mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-15 11:29:43 +00:00
CANN: ROPE cache sin/cos repeat (#15501)
Signed-off-by: noemotiovon <757486878@qq.com>
This commit is contained in:
parent
043fb27d38
commit
c247d06f38
2 changed files with 135 additions and 88 deletions
|
@ -1257,12 +1257,20 @@ static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) {
|
|||
|
||||
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst) {
|
||||
if(acl_dst == nullptr) {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceCos, acl_src);
|
||||
} else {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Cos, acl_src, acl_dst);
|
||||
}
|
||||
}
|
||||
|
||||
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst) {
|
||||
if(acl_dst == nullptr) {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSin, acl_src);
|
||||
} else {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Sin, acl_src, acl_dst);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
|
||||
|
@ -2221,13 +2229,54 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
|
|||
ggml_cann_release_resources(ctx, acl_index, acl_value);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes and caches sine/cosine positional encoding values
|
||||
* (used in RoPE, Rotary Position Embedding) for attention layers.
|
||||
*
|
||||
* This function computes and caches the sin/cos values of
|
||||
* θ = position * theta_scale for RoPE encoding. The cache is shared
|
||||
* across attention layers, and only the first attention layer will
|
||||
* trigger initialization. The cache includes repeated sin/cos values
|
||||
* with different repeat methods depending on the @param is_neox flag.
|
||||
*
|
||||
* Steps performed by this function:
|
||||
* 1. Identify whether the target tensor belongs to Q/K in attention
|
||||
* and restrict computation to the first layer only.
|
||||
* 2. Initialize the theta scale array (arange → power → freq scaling).
|
||||
* 3. Allocate sin/cos caches if the max prompt length increases.
|
||||
* 4. Compute θ = position * theta_scale.
|
||||
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
|
||||
* 6. Expand sin/cos values by repeat or repeat_interleave depending
|
||||
* on whether @param is_neox is enabled.
|
||||
* 7. Store the computed values into persistent buffers
|
||||
* (ctx.rope_sin_ptr / ctx.rope_cos_ptr).
|
||||
*
|
||||
* @param ctx The CANN backend context, holding memory pool,
|
||||
* stream, and persistent buffers for rope init/cache.
|
||||
* @param dst The destination ggml_tensor whose computation
|
||||
* depends on the cached RoPE values (usually Qcur/Kcur).
|
||||
* @param theta_scale Scalar exponent base for computing theta scale values.
|
||||
* @param freq_scale Frequency scaling factor, applied to theta scale.
|
||||
* @param attn_factor Attention scaling factor, applied to sin/cos.
|
||||
* @param is_neox Whether to use Neox-style repeat strategy
|
||||
* (dim expansion vs repeat_interleave).
|
||||
*/
|
||||
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
aclTensor* acl_cos_repeat_tensor,
|
||||
aclTensor* acl_sin_repeat_tensor,
|
||||
float theta_scale, float freq_scale,
|
||||
float attn_factor, bool is_neox) {
|
||||
// int sin/cos cache, cache has different repeat method depond on
|
||||
// @param.is_neox
|
||||
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
|
||||
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
|
||||
|
||||
// used for accuracy testing
|
||||
bool is_attention = is_q || is_k;
|
||||
|
||||
// just compute in first layer in attention
|
||||
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
|
||||
if(is_attention && !is_fisrt_layer) {
|
||||
return;
|
||||
}
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // input
|
||||
ggml_tensor* src1 = dst->src[1]; // position
|
||||
|
@ -2253,21 +2302,16 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
|
||||
}
|
||||
|
||||
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
|
||||
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
|
||||
|
||||
// used for accuracy testing
|
||||
bool is_attention = is_q || is_k;
|
||||
|
||||
if(ctx.init_ptr == nullptr || !is_attention) {
|
||||
// init theta scale, just one time
|
||||
if(ctx.rope_init_ptr == nullptr || !is_attention) {
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
if(ctx.init_ptr != nullptr){
|
||||
ACL_CHECK(aclrtFree(ctx.init_ptr));
|
||||
if(ctx.rope_init_ptr != nullptr){
|
||||
ACL_CHECK(aclrtFree(ctx.rope_init_ptr));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
|
@ -2297,26 +2341,20 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
|
||||
}
|
||||
|
||||
if(ctx.sin_ptr == nullptr) {
|
||||
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
|
||||
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
// init sin_repeat && cos_repeat, one token just init in 0 layer
|
||||
if(position_length > ctx.max_prompt_length) {
|
||||
ctx.max_prompt_length = position_length;
|
||||
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
|
||||
ACL_CHECK(aclrtFree(ctx.sin_ptr));
|
||||
ACL_CHECK(aclrtFree(ctx.cos_ptr));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
int64_t repeat_theta_length = theta_scale_length * ctx.max_prompt_length * 2;
|
||||
if(ctx.rope_sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(ctx.rope_sin_ptr));
|
||||
ACL_CHECK(aclrtFree(ctx.rope_cos_ptr));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_sin_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_cos_ptr, repeat_theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
|
||||
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
|
||||
|
||||
if(is_fisrt_layer || !is_attention) {
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(ctx.rope_init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
|
||||
// position
|
||||
|
@ -2337,34 +2375,41 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
acl_theta_tensor);
|
||||
|
||||
// sin/cos
|
||||
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* sin_buffer = sin_allocator.get();
|
||||
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
|
||||
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
|
||||
|
||||
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* cos_buffer = cos_allocator.get();
|
||||
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
|
||||
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
|
||||
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
|
||||
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor);
|
||||
}
|
||||
|
||||
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
|
||||
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
|
||||
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
|
||||
// attn_factor
|
||||
if (attn_factor != 1) {
|
||||
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true);
|
||||
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
|
||||
}
|
||||
|
||||
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_sin_repeat_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_cos_repeat_tensor =
|
||||
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
|
||||
// repeat
|
||||
if (is_neox) {
|
||||
int64_t repeatsArray[] = {1, 1, 1, 2};
|
||||
|
@ -2380,8 +2425,9 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
num_repeats, output_size);
|
||||
}
|
||||
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_sin_tensor, acl_cos_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
|
||||
acl_theta_tensor, acl_sin_tensor, acl_sin_repeat_tensor, acl_cos_tensor,
|
||||
acl_cos_repeat_tensor);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -2435,13 +2481,8 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
|
||||
// init cos/sin cache
|
||||
ggml_cann_pool_alloc sin_allocator(
|
||||
ctx.pool(), ne00 * ne02 * sizeof(float_t));
|
||||
ggml_cann_pool_alloc cos_allocator(
|
||||
ctx.pool(), ne00 * ne02 * sizeof(float_t));
|
||||
void* sin_buffer = sin_allocator.get();
|
||||
void* cos_buffer = cos_allocator.get();
|
||||
// init ctx.rope_cos/rope_sin cache
|
||||
aclnn_cache_init(ctx, dst, theta_scale, freq_scale, attn_factor, is_neox);
|
||||
|
||||
int64_t sin_reshape_ne[4] = {ne00, 1, ne02, 1};
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
|
@ -2450,13 +2491,11 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
|||
sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_sin_reshape_tensor =
|
||||
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(ctx.rope_sin_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_cos_reshape_tensor =
|
||||
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
ggml_cann_create_tensor(ctx.rope_cos_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
|
||||
theta_scale, freq_scale, attn_factor, is_neox);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
|
|
@ -368,10 +368,6 @@ struct ggml_backend_cann_context {
|
|||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
void* init_ptr = nullptr;
|
||||
void* sin_ptr = nullptr;
|
||||
void* cos_ptr = nullptr;
|
||||
int64_t max_prompt_length = 65536;
|
||||
#ifdef USE_ACL_GRAPH
|
||||
/// Cached CANN ACL graph used for executing the current ggml computation graph.
|
||||
std::unique_ptr<ggml_cann_graph> cann_graph;
|
||||
|
@ -379,6 +375,12 @@ struct ggml_backend_cann_context {
|
|||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
bool support_set_rows;
|
||||
// Rope Cache
|
||||
void* rope_init_ptr = nullptr;
|
||||
void* rope_sin_ptr = nullptr;
|
||||
void* rope_cos_ptr = nullptr;
|
||||
int64_t max_prompt_length = 0;
|
||||
// Constant Pool
|
||||
void* f32_zero_cache = nullptr;
|
||||
void* f32_one_cache = nullptr;
|
||||
int64_t f32_zero_cache_element = 0;
|
||||
|
@ -422,14 +424,20 @@ struct ggml_backend_cann_context {
|
|||
ACL_CHECK(aclrtDestroyStream(streams[i]));
|
||||
}
|
||||
}
|
||||
if(init_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(init_ptr));
|
||||
if(rope_init_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_init_ptr));
|
||||
}
|
||||
if(sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(sin_ptr));
|
||||
if(rope_sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_sin_ptr));
|
||||
}
|
||||
if(cos_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cos_ptr));
|
||||
if(rope_cos_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(rope_cos_ptr));
|
||||
}
|
||||
if(f32_zero_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_zero_cache));
|
||||
}
|
||||
if(f32_one_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(f32_one_cache));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue