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -5,15 +5,14 @@ import sys
import time
import traceback
from contextlib import closing
import psutil
from subprocess import TimeoutExpired
def before_scenario(context, scenario):
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug:
print("DEBUG=ON\n")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
print("DEBUG=ON")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])
@ -27,60 +26,40 @@ def after_scenario(context, scenario):
return
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
if os.path.isfile('llama.log'):
with closing(open('llama.log', 'r')) as f:
for line in f:
print(line)
if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m\n")
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if not pid_exists(context.server_process.pid):
if context.server_process.poll() is not None:
assert False, f"Server not running pid={context.server_process.pid} ..."
server_graceful_shutdown(context)
server_graceful_shutdown(context) # SIGINT
# Wait few for socket to free up
time.sleep(0.05)
try:
context.server_process.wait(0.5)
except TimeoutExpired:
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
context.server_process.kill() # SIGKILL
context.server_process.wait()
attempts = 0
while pid_exists(context.server_process.pid) or is_server_listening(context.server_fqdn, context.server_port):
server_kill(context)
while is_server_listening(context.server_fqdn, context.server_port):
time.sleep(0.1)
attempts += 1
if attempts > 5:
server_kill_hard(context)
except:
exc = sys.exception()
print("error in after scenario: \n")
print(exc)
print("*** print_tb: \n")
traceback.print_tb(exc.__traceback__, file=sys.stdout)
except Exception:
print("ignoring error in after_scenario:")
traceback.print_exc(file=sys.stdout)
def server_graceful_shutdown(context):
print(f"shutting down server pid={context.server_process.pid} ...\n")
print(f"shutting down server pid={context.server_process.pid} ...")
if os.name == 'nt':
os.kill(context.server_process.pid, signal.CTRL_C_EVENT)
interrupt = signal.CTRL_C_EVENT
else:
os.kill(context.server_process.pid, signal.SIGINT)
def server_kill(context):
print(f"killing server pid={context.server_process.pid} ...\n")
context.server_process.kill()
def server_kill_hard(context):
pid = context.server_process.pid
path = context.server_path
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
try:
psutil.Process(pid).kill()
except psutil.NoSuchProcess:
return False
return True
interrupt = signal.SIGINT
context.server_process.send_signal(interrupt)
def is_server_listening(server_fqdn, server_port):
@ -88,14 +67,5 @@ def is_server_listening(server_fqdn, server_port):
result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0
if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...\n")
print(f"server is listening on {server_fqdn}:{server_port}...")
return _is_server_listening
def pid_exists(pid):
try:
psutil.Process(pid)
except psutil.NoSuchProcess:
return False
return True

View file

@ -35,9 +35,9 @@ Feature: llama.cpp server
And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids)+ | 46 | 64 | not |
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
Scenario: Completion prompt truncated
Given a prompt:
@ -48,7 +48,7 @@ Feature: llama.cpp server
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated
And 109 prompt tokens are processed
@ -65,9 +65,9 @@ Feature: llama.cpp server
And the completion is <truncated> truncated
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird)+ | -1 | 64 | enabled | |
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
Scenario: Tokenize / Detokenize

View file

@ -24,12 +24,16 @@ from prometheus_client import parser
def step_server_config(context, server_fqdn, server_port):
context.server_fqdn = server_fqdn
context.server_port = int(server_port)
context.n_gpu_layer = None
if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}")
if 'FQDN' in os.environ:
context.server_fqdn = os.environ['FQDN']
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
if 'N_GPU_LAYERS' in os.environ:
context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
@ -41,7 +45,6 @@ def step_server_config(context, server_fqdn, server_port):
context.n_ctx = None
context.n_ga = None
context.n_ga_w = None
context.n_gpu_layer = None
context.n_predict = None
context.n_prompts = 0
context.n_server_predict = None
@ -66,7 +69,7 @@ def step_server_config(context, server_fqdn, server_port):
def step_download_hf_model(context, hf_file, hf_repo):
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
if context.debug:
print(f"model file: {context.model_file}\n")
print(f"model file: {context.model_file}")
@step('a model file {model_file}')
@ -137,9 +140,12 @@ def step_start_server(context):
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
family, typ, proto, _, sockaddr = addrs[0]
while True:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((context.server_fqdn, context.server_port))
with closing(socket.socket(family, typ, proto)) as sock:
result = sock.connect_ex(sockaddr)
if result == 0:
print("\x1b[33;46mserver started!\x1b[0m")
return
@ -209,7 +215,7 @@ async def step_request_completion(context, api_error):
user_api_key=context.user_api_key)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}\n")
print(f"Completion response: {completion}")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
@ -354,7 +360,7 @@ def step_prompt_passkey(context, passkey, i_pos):
prompt += context.prompt_junk_suffix
if context.debug:
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
context.n_prompts = len(context.prompts)
@ -363,7 +369,7 @@ def step_prompt_passkey(context, passkey, i_pos):
@async_run_until_complete
async def step_oai_chat_completions(context, api_error):
if context.debug:
print(f"Submitting OAI compatible completions request...\n")
print(f"Submitting OAI compatible completions request...")
expect_api_error = api_error == 'raised'
completion = await oai_chat_completions(context.prompts.pop(),
context.system_prompt,
@ -508,12 +514,12 @@ async def step_all_embeddings_are_the_same(context):
embedding1 = np.array(embeddings[i])
embedding2 = np.array(embeddings[j])
if context.debug:
print(f"embedding1: {embedding1[-8:]}\n")
print(f"embedding2: {embedding2[-8:]}\n")
print(f"embedding1: {embedding1[-8:]}")
print(f"embedding2: {embedding2[-8:]}")
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
if context.debug:
print(f"{msg}\n")
print(f"{msg}")
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
@ -630,7 +636,7 @@ async def step_prometheus_metrics_exported(context):
metrics_raw = await metrics_response.text()
metric_exported = False
if context.debug:
print(f"/metrics answer:\n{metrics_raw}\n")
print(f"/metrics answer:\n{metrics_raw}")
context.metrics = {}
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
@ -932,7 +938,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
last_match = end
highlighted += content[last_match:]
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"Checking completion response: {highlighted}\n")
print(f"Checking completion response: {highlighted}")
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
if expected_predicted_n and expected_predicted_n > 0:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
@ -942,7 +948,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
print(f"Waiting for all {n_tasks} tasks results...\n")
print(f"Waiting for all {n_tasks} tasks results...")
for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result)
@ -959,7 +965,7 @@ async def wait_for_health_status(context,
slots_processing=None,
expected_slots=None):
if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
print(f"Starting checking for health for expected_health_status={expected_health_status}")
interval = 0.5
counter = 0
if 'GITHUB_ACTIONS' in os.environ:
@ -1048,8 +1054,6 @@ def start_server_background(context):
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_listen_addr = context.server_fqdn
if os.name == 'nt':
server_listen_addr = '0.0.0.0'
server_args = [
'--host', server_listen_addr,
'--port', context.server_port,
@ -1088,7 +1092,7 @@ def start_server_background(context):
server_args.append('--verbose')
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
server_args.extend(['--log-format', "text"])
print(f"starting server with: {context.server_path} {server_args}\n")
print(f"starting server with: {context.server_path} {server_args}")
flags = 0
if 'nt' == os.name:
flags |= subprocess.DETACHED_PROCESS

View file

@ -3,5 +3,4 @@ behave~=1.2.6
huggingface_hub~=0.20.3
numpy~=1.24.4
openai~=0.25.0
psutil~=5.9.8
prometheus-client~=0.20.0

View file

@ -371,6 +371,7 @@ static json oaicompat_completion_params_parse(
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
llama_params["n_keep"] = json_value(body, "n_keep", 0);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());

View file

@ -6,8 +6,6 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
set GGML_SYCL_DEVICE=0
rem set GGML_SYCL_DEBUG=1
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0

File diff suppressed because it is too large Load diff

View file

@ -13,7 +13,7 @@
extern "C" {
#endif
#define GGML_SYCL_MAX_DEVICES 16
#define GGML_SYCL_MAX_DEVICES 48
#define GGML_SYCL_NAME "SYCL"
GGML_API void ggml_init_sycl(void);