mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # CMakeLists.txt # Makefile # Package.swift # build.zig # tests/test-backend-ops.cpp
This commit is contained in:
commit
bfbaf0011c
16 changed files with 2005 additions and 141 deletions
318
llama.cpp
318
llama.cpp
|
@ -108,7 +108,7 @@
|
|||
#endif
|
||||
|
||||
#define LLAMA_MAX_NODES 8192
|
||||
#define LLAMA_MAX_EXPERTS 16
|
||||
#define LLAMA_MAX_EXPERTS 60
|
||||
|
||||
|
||||
//
|
||||
|
@ -231,6 +231,7 @@ enum llm_arch {
|
|||
LLM_ARCH_STABLELM,
|
||||
LLM_ARCH_QWEN,
|
||||
LLM_ARCH_QWEN2,
|
||||
LLM_ARCH_QWEN2MOE,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
|
@ -264,6 +265,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_STABLELM, "stablelm" },
|
||||
{ LLM_ARCH_QWEN, "qwen" },
|
||||
{ LLM_ARCH_QWEN2, "qwen2" },
|
||||
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
|
@ -459,6 +461,7 @@ enum llm_tensor {
|
|||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
|
@ -470,6 +473,9 @@ enum llm_tensor {
|
|||
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_UP_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||||
LLM_TENSOR_FFN_UP_SHEXP,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_LAYER_OUT_NORM,
|
||||
|
@ -732,6 +738,8 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -767,6 +775,28 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_QWEN2MOE,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PHI2,
|
||||
{
|
||||
|
@ -1742,6 +1772,7 @@ enum e_model {
|
|||
MODEL_4B,
|
||||
MODEL_7B,
|
||||
MODEL_8B,
|
||||
MODEL_12B,
|
||||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
|
@ -1757,6 +1788,7 @@ enum e_model {
|
|||
MODEL_MEDIUM,
|
||||
MODEL_LARGE,
|
||||
MODEL_XL,
|
||||
MODEL_A2_7B,
|
||||
MODEL_8x7B,
|
||||
MODEL_8x22B,
|
||||
MODEL_16x12B,
|
||||
|
@ -1943,6 +1975,12 @@ struct llama_layer {
|
|||
struct ggml_tensor * ffn_down_exps;
|
||||
struct ggml_tensor * ffn_up_exps ;
|
||||
|
||||
// ff shared expert (shexp)
|
||||
struct ggml_tensor * ffn_gate_inp_shexp;
|
||||
struct ggml_tensor * ffn_gate_shexp;
|
||||
struct ggml_tensor * ffn_down_shexp;
|
||||
struct ggml_tensor * ffn_up_shexp;
|
||||
|
||||
// ff bias
|
||||
struct ggml_tensor * ffn_down_b; // b2
|
||||
struct ggml_tensor * ffn_up_b; // b3
|
||||
|
@ -3616,6 +3654,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_3B: return "3B";
|
||||
case MODEL_7B: return "7B";
|
||||
case MODEL_8B: return "8B";
|
||||
case MODEL_12B: return "12B";
|
||||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
|
@ -3631,6 +3670,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_MEDIUM: return "0.4B";
|
||||
case MODEL_LARGE: return "0.8B";
|
||||
case MODEL_XL: return "1.5B";
|
||||
case MODEL_A2_7B: return "A2.7B";
|
||||
case MODEL_8x7B: return "8x7B";
|
||||
case MODEL_8x22B: return "8x22B";
|
||||
case MODEL_16x12B: return "16x12B";
|
||||
|
@ -3906,6 +3946,7 @@ static void llm_load_hparams(
|
|||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
case 40: model.type = e_model::MODEL_12B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
|
@ -3930,6 +3971,14 @@ static void llm_load_hparams(
|
|||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_A2_7B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHI2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
@ -4132,9 +4181,11 @@ static void llm_load_vocab(
|
|||
// CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
|
||||
// new versions of these models have been published.
|
||||
std::string gen_name;
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, gen_name);
|
||||
ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
|
||||
|
||||
std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
|
||||
[](unsigned char c){ return std::tolower(c); });
|
||||
|
||||
if (gen_name.find("code") != std::string::npos) {
|
||||
if (model.arch == LLM_ARCH_LLAMA) {
|
||||
vocab.special_prefix_id = 32007;
|
||||
|
@ -5154,8 +5205,13 @@ static bool llm_load_tensors(
|
|||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
|
||||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||||
// optional q and k layernorms, present in StableLM 2 12B
|
||||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
|
||||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
|
||||
|
||||
// optional FFN norm, not present in StableLM 2 12B which uses parallel residual
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
|
||||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
|
||||
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
|
@ -5226,6 +5282,54 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
|
||||
// optional bias tensors
|
||||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||||
|
||||
GGML_ASSERT(hparams.n_expert > 0);
|
||||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||||
|
||||
// MoE branch
|
||||
auto n_ff_exp = n_ff / hparams.n_expert_used;
|
||||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
|
||||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||||
|
||||
// Shared expert branch
|
||||
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
|
||||
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHI2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
@ -6602,7 +6706,7 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
@ -6635,7 +6739,7 @@ struct llm_build_context {
|
|||
}
|
||||
|
||||
// REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505
|
||||
ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) {
|
||||
ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, bool norm_w, int il) {
|
||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
|
@ -6652,11 +6756,13 @@ struct llm_build_context {
|
|||
|
||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
if (norm_w) {
|
||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||
cb(weights, "ffn_moe_weights_norm", il);
|
||||
}
|
||||
|
||||
// compute expert outputs
|
||||
ggml_tensor * moe_out = nullptr;
|
||||
|
@ -7153,7 +7259,7 @@ struct llm_build_context {
|
|||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il);
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, true, il);
|
||||
|
||||
// Grok
|
||||
// if layer_out_norm is present then apply it before adding the input
|
||||
|
@ -7289,7 +7395,7 @@ struct llm_build_context {
|
|||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_out_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
|
||||
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, true, il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
@ -8173,7 +8279,7 @@ struct llm_build_context {
|
|||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
|
@ -8182,6 +8288,8 @@ struct llm_build_context {
|
|||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
struct ggml_tensor * inpSA = cur;
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
|
@ -8206,15 +8314,36 @@ struct llm_build_context {
|
|||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
cb(Qcur, "Qcur", il);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
if (model.layers[il].attn_q_norm) {
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||||
model.layers[il].attn_q_norm,
|
||||
NULL,
|
||||
LLM_NORM, cb, il);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
if (model.layers[il].attn_k_norm) {
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||||
model.layers[il].attn_k_norm,
|
||||
NULL,
|
||||
LLM_NORM, cb, il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
ctx0, Qcur, inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
ctx0, Kcur, inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
@ -8229,20 +8358,25 @@ struct llm_build_context {
|
|||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm,
|
||||
model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
if (model.layers[il].ffn_norm) {
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm,
|
||||
model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
} else {
|
||||
// parallel residual
|
||||
cur = inpSA;
|
||||
}
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
|
@ -8504,6 +8638,141 @@ struct llm_build_context {
|
|||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_qwen2moe() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self_attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// MoE branch
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * moe_out = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, false, il);
|
||||
|
||||
// FFN shared expert
|
||||
{
|
||||
ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
|
||||
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
|
||||
|
||||
// sigmoid
|
||||
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
|
||||
cb(cur_gate, "ffn_shexp_gate", il);
|
||||
|
||||
ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up_shexp, NULL,
|
||||
model.layers[il].ffn_gate_shexp, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur_ffn, "ffn_shexp", il);
|
||||
|
||||
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
|
||||
cb(ffn_shexp_out, "ffn_shexp_out", il);
|
||||
|
||||
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
|
||||
cb(moe_out, "ffn_out", il);
|
||||
|
||||
cur = moe_out;
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_phi2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
|
@ -9987,6 +10256,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
{
|
||||
result = llm.build_qwen2();
|
||||
} break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
result = llm.build_qwen2moe();
|
||||
} break;
|
||||
case LLM_ARCH_PHI2:
|
||||
{
|
||||
result = llm.build_phi2();
|
||||
|
@ -15139,6 +15412,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||
case LLM_ARCH_STABLELM:
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue