From 580111d42b3b6ad0a390bfb267d6e3077506eb31 Mon Sep 17 00:00:00 2001 From: postmasters Date: Wed, 21 Feb 2024 05:08:22 -0800 Subject: [PATCH 01/12] llama : add `gemma` model (#5631) There are couple things in this architecture: 1. Shared input and output embedding parameters. 2. Key length and value length are not derived from `n_embd`. More information about the models can be found at https://ai.google.dev/gemma. GGUFs can be downloaded from https://huggingface.co/google. --- README.md | 1 + gguf-py/gguf/constants.py | 15 ++++ llama.cpp | 170 ++++++++++++++++++++++++++++++++++++++ 3 files changed, 186 insertions(+) diff --git a/README.md b/README.md index 747d2e98b..225db8e49 100644 --- a/README.md +++ b/README.md @@ -107,6 +107,7 @@ Typically finetunes of the base models below are supported as well. - [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118) - [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [CodeShell](https://github.com/WisdomShell/codeshell) +- [x] [Gemma](https://ai.google.dev/gemma) **Multimodal models:** diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 114a9a974..8f9139d1b 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -111,6 +111,7 @@ class MODEL_ARCH(IntEnum): ORION = auto() INTERNLM2 = auto() MINICPM = auto() + GEMMA = auto() class MODEL_TENSOR(IntEnum): @@ -167,6 +168,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.ORION: "orion", MODEL_ARCH.INTERNLM2: "internlm2", MODEL_ARCH.MINICPM: "minicpm", + MODEL_ARCH.GEMMA: "gemma", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -511,6 +513,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.GEMMA: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_NORM, + ], # TODO } diff --git a/llama.cpp b/llama.cpp index 3748d5eac..3a226c426 100644 --- a/llama.cpp +++ b/llama.cpp @@ -208,6 +208,7 @@ enum llm_arch { LLM_ARCH_ORION, LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, + LLM_ARCH_GEMMA, LLM_ARCH_UNKNOWN, }; @@ -234,6 +235,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_ORION, "orion" }, { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_GEMMA, "gemma" }, }; enum llm_kv { @@ -760,6 +762,22 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, }, }, + { + LLM_ARCH_GEMMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -3243,6 +3261,16 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GEMMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 18: model.type = e_model::MODEL_2B; break; + case 28: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -4360,6 +4388,37 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_GEMMA: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + + const int64_t n_ff = hparams.n_ff; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + for (uint32_t i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -7366,6 +7425,113 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_gemma() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head_k = hparams.n_embd_head_k; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); + cb(inpL, "inp_embd", -1); + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); + cb(inp_pos, "inp_pos", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); + cb(KQ_mask, "KQ_mask", -1); + + // shift the entire K-cache if needed + if (do_rope_shift) { + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + } + + for (int il = 0; il < n_layer; ++il) { + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, + n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + cb(Qcur, "Qcur_scaled", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, + n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + cb(cur, "kqv_out", il); + } + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); + cb(sa_out, "sa_out", il); + + cur = llm_build_norm(ctx0, sa_out, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, sa_out); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.tok_embd, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph( @@ -7474,6 +7640,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_minicpm(); } break; + case LLM_ARCH_GEMMA: + { + result = llm.build_gemma(); + } break; default: GGML_ASSERT(false); } From cc6cac08e38e32bf40bbe07e9e8f8f0130b5fd94 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Wed, 21 Feb 2024 14:36:57 +0100 Subject: [PATCH 02/12] llava : add --skip-unknown to 1.6 convert.py (#5632) This commit adds the `--skip-unknown` option to the convert.py script and removes the saving of the updated checkpoints to avoid updating possibly checked out files. The motivation for this change is that this was done for 1.5 in Commit fc0c8d286a533363a9a663510b62af85ffad58b3 ("llava : update surgery script to not remove tensors") and makes the examples more consistent. Signed-off-by: Daniel Bevenius --- examples/llava/README.md | 13 ++++++------- examples/llava/llava-surgery-v2.py | 12 ------------ 2 files changed, 6 insertions(+), 19 deletions(-) diff --git a/examples/llava/README.md b/examples/llava/README.md index 25ea96715..35e6d9e5d 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -63,13 +63,12 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director ```console git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b ``` -2) Backup your pth/safetensor model files as llava-surgery modifies them -3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: +2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models: ```console python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/ ``` - you will find a llava.projector and a llava.clip file in your model directory -4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory: +3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory: ```console mkdir vit cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin @@ -77,18 +76,18 @@ cp ../llava-v1.6-vicuna-7b/llava.projector vit/ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json ``` -5) Create the visual gguf model: +4) Create the visual gguf model: ```console python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision ``` - This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP -6) Then convert the model to gguf format: +5) Then convert the model to gguf format: ```console -python ./convert.py ../llava-v1.6-vicuna-7b/ +python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown ``` -7) And finally we can run the llava-cli using the 1.6 model version: +6) And finally we can run the llava-cli using the 1.6 model version: ```console ./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096 ``` diff --git a/examples/llava/llava-surgery-v2.py b/examples/llava/llava-surgery-v2.py index 5bc5bc513..eb56d6988 100644 --- a/examples/llava/llava-surgery-v2.py +++ b/examples/llava/llava-surgery-v2.py @@ -65,9 +65,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path): for name in clip_tensors: del checkpoint[name] - # Save the updated checkpoint checkpoint_path = checkpoint_path - save_model(checkpoint, checkpoint_path, file_type) return True return False @@ -152,16 +150,6 @@ for name in first_mm_tensors: if len(projector) > 0: save_model(projector, f"{args.model}/llava.projector", 'pytorch') -for name in mm_tensors: - del last_checkpoint[name] -for name in first_mm_tensors: - del first_checkpoint[name] - -if len(mm_tensors) > 0: - save_model(last_checkpoint, projector_checkpoint_path, file_type) -if len(first_mm_tensors) > 0: - save_model(first_checkpoint, newline_checkpoint_path, file_type) - print("Done!") print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.") print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.") From c14f72db9c62d71d35eb1c141745c0bd0cb27b49 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 21 Feb 2024 15:39:54 +0200 Subject: [PATCH 03/12] readme : update hot topics --- README.md | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 225db8e49..ce5dec7ca 100644 --- a/README.md +++ b/README.md @@ -10,13 +10,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) ### Hot topics -- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240 -- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138 - - [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series) -- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow -- Collecting Apple Silicon performance stats: - - M-series: https://github.com/ggerganov/llama.cpp/discussions/4167 - - A-series: https://github.com/ggerganov/llama.cpp/discussions/4508 +- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631 +- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590 - Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216 ---- From eccd7a26ddbff19e4b8805648f5f14c501957859 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 21 Feb 2024 16:17:10 +0200 Subject: [PATCH 04/12] sync : ggml (#5633) * ggml : fix conv_2d batch mode (ggml/737) Co-authored-by: bssrdf * ggml : compute forward no longer pass src tensors (ggml/729) * sync : ggml ggml-ci --------- Co-authored-by: bssrdf Co-authored-by: bssrdf --- ggml.c | 1150 +++++++++++++++++++++++++--------------- scripts/sync-ggml.last | 2 +- 2 files changed, 711 insertions(+), 441 deletions(-) diff --git a/ggml.c b/ggml.c index 91adbb0ae..5b9fa741a 100644 --- a/ggml.c +++ b/ggml.c @@ -5644,7 +5644,9 @@ struct ggml_tensor * ggml_conv_2d( ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW] ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW] - result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW] + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW] + result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW] + return result; } @@ -6650,8 +6652,10 @@ void ggml_set_param( static void ggml_compute_forward_dup_same_cont( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == dst->type); @@ -6682,8 +6686,10 @@ static void ggml_compute_forward_dup_same_cont( } static void ggml_compute_forward_dup_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -6696,7 +6702,7 @@ static void ggml_compute_forward_dup_f16( const int nth = params->nth; // number of threads if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -6953,8 +6959,10 @@ static void ggml_compute_forward_dup_f16( static void ggml_compute_forward_dup_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -6967,7 +6975,7 @@ static void ggml_compute_forward_dup_f32( const int nth = params->nth; // number of threads if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -7203,8 +7211,10 @@ static void ggml_compute_forward_dup_f32( // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy. static void ggml_compute_forward_dup_bytes( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(src0->type == dst->type); @@ -7213,7 +7223,7 @@ static void ggml_compute_forward_dup_bytes( } if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { - ggml_compute_forward_dup_same_cont(params, src0, dst); + ggml_compute_forward_dup_same_cont(params, dst); return; } @@ -7352,21 +7362,23 @@ static void ggml_compute_forward_dup_bytes( static void ggml_compute_forward_dup( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + if (src0->type == dst->type) { - ggml_compute_forward_dup_bytes(params, src0, dst); + ggml_compute_forward_dup_bytes(params, dst); return; } switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_dup_f16(params, src0, dst); + ggml_compute_forward_dup_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_dup_f32(params, src0, dst); + ggml_compute_forward_dup_f32(params, dst); } break; default: { @@ -7379,9 +7391,11 @@ static void ggml_compute_forward_dup( static void ggml_compute_forward_add_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -7467,9 +7481,11 @@ static void ggml_compute_forward_add_f32( static void ggml_compute_forward_add_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -7544,9 +7560,11 @@ static void ggml_compute_forward_add_f16_f32( static void ggml_compute_forward_add_f16_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -7598,9 +7616,11 @@ static void ggml_compute_forward_add_f16_f16( static void ggml_compute_forward_add_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -7676,14 +7696,16 @@ static void ggml_compute_forward_add_q_f32( static void ggml_compute_forward_add( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + switch (src0->type) { case GGML_TYPE_F32: { if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add_f32(params, src0, src1, dst); + ggml_compute_forward_add_f32(params, dst); } else { GGML_ASSERT(false); @@ -7692,10 +7714,10 @@ static void ggml_compute_forward_add( case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { - ggml_compute_forward_add_f16_f16(params, src0, src1, dst); + ggml_compute_forward_add_f16_f16(params, dst); } else if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add_f16_f32(params, src0, src1, dst); + ggml_compute_forward_add_f16_f32(params, dst); } else { GGML_ASSERT(false); @@ -7717,7 +7739,7 @@ static void ggml_compute_forward_add( case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ4_NL: { - ggml_compute_forward_add_q_f32(params, src0, src1, dst); + ggml_compute_forward_add_q_f32(params, dst); } break; default: { @@ -7730,9 +7752,11 @@ static void ggml_compute_forward_add( static void ggml_compute_forward_add1_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); @@ -7782,9 +7806,11 @@ static void ggml_compute_forward_add1_f32( static void ggml_compute_forward_add1_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); @@ -7832,9 +7858,11 @@ static void ggml_compute_forward_add1_f16_f32( static void ggml_compute_forward_add1_f16_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); @@ -7882,9 +7910,11 @@ static void ggml_compute_forward_add1_f16_f16( static void ggml_compute_forward_add1_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_scalar(src1)); @@ -7949,21 +7979,23 @@ static void ggml_compute_forward_add1_q_f32( static void ggml_compute_forward_add1( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_add1_f32(params, src0, src1, dst); + ggml_compute_forward_add1_f32(params, dst); } break; case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { - ggml_compute_forward_add1_f16_f16(params, src0, src1, dst); + ggml_compute_forward_add1_f16_f16(params, dst); } else if (src1->type == GGML_TYPE_F32) { - ggml_compute_forward_add1_f16_f32(params, src0, src1, dst); + ggml_compute_forward_add1_f16_f32(params, dst); } else { GGML_ASSERT(false); @@ -7986,7 +8018,7 @@ static void ggml_compute_forward_add1( case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ4_NL: { - ggml_compute_forward_add1_q_f32(params, src0, src1, dst); + ggml_compute_forward_add1_q_f32(params, dst); } break; default: { @@ -7999,9 +8031,11 @@ static void ggml_compute_forward_add1( static void ggml_compute_forward_acc_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); @@ -8081,14 +8115,14 @@ static void ggml_compute_forward_acc_f32( static void ggml_compute_forward_acc( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_acc_f32(params, src0, src1, dst); + ggml_compute_forward_acc_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -8118,9 +8152,11 @@ static void ggml_compute_forward_acc( static void ggml_compute_forward_sub_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); @@ -8178,13 +8214,14 @@ static void ggml_compute_forward_sub_f32( static void ggml_compute_forward_sub( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sub_f32(params, src0, src1, dst); + ggml_compute_forward_sub_f32(params, dst); } break; default: { @@ -8197,9 +8234,11 @@ static void ggml_compute_forward_sub( static void ggml_compute_forward_mul_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -8280,15 +8319,17 @@ static void ggml_compute_forward_mul_f32( static void ggml_compute_forward_mul( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now"); switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_mul_f32(params, src0, src1, dst); + ggml_compute_forward_mul_f32(params, dst); } break; default: { @@ -8301,9 +8342,11 @@ static void ggml_compute_forward_mul( static void ggml_compute_forward_div_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -8374,13 +8417,14 @@ static void ggml_compute_forward_div_f32( static void ggml_compute_forward_div( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_div_f32(params, src0, src1, dst); + ggml_compute_forward_div_f32(params, dst); } break; default: { @@ -8393,8 +8437,10 @@ static void ggml_compute_forward_div( static void ggml_compute_forward_sqr_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -8417,12 +8463,14 @@ static void ggml_compute_forward_sqr_f32( static void ggml_compute_forward_sqr( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sqr_f32(params, src0, dst); + ggml_compute_forward_sqr_f32(params, dst); } break; default: { @@ -8435,8 +8483,10 @@ static void ggml_compute_forward_sqr( static void ggml_compute_forward_sqrt_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -8459,12 +8509,14 @@ static void ggml_compute_forward_sqrt_f32( static void ggml_compute_forward_sqrt( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sqrt_f32(params, src0, dst); + ggml_compute_forward_sqrt_f32(params, dst); } break; default: { @@ -8477,8 +8529,10 @@ static void ggml_compute_forward_sqrt( static void ggml_compute_forward_log_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_are_same_shape(src0, dst)); @@ -8501,12 +8555,14 @@ static void ggml_compute_forward_log_f32( static void ggml_compute_forward_log( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_log_f32(params, src0, dst); + ggml_compute_forward_log_f32(params, dst); } break; default: { @@ -8519,8 +8575,10 @@ static void ggml_compute_forward_log( static void ggml_compute_forward_sum_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_is_scalar(dst)); @@ -8552,8 +8610,10 @@ static void ggml_compute_forward_sum_f32( static void ggml_compute_forward_sum_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_is_scalar(dst)); @@ -8584,16 +8644,18 @@ static void ggml_compute_forward_sum_f16( static void ggml_compute_forward_sum( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sum_f32(params, src0, dst); + ggml_compute_forward_sum_f32(params, dst); } break; case GGML_TYPE_F16: { - ggml_compute_forward_sum_f16(params, src0, dst); + ggml_compute_forward_sum_f16(params, dst); } break; default: { @@ -8606,8 +8668,10 @@ static void ggml_compute_forward_sum( static void ggml_compute_forward_sum_rows_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -8639,12 +8703,14 @@ static void ggml_compute_forward_sum_rows_f32( static void ggml_compute_forward_sum_rows( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sum_rows_f32(params, src0, dst); + ggml_compute_forward_sum_rows_f32(params, dst); } break; default: { @@ -8657,8 +8723,10 @@ static void ggml_compute_forward_sum_rows( static void ggml_compute_forward_mean_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -8694,12 +8762,14 @@ static void ggml_compute_forward_mean_f32( static void ggml_compute_forward_mean( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_mean_f32(params, src0, dst); + ggml_compute_forward_mean_f32(params, dst); } break; default: { @@ -8712,8 +8782,10 @@ static void ggml_compute_forward_mean( static void ggml_compute_forward_argmax_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -8740,12 +8812,14 @@ static void ggml_compute_forward_argmax_f32( static void ggml_compute_forward_argmax( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_argmax_f32(params, src0, dst); + ggml_compute_forward_argmax_f32(params, dst); } break; default: { @@ -8758,8 +8832,10 @@ static void ggml_compute_forward_argmax( static void ggml_compute_forward_repeat_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(src0, dst)); @@ -8801,8 +8877,10 @@ static void ggml_compute_forward_repeat_f32( static void ggml_compute_forward_repeat_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(src0, dst)); @@ -8847,18 +8925,20 @@ static void ggml_compute_forward_repeat_f16( static void ggml_compute_forward_repeat( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: case GGML_TYPE_I16: { - ggml_compute_forward_repeat_f16(params, src0, dst); + ggml_compute_forward_repeat_f16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_repeat_f32(params, src0, dst); + ggml_compute_forward_repeat_f32(params, dst); } break; default: { @@ -8871,8 +8951,10 @@ static void ggml_compute_forward_repeat( static void ggml_compute_forward_repeat_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_can_repeat(dst, src0)); @@ -8928,12 +9010,14 @@ static void ggml_compute_forward_repeat_back_f32( static void ggml_compute_forward_repeat_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_repeat_back_f32(params, src0, dst); + ggml_compute_forward_repeat_back_f32(params, dst); } break; default: { @@ -8946,10 +9030,11 @@ static void ggml_compute_forward_repeat_back( static void ggml_compute_forward_concat_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -8994,14 +9079,15 @@ static void ggml_compute_forward_concat_f32( static void ggml_compute_forward_concat( const struct ggml_compute_params* params, - const struct ggml_tensor* src0, - const struct ggml_tensor* src1, struct ggml_tensor* dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_concat_f32(params, src0, src1, dst); + ggml_compute_forward_concat_f32(params, dst); } break; default: { @@ -9014,8 +9100,10 @@ static void ggml_compute_forward_concat( static void ggml_compute_forward_abs_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9038,12 +9126,14 @@ static void ggml_compute_forward_abs_f32( static void ggml_compute_forward_abs( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_abs_f32(params, src0, dst); + ggml_compute_forward_abs_f32(params, dst); } break; default: { @@ -9056,8 +9146,10 @@ static void ggml_compute_forward_abs( static void ggml_compute_forward_sgn_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9080,12 +9172,14 @@ static void ggml_compute_forward_sgn_f32( static void ggml_compute_forward_sgn( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_sgn_f32(params, src0, dst); + ggml_compute_forward_sgn_f32(params, dst); } break; default: { @@ -9098,8 +9192,10 @@ static void ggml_compute_forward_sgn( static void ggml_compute_forward_neg_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9122,12 +9218,14 @@ static void ggml_compute_forward_neg_f32( static void ggml_compute_forward_neg( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_neg_f32(params, src0, dst); + ggml_compute_forward_neg_f32(params, dst); } break; default: { @@ -9140,8 +9238,10 @@ static void ggml_compute_forward_neg( static void ggml_compute_forward_step_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9164,12 +9264,14 @@ static void ggml_compute_forward_step_f32( static void ggml_compute_forward_step( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_step_f32(params, src0, dst); + ggml_compute_forward_step_f32(params, dst); } break; default: { @@ -9182,8 +9284,10 @@ static void ggml_compute_forward_step( static void ggml_compute_forward_tanh_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9206,12 +9310,14 @@ static void ggml_compute_forward_tanh_f32( static void ggml_compute_forward_tanh( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_tanh_f32(params, src0, dst); + ggml_compute_forward_tanh_f32(params, dst); } break; default: { @@ -9224,8 +9330,10 @@ static void ggml_compute_forward_tanh( static void ggml_compute_forward_elu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9248,12 +9356,14 @@ static void ggml_compute_forward_elu_f32( static void ggml_compute_forward_elu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_elu_f32(params, src0, dst); + ggml_compute_forward_elu_f32(params, dst); } break; default: { @@ -9266,8 +9376,10 @@ static void ggml_compute_forward_elu( static void ggml_compute_forward_relu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9290,12 +9402,14 @@ static void ggml_compute_forward_relu_f32( static void ggml_compute_forward_relu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_relu_f32(params, src0, dst); + ggml_compute_forward_relu_f32(params, dst); } break; default: { @@ -9308,8 +9422,10 @@ static void ggml_compute_forward_relu( static void ggml_compute_forward_gelu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); @@ -9349,12 +9465,14 @@ static void ggml_compute_forward_gelu_f32( static void ggml_compute_forward_gelu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_gelu_f32(params, src0, dst); + ggml_compute_forward_gelu_f32(params, dst); } break; default: { @@ -9367,8 +9485,10 @@ static void ggml_compute_forward_gelu( static void ggml_compute_forward_gelu_quick_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); @@ -9408,12 +9528,14 @@ static void ggml_compute_forward_gelu_quick_f32( static void ggml_compute_forward_gelu_quick( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_gelu_quick_f32(params, src0, dst); + ggml_compute_forward_gelu_quick_f32(params, dst); } break; default: { @@ -9426,8 +9548,10 @@ static void ggml_compute_forward_gelu_quick( static void ggml_compute_forward_silu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); @@ -9467,12 +9591,14 @@ static void ggml_compute_forward_silu_f32( static void ggml_compute_forward_silu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_silu_f32(params, src0, dst); + ggml_compute_forward_silu_f32(params, dst); } break; default: { @@ -9484,8 +9610,10 @@ static void ggml_compute_forward_silu( static void ggml_compute_forward_leaky_relu_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9511,12 +9639,14 @@ static void ggml_compute_forward_leaky_relu_f32( static void ggml_compute_forward_leaky_relu( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_leaky_relu_f32(params, src0, dst); + ggml_compute_forward_leaky_relu_f32(params, dst); } break; default: { @@ -9529,9 +9659,11 @@ static void ggml_compute_forward_leaky_relu( static void ggml_compute_forward_silu_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * grad, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * grad = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); @@ -9574,13 +9706,14 @@ static void ggml_compute_forward_silu_back_f32( static void ggml_compute_forward_silu_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * grad, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_silu_back_f32(params, src0, grad, dst); + ggml_compute_forward_silu_back_f32(params, dst); } break; default: { @@ -9592,8 +9725,10 @@ static void ggml_compute_forward_silu_back( static void ggml_compute_forward_hardswish_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9615,12 +9750,14 @@ static void ggml_compute_forward_hardswish_f32( } static void ggml_compute_forward_hardswish( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_hardswish_f32(params, src0, dst); + ggml_compute_forward_hardswish_f32(params, dst); } break; default: { @@ -9631,8 +9768,10 @@ static void ggml_compute_forward_hardswish( static void ggml_compute_forward_hardsigmoid_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, dst)); @@ -9655,12 +9794,14 @@ static void ggml_compute_forward_hardsigmoid_f32( static void ggml_compute_forward_hardsigmoid( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_hardsigmoid_f32(params, src0, dst); + ggml_compute_forward_hardsigmoid_f32(params, dst); } break; default: { @@ -9674,8 +9815,10 @@ static void ggml_compute_forward_hardsigmoid( static void ggml_compute_forward_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -9727,12 +9870,14 @@ static void ggml_compute_forward_norm_f32( static void ggml_compute_forward_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_norm_f32(params, src0, dst); + ggml_compute_forward_norm_f32(params, dst); } break; default: { @@ -9745,8 +9890,10 @@ static void ggml_compute_forward_norm( static void ggml_compute_forward_rms_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -9795,12 +9942,14 @@ static void ggml_compute_forward_rms_norm_f32( static void ggml_compute_forward_rms_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_rms_norm_f32(params, src0, dst); + ggml_compute_forward_rms_norm_f32(params, dst); } break; default: { @@ -9811,9 +9960,11 @@ static void ggml_compute_forward_rms_norm( static void ggml_compute_forward_rms_norm_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -9968,13 +10119,14 @@ static void ggml_compute_forward_rms_norm_back_f32( static void ggml_compute_forward_rms_norm_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst); + ggml_compute_forward_rms_norm_back_f32(params, dst); } break; default: { @@ -9987,8 +10139,10 @@ static void ggml_compute_forward_rms_norm_back( static void ggml_compute_forward_group_norm_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -10059,12 +10213,14 @@ static void ggml_compute_forward_group_norm_f32( static void ggml_compute_forward_group_norm( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_group_norm_f32(params, src0, dst); + ggml_compute_forward_group_norm_f32(params, dst); } break; default: { @@ -10110,9 +10266,11 @@ static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) { static void ggml_compute_forward_mul_mat( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -10357,10 +10515,11 @@ static void ggml_compute_forward_mul_mat( static void ggml_compute_forward_mul_mat_id( const struct ggml_compute_params * params, - const struct ggml_tensor * ids, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * ids = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS GGML_TENSOR_BINARY_OP_LOCALS @@ -10551,9 +10710,11 @@ static void ggml_compute_forward_mul_mat_id( static void ggml_compute_forward_out_prod_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + // int64_t t0 = ggml_perf_time_us(); // UNUSED(t0); @@ -10743,9 +10904,11 @@ static void ggml_compute_forward_out_prod_f32( static void ggml_compute_forward_out_prod_q_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + // int64_t t0 = ggml_perf_time_us(); // UNUSED(t0); @@ -10856,9 +11019,10 @@ static void ggml_compute_forward_out_prod_q_f32( static void ggml_compute_forward_out_prod( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -10876,16 +11040,16 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ4_NL: { - ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_q_f32(params, dst); } break; case GGML_TYPE_F16: { GGML_ASSERT(false); // todo - // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst); + // ggml_compute_forward_out_prod_f16_f32(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_out_prod_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_f32(params, dst); } break; default: { @@ -10898,8 +11062,10 @@ static void ggml_compute_forward_out_prod( static void ggml_compute_forward_scale_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); @@ -10940,12 +11106,14 @@ static void ggml_compute_forward_scale_f32( static void ggml_compute_forward_scale( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_scale_f32(params, src0, dst); + ggml_compute_forward_scale_f32(params, dst); } break; default: { @@ -10958,9 +11126,11 @@ static void ggml_compute_forward_scale( static void ggml_compute_forward_set_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); @@ -11031,14 +11201,14 @@ static void ggml_compute_forward_set_f32( static void ggml_compute_forward_set( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_set_f32(params, src0, src1, dst); + ggml_compute_forward_set_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -11068,29 +11238,25 @@ static void ggml_compute_forward_set( static void ggml_compute_forward_cpy( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - ggml_compute_forward_dup(params, src0, dst); + ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_cont static void ggml_compute_forward_cont( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { - ggml_compute_forward_dup(params, src0, dst); + ggml_compute_forward_dup(params, dst); } // ggml_compute_forward_reshape static void ggml_compute_forward_reshape( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); UNUSED(dst); } @@ -11098,39 +11264,41 @@ static void ggml_compute_forward_reshape( static void ggml_compute_forward_view( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_permute static void ggml_compute_forward_permute( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_transpose static void ggml_compute_forward_transpose( const struct ggml_compute_params * params, - const struct ggml_tensor * src0) { + const struct ggml_tensor * dst) { // NOP UNUSED(params); - UNUSED(src0); + UNUSED(dst); } // ggml_compute_forward_get_rows static void ggml_compute_forward_get_rows_q( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11166,9 +11334,11 @@ static void ggml_compute_forward_get_rows_q( static void ggml_compute_forward_get_rows_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11201,9 +11371,11 @@ static void ggml_compute_forward_get_rows_f16( static void ggml_compute_forward_get_rows_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11236,9 +11408,10 @@ static void ggml_compute_forward_get_rows_f32( static void ggml_compute_forward_get_rows( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -11257,16 +11430,16 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ4_NL: { - ggml_compute_forward_get_rows_q(params, src0, src1, dst); + ggml_compute_forward_get_rows_q(params, dst); } break; case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_f16(params, src0, src1, dst); + ggml_compute_forward_get_rows_f16(params, dst); } break; case GGML_TYPE_F32: case GGML_TYPE_I32: { - ggml_compute_forward_get_rows_f32(params, src0, src1, dst); + ggml_compute_forward_get_rows_f32(params, dst); } break; default: { @@ -11297,9 +11470,11 @@ static void ggml_compute_forward_get_rows( static void ggml_compute_forward_get_rows_back_f32_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_is_contiguous(dst)); @@ -11334,9 +11509,11 @@ static void ggml_compute_forward_get_rows_back_f32_f16( static void ggml_compute_forward_get_rows_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(params->ith == 0); GGML_ASSERT(ggml_is_contiguous(dst)); @@ -11371,17 +11548,18 @@ static void ggml_compute_forward_get_rows_back_f32( static void ggml_compute_forward_get_rows_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst); + ggml_compute_forward_get_rows_back_f32_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst); + ggml_compute_forward_get_rows_back_f32(params, dst); } break; default: { @@ -11412,8 +11590,10 @@ static void ggml_compute_forward_get_rows_back( static void ggml_compute_forward_diag_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11452,12 +11632,14 @@ static void ggml_compute_forward_diag_f32( static void ggml_compute_forward_diag( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_f32(params, src0, dst); + ggml_compute_forward_diag_f32(params, dst); } break; default: { @@ -11470,10 +11652,11 @@ static void ggml_compute_forward_diag( static void ggml_compute_forward_diag_mask_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const float value) { + const struct ggml_tensor * src0 = dst->src[0]; + const int ith = params->ith; const int nth = params->nth; @@ -11523,12 +11706,14 @@ static void ggml_compute_forward_diag_mask_f32( static void ggml_compute_forward_diag_mask_inf( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY); + ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY); } break; default: { @@ -11539,12 +11724,14 @@ static void ggml_compute_forward_diag_mask_inf( static void ggml_compute_forward_diag_mask_zero( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_diag_mask_f32(params, src0, dst, 0); + ggml_compute_forward_diag_mask_f32(params, dst, 0); } break; default: { @@ -11557,10 +11744,12 @@ static void ggml_compute_forward_diag_mask_zero( static void ggml_compute_forward_soft_max_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + assert(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst)); @@ -11671,14 +11860,14 @@ static void ggml_compute_forward_soft_max_f32( static void ggml_compute_forward_soft_max( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst); + ggml_compute_forward_soft_max_f32(params, dst); } break; default: { @@ -11691,9 +11880,11 @@ static void ggml_compute_forward_soft_max( static void ggml_compute_forward_soft_max_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); @@ -11768,13 +11959,14 @@ static void ggml_compute_forward_soft_max_back_f32( static void ggml_compute_forward_soft_max_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst); + ggml_compute_forward_soft_max_back_f32(params, dst); } break; default: { @@ -11787,8 +11979,10 @@ static void ggml_compute_forward_soft_max_back( static void ggml_compute_forward_alibi_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11844,8 +12038,10 @@ static void ggml_compute_forward_alibi_f32( static void ggml_compute_forward_alibi_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11904,16 +12100,18 @@ static void ggml_compute_forward_alibi_f16( static void ggml_compute_forward_alibi( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_alibi_f16(params, src0, dst); + ggml_compute_forward_alibi_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_alibi_f32(params, src0, dst); + ggml_compute_forward_alibi_f32(params, dst); } break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -11946,8 +12144,10 @@ static void ggml_compute_forward_alibi( static void ggml_compute_forward_clamp_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -11986,12 +12186,14 @@ static void ggml_compute_forward_clamp_f32( static void ggml_compute_forward_clamp( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_clamp_f32(params, src0, dst); + ggml_compute_forward_clamp_f32(params, dst); } break; case GGML_TYPE_F16: case GGML_TYPE_Q4_0: @@ -12081,10 +12283,12 @@ GGML_CALL void ggml_rope_yarn_corr_dims( static void ggml_compute_forward_rope_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const bool forward) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -12257,10 +12461,12 @@ static void ggml_compute_forward_rope_f32( static void ggml_compute_forward_rope_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const bool forward) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -12422,17 +12628,18 @@ static void ggml_compute_forward_rope_f16( static void ggml_compute_forward_rope( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_f16(params, src0, src1, dst, true); + ggml_compute_forward_rope_f16(params, dst, true); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_f32(params, src0, src1, dst, true); + ggml_compute_forward_rope_f32(params, dst, true); } break; default: { @@ -12445,17 +12652,18 @@ static void ggml_compute_forward_rope( static void ggml_compute_forward_rope_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_f16(params, src0, src1, dst, false); + ggml_compute_forward_rope_f16(params, dst, false); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_f32(params, src0, src1, dst, false); + ggml_compute_forward_rope_f32(params, dst, false); } break; default: { @@ -12468,9 +12676,11 @@ static void ggml_compute_forward_rope_back( static void ggml_compute_forward_conv_transpose_1d_f16_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12565,9 +12775,11 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( static void ggml_compute_forward_conv_transpose_1d_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12662,17 +12874,18 @@ static void ggml_compute_forward_conv_transpose_1d_f32( static void ggml_compute_forward_conv_transpose_1d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst); + ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst); + ggml_compute_forward_conv_transpose_1d_f32(params, dst); } break; default: { @@ -12686,9 +12899,11 @@ static void ggml_compute_forward_conv_transpose_1d( // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12772,9 +12987,11 @@ static void ggml_compute_forward_im2col_f32( // dst: result [N, OH, OW, IC*KH*KW] static void ggml_compute_forward_im2col_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F16); @@ -12854,17 +13071,15 @@ static void ggml_compute_forward_im2col_f16( static void ggml_compute_forward_im2col( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { switch (dst->type) { case GGML_TYPE_F16: { - ggml_compute_forward_im2col_f16(params, src0, src1, dst); + ggml_compute_forward_im2col_f16(params, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_im2col_f32(params, src0, src1, dst); + ggml_compute_forward_im2col_f32(params, dst); } break; default: { @@ -12878,9 +13093,11 @@ static void ggml_compute_forward_im2col( static void ggml_compute_forward_conv_transpose_2d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -12984,9 +13201,11 @@ static void ggml_compute_forward_conv_transpose_2d( static void ggml_compute_forward_pool_1d_sk_p0( const struct ggml_compute_params * params, const enum ggml_op_pool op, - const struct ggml_tensor * src, const int k, struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + assert(src->type == GGML_TYPE_F32); assert(params->ith == 0); @@ -13035,7 +13254,6 @@ static void ggml_compute_forward_pool_1d_sk_p0( static void ggml_compute_forward_pool_1d( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { const int32_t * opts = (const int32_t *)dst->op_params; @@ -13046,15 +13264,17 @@ static void ggml_compute_forward_pool_1d( GGML_ASSERT(p0 == 0); // padding not supported GGML_ASSERT(k0 == s0); // only s = k supported - ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst); + ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst); } // ggml_compute_forward_pool_2d static void ggml_compute_forward_pool_2d( const struct ggml_compute_params * params, - const struct ggml_tensor * src, struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + GGML_ASSERT(src->type == GGML_TYPE_F32); GGML_ASSERT(params->ith == 0); @@ -13127,9 +13347,10 @@ static void ggml_compute_forward_pool_2d( static void ggml_compute_forward_upscale_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -13166,12 +13387,14 @@ static void ggml_compute_forward_upscale_f32( static void ggml_compute_forward_upscale( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_upscale_f32(params, src0, dst); + ggml_compute_forward_upscale_f32(params, dst); } break; default: { @@ -13184,9 +13407,10 @@ static void ggml_compute_forward_upscale( static void ggml_compute_forward_pad_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -13224,12 +13448,14 @@ static void ggml_compute_forward_pad_f32( static void ggml_compute_forward_pad( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_pad_f32(params, src0, dst); + ggml_compute_forward_pad_f32(params, dst); } break; default: { @@ -13242,9 +13468,10 @@ static void ggml_compute_forward_pad( static void ggml_compute_forward_argsort_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -13284,13 +13511,14 @@ static void ggml_compute_forward_argsort_f32( static void ggml_compute_forward_argsort( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_argsort_f32(params, src0, dst); + ggml_compute_forward_argsort_f32(params, dst); } break; default: { @@ -13303,11 +13531,13 @@ static void ggml_compute_forward_argsort( static void ggml_compute_forward_flash_attn_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -13493,11 +13723,13 @@ static void ggml_compute_forward_flash_attn_f32( static void ggml_compute_forward_flash_attn_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -13719,19 +13951,19 @@ static void ggml_compute_forward_flash_attn_f16( static void ggml_compute_forward_flash_attn( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + switch (q->type) { case GGML_TYPE_F16: { - ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst); + ggml_compute_forward_flash_attn_f16(params, masked, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst); + ggml_compute_forward_flash_attn_f32(params, masked, dst); } break; default: { @@ -13744,12 +13976,14 @@ static void ggml_compute_forward_flash_attn( static void ggml_compute_forward_flash_ff_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * a, // F16 - const struct ggml_tensor * b0, // F16 fc_w - const struct ggml_tensor * b1, // F32 fc_b - const struct ggml_tensor * c0, // F16 proj_w - const struct ggml_tensor * c1, // F32 proj_b struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; // F16 + const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w + const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b + const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w + const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -13877,16 +14111,14 @@ static void ggml_compute_forward_flash_ff_f16( static void ggml_compute_forward_flash_ff( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b0, - const struct ggml_tensor * b1, - const struct ggml_tensor * c0, - const struct ggml_tensor * c1, struct ggml_tensor * dst) { + + const struct ggml_tensor * b0 = dst->src[1]; + switch (b0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst); + ggml_compute_forward_flash_ff_f16(params, dst); } break; case GGML_TYPE_F32: { @@ -13903,12 +14135,14 @@ static void ggml_compute_forward_flash_ff( static void ggml_compute_forward_flash_attn_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, - const struct ggml_tensor * d, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + const struct ggml_tensor * d = dst->src[3]; + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -14256,16 +14490,15 @@ static void ggml_compute_forward_flash_attn_back_f32( static void ggml_compute_forward_flash_attn_back( const struct ggml_compute_params * params, - const struct ggml_tensor * q, - const struct ggml_tensor * k, - const struct ggml_tensor * v, - const struct ggml_tensor * d, const bool masked, struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + switch (q->type) { case GGML_TYPE_F32: { - ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst); + ggml_compute_forward_flash_attn_back_f32(params, masked, dst); } break; default: { @@ -14278,8 +14511,10 @@ static void ggml_compute_forward_flash_attn_back( static void ggml_compute_forward_win_part_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14322,12 +14557,14 @@ static void ggml_compute_forward_win_part_f32( static void ggml_compute_forward_win_part( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_win_part_f32(params, src0, dst); + ggml_compute_forward_win_part_f32(params, dst); } break; default: { @@ -14340,8 +14577,10 @@ static void ggml_compute_forward_win_part( static void ggml_compute_forward_win_unpart_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14382,12 +14621,14 @@ static void ggml_compute_forward_win_unpart_f32( static void ggml_compute_forward_win_unpart( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_win_unpart_f32(params, src0, dst); + ggml_compute_forward_win_unpart_f32(params, dst); } break; default: { @@ -14400,58 +14641,58 @@ static void ggml_compute_forward_win_unpart( static void ggml_compute_forward_unary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + const enum ggml_unary_op op = ggml_get_unary_op(dst); switch (op) { case GGML_UNARY_OP_ABS: { - ggml_compute_forward_abs(params, src0, dst); + ggml_compute_forward_abs(params, dst); } break; case GGML_UNARY_OP_SGN: { - ggml_compute_forward_sgn(params, src0, dst); + ggml_compute_forward_sgn(params, dst); } break; case GGML_UNARY_OP_NEG: { - ggml_compute_forward_neg(params, src0, dst); + ggml_compute_forward_neg(params, dst); } break; case GGML_UNARY_OP_STEP: { - ggml_compute_forward_step(params, src0, dst); + ggml_compute_forward_step(params, dst); } break; case GGML_UNARY_OP_TANH: { - ggml_compute_forward_tanh(params, src0, dst); + ggml_compute_forward_tanh(params, dst); } break; case GGML_UNARY_OP_ELU: { - ggml_compute_forward_elu(params, src0, dst); + ggml_compute_forward_elu(params, dst); } break; case GGML_UNARY_OP_RELU: { - ggml_compute_forward_relu(params, src0, dst); + ggml_compute_forward_relu(params, dst); } break; case GGML_UNARY_OP_GELU: { - ggml_compute_forward_gelu(params, src0, dst); + ggml_compute_forward_gelu(params, dst); } break; case GGML_UNARY_OP_GELU_QUICK: { - ggml_compute_forward_gelu_quick(params, src0, dst); + ggml_compute_forward_gelu_quick(params, dst); } break; case GGML_UNARY_OP_SILU: { - ggml_compute_forward_silu(params, src0, dst); + ggml_compute_forward_silu(params, dst); } break; case GGML_UNARY_OP_HARDSWISH: { - ggml_compute_forward_hardswish(params, src0, dst); + ggml_compute_forward_hardswish(params, dst); } break; case GGML_UNARY_OP_HARDSIGMOID: { - ggml_compute_forward_hardsigmoid(params, src0, dst); + ggml_compute_forward_hardsigmoid(params, dst); } break; default: { @@ -14464,8 +14705,10 @@ static void ggml_compute_forward_unary( static void ggml_compute_forward_get_rel_pos_f16( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14491,12 +14734,14 @@ static void ggml_compute_forward_get_rel_pos_f16( static void ggml_compute_forward_get_rel_pos( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rel_pos_f16(params, src0, dst); + ggml_compute_forward_get_rel_pos_f16(params, dst); } break; default: { @@ -14509,11 +14754,12 @@ static void ggml_compute_forward_get_rel_pos( static void ggml_compute_forward_add_rel_pos_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; if (!inplace && params->type == GGML_TASK_INIT) { if (params->ith != 0) { @@ -14577,14 +14823,14 @@ static void ggml_compute_forward_add_rel_pos_f32( static void ggml_compute_forward_add_rel_pos( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * src2, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst); + ggml_compute_forward_add_rel_pos_f32(params, dst); } break; default: { @@ -14597,9 +14843,11 @@ static void ggml_compute_forward_add_rel_pos( static void ggml_compute_forward_map_unary_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -14621,13 +14869,15 @@ static void ggml_compute_forward_map_unary_f32( static void ggml_compute_forward_map_unary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, struct ggml_tensor * dst, const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_map_unary_f32(params, src0, dst, fun); + ggml_compute_forward_map_unary_f32(params, dst, fun); } break; default: { @@ -14640,10 +14890,12 @@ static void ggml_compute_forward_map_unary( static void ggml_compute_forward_map_binary_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + assert(params->ith == 0); assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); @@ -14668,14 +14920,15 @@ static void ggml_compute_forward_map_binary_f32( static void ggml_compute_forward_map_binary( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst, const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun); + ggml_compute_forward_map_binary_f32(params, dst, fun); } break; default: { @@ -14688,9 +14941,11 @@ static void ggml_compute_forward_map_binary( static void ggml_compute_forward_map_custom1_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, struct ggml_tensor * dst, const ggml_custom1_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -14704,10 +14959,12 @@ static void ggml_compute_forward_map_custom1_f32( static void ggml_compute_forward_map_custom2_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, struct ggml_tensor * dst, const ggml_custom2_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -14721,11 +14978,13 @@ static void ggml_compute_forward_map_custom2_f32( static void ggml_compute_forward_map_custom3_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, - const struct ggml_tensor * c, struct ggml_tensor * dst, const ggml_custom3_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[1]; + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -14739,8 +14998,10 @@ static void ggml_compute_forward_map_custom3_f32( static void ggml_compute_forward_map_custom1( const struct ggml_compute_params * params, - const struct ggml_tensor * a, struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14754,9 +15015,11 @@ static void ggml_compute_forward_map_custom1( static void ggml_compute_forward_map_custom2( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14770,10 +15033,12 @@ static void ggml_compute_forward_map_custom2( static void ggml_compute_forward_map_custom3( const struct ggml_compute_params * params, - const struct ggml_tensor * a, - const struct ggml_tensor * b, - const struct ggml_tensor * c, struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[2]; + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -14787,9 +15052,11 @@ static void ggml_compute_forward_map_custom3( static void ggml_compute_forward_cross_entropy_loss_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_scalar(dst)); @@ -14893,13 +15160,14 @@ static void ggml_compute_forward_cross_entropy_loss_f32( static void ggml_compute_forward_cross_entropy_loss( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst); + ggml_compute_forward_cross_entropy_loss_f32(params, dst); } break; default: { @@ -14912,10 +15180,12 @@ static void ggml_compute_forward_cross_entropy_loss( static void ggml_compute_forward_cross_entropy_loss_back_f32( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * opt0 = dst->src[2]; + GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); @@ -15002,14 +15272,14 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( static void ggml_compute_forward_cross_entropy_loss_back( const struct ggml_compute_params * params, - const struct ggml_tensor * src0, - const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + switch (src0->type) { case GGML_TYPE_F32: { - ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst); + ggml_compute_forward_cross_entropy_loss_back_f32(params, dst); } break; default: { @@ -15057,312 +15327,312 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm switch (tensor->op) { case GGML_OP_DUP: { - ggml_compute_forward_dup(params, tensor->src[0], tensor); + ggml_compute_forward_dup(params, tensor); } break; case GGML_OP_ADD: { - ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_add(params, tensor); } break; case GGML_OP_ADD1: { - ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_add1(params, tensor); } break; case GGML_OP_ACC: { - ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_acc(params, tensor); } break; case GGML_OP_SUB: { - ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_sub(params, tensor); } break; case GGML_OP_MUL: { - ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul(params, tensor); } break; case GGML_OP_DIV: { - ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_div(params, tensor); } break; case GGML_OP_SQR: { - ggml_compute_forward_sqr(params, tensor->src[0], tensor); + ggml_compute_forward_sqr(params, tensor); } break; case GGML_OP_SQRT: { - ggml_compute_forward_sqrt(params, tensor->src[0], tensor); + ggml_compute_forward_sqrt(params, tensor); } break; case GGML_OP_LOG: { - ggml_compute_forward_log(params, tensor->src[0], tensor); + ggml_compute_forward_log(params, tensor); } break; case GGML_OP_SUM: { - ggml_compute_forward_sum(params, tensor->src[0], tensor); + ggml_compute_forward_sum(params, tensor); } break; case GGML_OP_SUM_ROWS: { - ggml_compute_forward_sum_rows(params, tensor->src[0], tensor); + ggml_compute_forward_sum_rows(params, tensor); } break; case GGML_OP_MEAN: { - ggml_compute_forward_mean(params, tensor->src[0], tensor); + ggml_compute_forward_mean(params, tensor); } break; case GGML_OP_ARGMAX: { - ggml_compute_forward_argmax(params, tensor->src[0], tensor); + ggml_compute_forward_argmax(params, tensor); } break; case GGML_OP_REPEAT: { - ggml_compute_forward_repeat(params, tensor->src[0], tensor); + ggml_compute_forward_repeat(params, tensor); } break; case GGML_OP_REPEAT_BACK: { - ggml_compute_forward_repeat_back(params, tensor->src[0], tensor); + ggml_compute_forward_repeat_back(params, tensor); } break; case GGML_OP_CONCAT: { - ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_concat(params, tensor); } break; case GGML_OP_SILU_BACK: { - ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_silu_back(params, tensor); } break; case GGML_OP_NORM: { - ggml_compute_forward_norm(params, tensor->src[0], tensor); + ggml_compute_forward_norm(params, tensor); } break; case GGML_OP_RMS_NORM: { - ggml_compute_forward_rms_norm(params, tensor->src[0], tensor); + ggml_compute_forward_rms_norm(params, tensor); } break; case GGML_OP_RMS_NORM_BACK: { - ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rms_norm_back(params, tensor); } break; case GGML_OP_GROUP_NORM: { - ggml_compute_forward_group_norm(params, tensor->src[0], tensor); + ggml_compute_forward_group_norm(params, tensor); } break; case GGML_OP_MUL_MAT: { - ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul_mat(params, tensor); } break; case GGML_OP_MUL_MAT_ID: { - ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_mul_mat_id(params, tensor); } break; case GGML_OP_OUT_PROD: { - ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_out_prod(params, tensor); } break; case GGML_OP_SCALE: { - ggml_compute_forward_scale(params, tensor->src[0], tensor); + ggml_compute_forward_scale(params, tensor); } break; case GGML_OP_SET: { - ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_set(params, tensor); } break; case GGML_OP_CPY: { - ggml_compute_forward_cpy(params, tensor->src[0], tensor); + ggml_compute_forward_cpy(params, tensor); } break; case GGML_OP_CONT: { - ggml_compute_forward_cont(params, tensor->src[0], tensor); + ggml_compute_forward_cont(params, tensor); } break; case GGML_OP_RESHAPE: { - ggml_compute_forward_reshape(params, tensor->src[0], tensor); + ggml_compute_forward_reshape(params, tensor); } break; case GGML_OP_VIEW: { - ggml_compute_forward_view(params, tensor->src[0]); + ggml_compute_forward_view(params, tensor); } break; case GGML_OP_PERMUTE: { - ggml_compute_forward_permute(params, tensor->src[0]); + ggml_compute_forward_permute(params, tensor); } break; case GGML_OP_TRANSPOSE: { - ggml_compute_forward_transpose(params, tensor->src[0]); + ggml_compute_forward_transpose(params, tensor); } break; case GGML_OP_GET_ROWS: { - ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_get_rows(params, tensor); } break; case GGML_OP_GET_ROWS_BACK: { - ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_get_rows_back(params, tensor); } break; case GGML_OP_DIAG: { - ggml_compute_forward_diag(params, tensor->src[0], tensor); + ggml_compute_forward_diag(params, tensor); } break; case GGML_OP_DIAG_MASK_INF: { - ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor); + ggml_compute_forward_diag_mask_inf(params, tensor); } break; case GGML_OP_DIAG_MASK_ZERO: { - ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor); + ggml_compute_forward_diag_mask_zero(params, tensor); } break; case GGML_OP_SOFT_MAX: { - ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_soft_max(params, tensor); } break; case GGML_OP_SOFT_MAX_BACK: { - ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_soft_max_back(params, tensor); } break; case GGML_OP_ROPE: { - ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rope(params, tensor); } break; case GGML_OP_ROPE_BACK: { - ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_rope_back(params, tensor); } break; case GGML_OP_ALIBI: { - ggml_compute_forward_alibi(params, tensor->src[0], tensor); + ggml_compute_forward_alibi(params, tensor); } break; case GGML_OP_CLAMP: { - ggml_compute_forward_clamp(params, tensor->src[0], tensor); + ggml_compute_forward_clamp(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_1D: { - ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_conv_transpose_1d(params, tensor); } break; case GGML_OP_IM2COL: { - ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_im2col(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_2D: { - ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_conv_transpose_2d(params, tensor); } break; case GGML_OP_POOL_1D: { - ggml_compute_forward_pool_1d(params, tensor->src[0], tensor); + ggml_compute_forward_pool_1d(params, tensor); } break; case GGML_OP_POOL_2D: { - ggml_compute_forward_pool_2d(params, tensor->src[0], tensor); + ggml_compute_forward_pool_2d(params, tensor); } break; case GGML_OP_UPSCALE: { - ggml_compute_forward_upscale(params, tensor->src[0], tensor); + ggml_compute_forward_upscale(params, tensor); } break; case GGML_OP_PAD: { - ggml_compute_forward_pad(params, tensor->src[0], tensor); + ggml_compute_forward_pad(params, tensor); } break; case GGML_OP_ARGSORT: { - ggml_compute_forward_argsort(params, tensor->src[0], tensor); + ggml_compute_forward_argsort(params, tensor); } break; case GGML_OP_LEAKY_RELU: { - ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor); + ggml_compute_forward_leaky_relu(params, tensor); } break; case GGML_OP_FLASH_ATTN: { const int32_t t = ggml_get_op_params_i32(tensor, 0); GGML_ASSERT(t == 0 || t == 1); const bool masked = t != 0; - ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor); + ggml_compute_forward_flash_attn(params, masked, tensor); } break; case GGML_OP_FLASH_FF: { - ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor); + ggml_compute_forward_flash_ff(params, tensor); } break; case GGML_OP_FLASH_ATTN_BACK: { int32_t t = ggml_get_op_params_i32(tensor, 0); GGML_ASSERT(t == 0 || t == 1); bool masked = t != 0; - ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor); + ggml_compute_forward_flash_attn_back(params, masked, tensor); } break; case GGML_OP_WIN_PART: { - ggml_compute_forward_win_part(params, tensor->src[0], tensor); + ggml_compute_forward_win_part(params, tensor); } break; case GGML_OP_WIN_UNPART: { - ggml_compute_forward_win_unpart(params, tensor->src[0], tensor); + ggml_compute_forward_win_unpart(params, tensor); } break; case GGML_OP_UNARY: { - ggml_compute_forward_unary(params, tensor->src[0], tensor); + ggml_compute_forward_unary(params, tensor); } break; case GGML_OP_GET_REL_POS: { - ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor); + ggml_compute_forward_get_rel_pos(params, tensor); } break; case GGML_OP_ADD_REL_POS: { - ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_add_rel_pos(params, tensor); } break; case GGML_OP_MAP_UNARY: { ggml_unary_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun); + ggml_compute_forward_map_unary(params, tensor, fun); } break; case GGML_OP_MAP_BINARY: { ggml_binary_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun); + ggml_compute_forward_map_binary(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM1_F32: { ggml_custom1_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun); + ggml_compute_forward_map_custom1_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM2_F32: { ggml_custom2_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun); + ggml_compute_forward_map_custom2_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM3_F32: { ggml_custom3_op_f32_t fun; memcpy(&fun, tensor->op_params, sizeof(fun)); - ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun); + ggml_compute_forward_map_custom3_f32(params, tensor, fun); } break; case GGML_OP_MAP_CUSTOM1: { - ggml_compute_forward_map_custom1(params, tensor->src[0], tensor); + ggml_compute_forward_map_custom1(params, tensor); } break; case GGML_OP_MAP_CUSTOM2: { - ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_map_custom2(params, tensor); } break; case GGML_OP_MAP_CUSTOM3: { - ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_map_custom3(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS: { - ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor); + ggml_compute_forward_cross_entropy_loss(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: { - ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_cross_entropy_loss_back(params, tensor); } break; case GGML_OP_NONE: diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 733d8f95b..97f34ac85 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -818eeb8a3be99125746a90ec63af8f51516a2ec6 +4712fd12d7acb9971f850b1b98588f934cb39444 From a00a35cef93e057eace8351a667d14d152a91ebc Mon Sep 17 00:00:00 2001 From: Ettore Di Giacinto Date: Wed, 21 Feb 2024 15:39:10 +0100 Subject: [PATCH 05/12] readme : add LocalAI to the availables UI (#5629) --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index ce5dec7ca..c1624b9f9 100644 --- a/README.md +++ b/README.md @@ -141,6 +141,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [nat/openplayground](https://github.com/nat/openplayground) - [Faraday](https://faraday.dev/) (proprietary) - [LMStudio](https://lmstudio.ai/) (proprietary) +- [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) - [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) From 1ecea255ebb70750b52688393f37a63606b90e3f Mon Sep 17 00:00:00 2001 From: Pierrick Hymbert Date: Wed, 21 Feb 2024 15:47:48 +0100 Subject: [PATCH 06/12] server: health: fix race condition on slots data using tasks queue (#5634) * server: health: fix race condition on slots data using tasks queue * server: health: * include_slots only if slots_endpoint * fix compile warning task.target_id not initialized. --- examples/server/README.md | 2 + examples/server/server.cpp | 122 ++++++++++++++++++++++++------------- examples/server/utils.hpp | 3 +- 3 files changed, 84 insertions(+), 43 deletions(-) diff --git a/examples/server/README.md b/examples/server/README.md index f6b9c7402..6d9f96cd4 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -140,6 +140,8 @@ node index.js - 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available. - 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available. + If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set. + - **POST** `/completion`: Given a `prompt`, it returns the predicted completion. *Options:* diff --git a/examples/server/server.cpp b/examples/server/server.cpp index eb01729fa..1c4479512 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1394,6 +1394,46 @@ struct llama_server_context case TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; + case TASK_TYPE_SLOTS_DATA: { + json slots_data = json::array(); + int n_idle_slots = 0; + int n_processing_slots = 0; + + for (llama_client_slot &slot: slots) { + if (slot.available()) { + n_idle_slots++; + } else { + n_processing_slots++; + } + json slot_data = get_formated_generation(slot); + slot_data["id"] = slot.id; + slot_data["task_id"] = slot.task_id; + slot_data["state"] = slot.state; + slot_data["prompt"] = slot.prompt; + slot_data["next_token"] = { + {"has_next_token", slot.has_next_token}, + {"n_remain", slot.n_remaining}, + {"num_tokens_predicted", slot.n_decoded}, + {"stopped_eos", slot.stopped_eos}, + {"stopped_word", slot.stopped_word}, + {"stopped_limit", slot.stopped_limit}, + {"stopping_word", slot.stopping_word}, + }; + slots_data.push_back(slot_data); + } + LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots); + task_result res; + res.id = task.id; + res.multitask_id = task.multitask_id; + res.stop = true; + res.error = false; + res.result_json = { + { "idle", n_idle_slots }, + { "processing", n_processing_slots }, + { "slots", slots_data } + }; + queue_results.send(res); + } break; } } @@ -2557,34 +2597,38 @@ int main(int argc, char **argv) server_state current_state = state.load(); switch(current_state) { case SERVER_STATE_READY: { - int available_slots = 0; - int processing_slots = 0; - for (llama_client_slot &slot: llama.slots) { - if (slot.available()) { - available_slots++; - } else { - processing_slots++; - } + // request slots data using task queue + task_server task; + task.id = llama.queue_tasks.get_new_id(); + task.type = TASK_TYPE_SLOTS_DATA; + task.target_id = -1; + + llama.queue_results.add_waiting_task_id(task.id); + llama.queue_tasks.post(task); + + // get the result + task_result result = llama.queue_results.recv(task.id); + llama.queue_results.remove_waiting_task_id(task.id); + + int n_idle_slots = result.result_json["idle"]; + int n_processing_slots = result.result_json["processing"]; + + json health = { + {"status", "ok"}, + {"slots_idle", n_idle_slots}, + {"slots_processing", n_processing_slots}}; + res.status = 200; // HTTP OK + if (sparams.slots_endpoint && req.has_param("include_slots")) { + health["slots"] = result.result_json["slots"]; } - if (available_slots > 0) { - json health = { - {"status", "ok"}, - {"slots_idle", available_slots}, - {"slots_processing", processing_slots}}; - res.set_content(health.dump(), "application/json"); - res.status = 200; // HTTP OK - } else { - json health = { - {"status", "no slot available"}, - {"slots_idle", available_slots}, - {"slots_processing", processing_slots}}; - res.set_content(health.dump(), "application/json"); + + if (n_idle_slots == 0) { + health["status"] = "no slot available"; if (req.has_param("fail_on_no_slot")) { res.status = 503; // HTTP Service Unavailable - } else { - res.status = 200; // HTTP OK } } + res.set_content(health.dump(), "application/json"); break; } case SERVER_STATE_LOADING_MODEL: @@ -2600,26 +2644,20 @@ int main(int argc, char **argv) if (sparams.slots_endpoint) { svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) { - json slots; - for (llama_client_slot & slot : llama.slots) { - json slot_data = llama.get_formated_generation(slot); - slot_data["id"] = slot.id; - slot_data["task_id"] = slot.task_id; - slot_data["state"] = slot.state; - slot_data["prompt"] = slot.prompt; - slot_data["next_token"] = { - {"has_next_token", slot.has_next_token}, - {"n_remain", slot.n_remaining}, - {"num_tokens_predicted", slot.n_decoded}, - {"stopped_eos", slot.stopped_eos}, - {"stopped_word", slot.stopped_word}, - {"stopped_limit", slot.stopped_limit}, - {"stopping_word", slot.stopping_word}, - }; + // request slots data using task queue + task_server task; + task.id = llama.queue_tasks.get_new_id(); + task.type = TASK_TYPE_SLOTS_DATA; + task.target_id = -1; - slots.push_back(slot_data); - } - res.set_content(slots.dump(), "application/json"); + llama.queue_results.add_waiting_task_id(task.id); + llama.queue_tasks.post(task); + + // get the result + task_result result = llama.queue_results.recv(task.id); + llama.queue_results.remove_waiting_task_id(task.id); + + res.set_content(result.result_json["slots"].dump(), "application/json"); res.status = 200; // HTTP OK }); } diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index e954fb0ef..88545eb69 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -49,7 +49,8 @@ enum server_state { enum task_type { TASK_TYPE_COMPLETION, TASK_TYPE_CANCEL, - TASK_TYPE_NEXT_RESPONSE + TASK_TYPE_NEXT_RESPONSE, + TASK_TYPE_SLOTS_DATA }; struct task_server { From 5022cf242d689e15defd133f96c4345ad30c5d19 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 21 Feb 2024 16:52:39 +0200 Subject: [PATCH 07/12] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 97f34ac85..bbbf88d9d 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -4712fd12d7acb9971f850b1b98588f934cb39444 +30805514e1bf389a59d30a54a0525cbdc30d5bd1 From 89febfed9322c8849520dc63c93ee4f5fd72556e Mon Sep 17 00:00:00 2001 From: Jared Van Bortel Date: Wed, 21 Feb 2024 10:33:54 -0500 Subject: [PATCH 08/12] examples : do not assume BOS when shifting context (#5622) --- examples/main/main.cpp | 12 +++++++----- examples/server/server.cpp | 13 +++++++------ 2 files changed, 14 insertions(+), 11 deletions(-) diff --git a/examples/main/main.cpp b/examples/main/main.cpp index f5d2f4893..7555dffe4 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -334,6 +334,8 @@ int main(int argc, char ** argv) { // number of tokens to keep when resetting context if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) { params.n_keep = (int)embd_inp.size(); + } else { + params.n_keep += add_bos; // always keep the BOS token } // prefix & suffix for instruct mode @@ -383,8 +385,8 @@ int main(int argc, char ** argv) { } } - if (params.n_keep > 0) { - LOG_TEE("%s: static prompt based on n_keep: '", __func__); + if (params.n_keep > add_bos) { + LOG_TEE("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } @@ -540,14 +542,14 @@ int main(int argc, char ** argv) { break; } - const int n_left = n_past - params.n_keep - 1; + const int n_left = n_past - params.n_keep; const int n_discard = n_left/2; LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); - llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); - llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); + llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); + llama_kv_cache_seq_shift(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); n_past -= n_discard; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 1c4479512..c84719a0d 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1487,14 +1487,15 @@ struct llama_server_context if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx) { // Shift context - const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1; + const int n_keep = slot.params.n_keep + add_bos_token; + const int n_left = system_tokens.size() + slot.n_past - n_keep; const int n_discard = n_left / 2; - LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard); - llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1); - llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard); + LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, n_keep, n_left, n_discard); + llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); + llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard); - for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++) + for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; } @@ -1507,7 +1508,7 @@ struct llama_server_context LOG_VERBOSE("context shift", { { "n_ctx", n_ctx }, - { "n_keep", params.n_keep }, + { "n_keep", n_keep }, { "n_left", n_left }, }); } From ba2135ccae7462470b3865c6e41d2e1d734eac05 Mon Sep 17 00:00:00 2001 From: slaren Date: Wed, 21 Feb 2024 22:18:23 +0100 Subject: [PATCH 09/12] gemma : allow offloading the output tensor (#5646) --- llama.cpp | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 3a226c426..4054d5da6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4394,6 +4394,8 @@ static bool llm_load_tensors( // output model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading + ml.n_created--; // artificial tensor const int64_t n_ff = hparams.n_ff; const int64_t n_embd_head_k = hparams.n_embd_head_k; @@ -7525,7 +7527,7 @@ struct llm_build_context { cb(cur, "result_norm", -1); // lm_head - cur = ggml_mul_mat(ctx0, model.tok_embd, cur); + cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); From 7fe4678b0244ba7b03eae66ebeaa947e2770bb1a Mon Sep 17 00:00:00 2001 From: slaren Date: Wed, 21 Feb 2024 22:52:39 +0100 Subject: [PATCH 10/12] llama : fix session save/load with quantized KV (#5649) --- llama.cpp | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/llama.cpp b/llama.cpp index 4054d5da6..d763cc80c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -12176,18 +12176,19 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat data_ctx->write(&kv_used, sizeof(kv_used)); if (kv_buf_size) { - const size_t elt_size = ggml_element_size(kv_self.k_l[0]); - std::vector tmp_buf; for (int il = 0; il < (int) n_layer; ++il) { - tmp_buf.resize(elt_size*n_embd_k_gqa*kv_head); + size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + tmp_buf.resize(k_size); ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); // v is not contiguous, copy row by row - tmp_buf.resize(elt_size*kv_head); + size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); + tmp_buf.resize(v_row_size); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*elt_size*n_ctx, tmp_buf.size()); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); } } @@ -12289,17 +12290,16 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { if (kv_buf_size) { GGML_ASSERT(kv_self.total_size() == kv_buf_size); - const size_t elt_size = ggml_element_size(kv_self.k_l[0]); - for (int il = 0; il < (int) n_layer; ++il) { - size_t k_size = elt_size*n_embd_k_gqa*kv_head; + size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); inp += k_size; // v is not contiguous, copy row by row - size_t v_row_size = elt_size*kv_head; + size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { - ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*elt_size*n_ctx, v_row_size); + ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); inp += v_row_size; } } From 7c8bcc11dc61cf5930b70cd0168b84afcebe12a9 Mon Sep 17 00:00:00 2001 From: Xuan Son Nguyen Date: Thu, 22 Feb 2024 00:31:00 +0100 Subject: [PATCH 11/12] Add docs for llama_chat_apply_template (#5645) * add docs for llama_chat_apply_template * fix typo --- examples/server/README.md | 1 + llama.h | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/examples/server/README.md b/examples/server/README.md index 6d9f96cd4..4b24ee5dc 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -41,6 +41,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437 - `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n` - `-n, --n-predict`: Set the maximum tokens to predict (default: -1) - `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included. +- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) ## Build diff --git a/llama.h b/llama.h index 8ba20696f..84f196b3b 100644 --- a/llama.h +++ b/llama.h @@ -708,7 +708,7 @@ extern "C" { /// Apply chat template. Inspired by hf apply_chat_template() on python. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" - /// NOTE: This function only support some known jinja templates. It is not a jinja parser. + /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. /// @param chat Pointer to a list of multiple llama_chat_message /// @param n_msg Number of llama_chat_message in this chat From 973053d8b0d04809836b3339a50f68d9c842de90 Mon Sep 17 00:00:00 2001 From: slaren Date: Thu, 22 Feb 2024 00:42:09 +0100 Subject: [PATCH 12/12] llama : fix loading models with shared tok_embd and output (#5651) ggml-ci --- llama.cpp | 12 ++++-------- 1 file changed, 4 insertions(+), 8 deletions(-) diff --git a/llama.cpp b/llama.cpp index d763cc80c..259f2a3a3 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2791,13 +2791,7 @@ struct llama_model_loader { std::vector> read_buf; - for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); - if (!cur) { - // some tensors may be allocated in a different context - continue; - } - + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; @@ -3722,7 +3716,7 @@ static bool llm_load_tensors( } // create one context per buffer type - size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors; + size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output std::map ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { @@ -3860,6 +3854,7 @@ static bool llm_load_tensors( } else { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); } } @@ -4396,6 +4391,7 @@ static bool llm_load_tensors( model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); const int64_t n_ff = hparams.n_ff; const int64_t n_embd_head_k = hparams.n_embd_head_k;