Merge branch 'master' into concedo_experimental

# Conflicts:
#	Makefile
#	README.md
#	ci/run.sh
#	ggml-quants.c
#	ggml.c
#	grammars/json.gbnf
#	grammars/json_arr.gbnf
#	llama.cpp
#	scripts/compare-llama-bench.py
This commit is contained in:
Concedo 2024-03-09 10:58:49 +08:00
commit b4ca54401d
36 changed files with 49217 additions and 49887 deletions

View file

@ -58,7 +58,8 @@ jobs:
cmake \
python3-pip \
wget \
psmisc
psmisc \
language-pack-en
- name: Build
id: cmake_build

View file

@ -1289,6 +1289,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_parallel = params.n_parallel;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed;

View file

@ -297,7 +297,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#ifndef _MSC_VER
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
#else
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
#endif
// Main TEE macro.
@ -311,7 +311,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#ifndef _MSC_VER
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
#else
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
#endif
// LOG macro variants with auto endline.
@ -319,8 +319,8 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
#else
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#endif
// INTERNAL, DO NOT USE

View file

@ -1847,6 +1847,124 @@ class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 8
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
# pad using ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
self.hparams["vocab_size"] = vocab_size
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
# Use the GPT-NeoX tokenizer when no tokenizer files are present
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
# ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
assert d_inner == 2 * d_model
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams["n_layer"]
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
tok_embd = None
tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
for name, data_torch in self.get_tensors():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
if name.endswith(".A_log"):
print("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# assuming token_embd.weight is seen before output.weight
if tok_embd is not None and new_name == output_name:
if torch.equal(tok_embd, data_torch):
print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
continue
if new_name == tok_embd_name:
tok_embd = data_torch
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert big float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ######

View file

@ -1377,7 +1377,6 @@ def main(args_in: list[str] | None = None) -> None:
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
@ -1393,18 +1392,6 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
args = parser.parse_args(args_in)
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
args.model = tmp_model_path
if args.dump_single:
model_plus = lazy_load_file(args.model)

View file

@ -105,6 +105,9 @@ int main(int argc, char ** argv) {
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
// ensure enough sequences are available
ctx_params.n_parallel = *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
@ -174,10 +177,10 @@ int main(int argc, char ** argv) {
llama_batch_clear(batch);
const int n_tokens = is_pp_shared ? pp : pl*pp;
for (int i = 0; i < n_tokens; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
llama_batch_add(batch, 0, i, { j }, false);
}
}
batch.logits[batch.n_tokens - 1] = true;
@ -192,7 +195,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}

View file

@ -80,6 +80,7 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_parallel = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@ -132,7 +133,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
if (n_parallel > 1) {

View file

@ -174,6 +174,7 @@ struct cmd_params {
std::vector<bool> no_kv_offload;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
int reps;
bool verbose;
output_formats output_format;
@ -193,6 +194,7 @@ static const cmd_params cmd_params_defaults = {
/* no_kv_offload */ {false},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* embeddings */ {false},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
@ -215,6 +217,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
@ -383,6 +386,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
@ -454,6 +464,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
return params;
@ -473,6 +484,7 @@ struct cmd_params_instance {
bool no_kv_offload;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
@ -503,6 +515,7 @@ struct cmd_params_instance {
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.offload_kqv = !no_kv_offload;
cparams.embeddings = embeddings;
return cparams;
}
@ -518,6 +531,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
@ -541,6 +555,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
@ -563,6 +578,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
@ -598,6 +614,7 @@ struct test {
bool no_kv_offload;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
int n_prompt;
int n_gen;
std::string test_time;
@ -620,6 +637,7 @@ struct test {
no_kv_offload = inst.no_kv_offload;
tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap;
embeddings = inst.embeddings;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
@ -691,7 +709,7 @@ struct test {
"n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"tensor_split", "use_mmap",
"tensor_split", "use_mmap", "embeddings",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
@ -711,7 +729,7 @@ struct test {
}
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "use_mmap") {
field == "use_mmap" || field == "embeddings") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@ -745,7 +763,7 @@ struct test {
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
tensor_split_str, std::to_string(use_mmap),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
@ -915,6 +933,9 @@ struct markdown_printer : public printer {
if (field == "use_mmap") {
return "mmap";
}
if (field == "embeddings") {
return "embd";
}
if (field == "tensor_split") {
return "ts";
}
@ -958,6 +979,9 @@ struct markdown_printer : public printer {
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
fields.emplace_back("embeddings");
}
fields.emplace_back("test");
fields.emplace_back("t/s");

View file

@ -109,6 +109,9 @@ int main(int argc, char ** argv) {
// number of simultaneous "clients" to simulate
const int32_t n_clients = params.n_parallel;
// dedicate one sequence to the system prompt
params.n_parallel += 1;
// requests to simulate
const int32_t n_seq = params.n_sequences;
@ -198,8 +201,8 @@ int main(int argc, char ** argv) {
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
LOG_TEE("\n");
@ -223,15 +226,17 @@ int main(int argc, char ** argv) {
client.i_batch = batch.n_tokens;
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
client.n_decoded += 1;
}
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 0; i < n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1);
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
LOG_TEE("%s: clearing the KV cache\n", __func__);
@ -257,7 +262,7 @@ int main(int argc, char ** argv) {
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
}
// extract the logits only for the last token
@ -368,7 +373,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, -1);
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();

View file

@ -810,7 +810,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1087,7 +1087,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 128;
const int max_seq = 2*max_tasks_per_batch;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1439,7 +1439,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = 4*max_tasks_per_batch;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@ -1816,6 +1816,9 @@ int main(int argc, char ** argv) {
llama_model * model;
llama_context * ctx;
// ensure there's at least enough seq_ids for HellaSwag
params.n_parallel = std::max(4, params.n_parallel);
// load the model and apply lora adapter, if any
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {

View file

@ -13,7 +13,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(i)*1024}
json= {"content": str(0)*1024}
) for i in range(n)])
for response in responses:

View file

@ -1,12 +1,12 @@
set(TARGET server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp oai.hpp utils.hpp json.hpp httplib.h)
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View file

@ -436,7 +436,7 @@ Notice that each `probs` is an array of length `n_probs`.
"next_token": {
"has_next_token": true,
"n_remain": -1,
"num_tokens_predicted": 0,
"n_decoded": 0,
"stopped_eos": false,
"stopped_limit": false,
"stopped_word": false,

View file

@ -1,225 +0,0 @@
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "utils.hpp"
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
inline static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json &body, /* openai api json semantics */
const std::string &chat_template)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
{
json res =
json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage",
json{{"prompt_tokens", 0},
{"total_tokens", 0}}},
{"data", embeddings}
};
return res;
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,94 @@
@llama.cpp
@embeddings
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file bert-bge-small/ggml-model-f16.gguf from HF repo ggml-org/models
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
And 1024 as batch size
And 2048 KV cache size
And embeddings extraction
Then the server is starting
Then the server is healthy
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model bert-bge-small
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model bert-bge-small
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: All embeddings should be the same
Given 10 fixed prompts
And a model bert-bge-small
Given concurrent OAI embedding requests
Then all embeddings are the same

View file

@ -9,7 +9,6 @@ Feature: Parallel
And 512 as batch size
And 64 KV cache size
And 2 slots
And embeddings extraction
And continuous batching
Then the server is starting
Then the server is healthy
@ -99,48 +98,3 @@ Feature: Parallel
Then the server is busy
Then the server is idle
Then all prompts are predicted
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model tinyllama-2
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated

View file

@ -29,6 +29,7 @@ Feature: llama.cpp server
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And prometheus metrics are exposed
And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts
| prompt | n_predict | re_content | n_predicted |
@ -49,34 +50,6 @@ Feature: llama.cpp server
| llama-2 | Book | What is the best book | 8 | (Mom\|what)+ | 8 | disabled |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks\|happy\|bird)+ | 32 | enabled |
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model tinyllama-2
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model tinyllama-2
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Tokenize / Detokenize
When tokenizing:
"""

View file

@ -10,6 +10,7 @@ from contextlib import closing
from re import RegexFlag
import aiohttp
import numpy as np
import openai
from behave import step
from behave.api.async_step import async_run_until_complete
@ -24,6 +25,9 @@ def step_server_config(context, server_fqdn, server_port):
if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}")
if 'FQDN' in os.environ:
context.server_fqdn = os.environ['FQDN']
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
@ -34,6 +38,7 @@ def step_server_config(context, server_fqdn, server_port):
context.n_ga_w = None
context.n_gpu_layer = None
context.n_predict = None
context.n_prompts = 0
context.n_server_predict = None
context.n_slots = None
context.prompt_prefix = None
@ -202,6 +207,7 @@ def step_n_tokens_predicted(context, predicted_n):
@step(u'a user prompt {user_prompt}')
def step_user_prompt(context, user_prompt):
context.prompts.append(user_prompt)
context.n_prompts = len(context.prompts)
@step(u'a system prompt {system_prompt}')
@ -290,6 +296,12 @@ def step_prompt_passkey(context):
context.prompt_passkey = context.text
@step(u'{n_prompts:d} fixed prompts')
def step_fixed_prompts(context, n_prompts):
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
context.n_prompts = n_prompts
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
def step_prompt_passkey(context, passkey, i_pos):
prompt = ""
@ -301,6 +313,7 @@ def step_prompt_passkey(context, passkey, i_pos):
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
context.n_prompts = len(context.prompts)
@step(u'an OAI compatible chat completions request with {api_error} api error')
@ -341,11 +354,13 @@ async def step_oai_chat_completions(context, api_error):
@step(u'a prompt')
def step_a_prompt(context):
context.prompts.append(context.text)
context.n_prompts = len(context.prompts)
@step(u'a prompt {prompt}')
def step_a_prompt_prompt(context, prompt):
context.prompts.append(prompt)
context.n_prompts = len(context.prompts)
@step(u'concurrent completion requests')
@ -430,25 +445,47 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
@step(u'embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
context.n_prompts = 1
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
@step(u'all embeddings are the same')
@async_run_until_complete
async def step_all_embeddings_are_the_same(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests > 0
embeddings = []
for i in range(n_embedding_requests):
embedding = context.tasks_result.pop().pop()
embeddings.append(embedding)
assert_embeddings(embedding)
n = len(embeddings)
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(embeddings[i])
embedding2 = np.array(embeddings[j])
if context.debug:
print(f"embedding1: {embedding1[-8:]}\n")
print(f"embedding2: {embedding2[-8:]}\n")
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
if context.debug:
print(f"{msg}\n")
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
@step(u'embeddings are generated')
def step_assert_embeddings(context):
if len(context.prompts) == 0:
assert_embeddings(context.embeddings)
else:
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
f"context.prompts={context.prompts}\n"
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
f"context.n_prompts={context.n_prompts}\n"
f"context.embeddings={context.embeddings}")
for embedding in context.embeddings:
context.prompts.pop()
assert_embeddings(embedding)
@step(u'an OAI compatible embeddings computation request for')
@async_run_until_complete
async def step_oai_compute_embeddings(context):
context.n_prompts = 1
context.embeddings = await request_oai_embeddings(context.text,
base_url=context.base_url,
user_api_key=context.user_api_key,
@ -462,6 +499,7 @@ async def step_oai_compute_embeddings_multiple_inputs(context):
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
context.prompts.clear()
@step(u'concurrent embedding requests')
@ -488,9 +526,9 @@ async def step_concurrent_oai_embedding_requests(context):
@async_run_until_complete()
async def all_embeddings_are_generated(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests > 0
assert n_embedding_requests == context.n_prompts
for i in range(n_embedding_requests):
assert_embeddings(context.tasks_result.pop())
assert_embeddings(context.tasks_result.pop().pop())
@step(u'tokenizing')
@ -548,14 +586,24 @@ async def step_prometheus_metrics_exported(context):
metric_exported = False
if context.debug:
print(f"/metrics answer:\n{metrics_raw}\n")
context.metrics = {}
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
case "llamacpp:kv_cache_usage_ratio":
assert len(metric.samples) > 0
metric_exported = True
context.metrics[metric.name] = metric
assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
assert metric_exported, "No metrics exported"
@step(u'metric {metric_name} is {metric_value:d}')
def step_assert_metric_value(context, metric_name, metric_value):
if metric_name not in context.metrics:
assert False, f"no metric {metric_name} in {context.metrics.keys()}"
assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
@step(u'available models')
def step_available_models(context):
# openai client always expects an api_key
@ -588,11 +636,11 @@ def step_supported_models(context, i_model, param, preposition, param_value):
async def concurrent_requests(context, f_completion, *args, **kwargs):
n_prompts = len(context.prompts)
context.n_prompts = len(context.prompts)
if context.debug:
print(f"starting {n_prompts} concurrent completion requests...")
assert n_prompts > 0
for prompt_no in range(n_prompts):
print(f"starting {context.n_prompts} concurrent completion requests...")
assert context.n_prompts > 0
for prompt_no in range(context.n_prompts):
shifted_args = [context.prompts.pop(), *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
await asyncio.sleep(0.1)
@ -765,7 +813,7 @@ async def request_embedding(content, base_url=None):
}) as response:
assert response.status == 200
response_json = await response.json()
return response_json['embedding']
return [response_json['embedding']]
async def request_oai_embeddings(input,
@ -775,6 +823,7 @@ async def request_oai_embeddings(input,
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
origin = 'llama.cpp'
headers=[]
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
@ -783,14 +832,21 @@ async def request_oai_embeddings(input,
"input": input,
"model": model,
},
headers=headers) as response:
headers=headers,
timeout=3600) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
return response_json['data']
if isinstance(input, collections.abc.Sequence):
embeddings = []
for an_oai_embeddings in response_json['data']:
embeddings.append(an_oai_embeddings['embedding'])
else:
embeddings = [response_json['data']['embedding']]
return embeddings
else:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1'
@ -804,7 +860,7 @@ async def request_oai_embeddings(input,
for an_oai_embeddings in oai_embeddings.data:
embeddings.append(an_oai_embeddings.embedding)
else:
embeddings = oai_embeddings.data.embedding
embeddings = [oai_embeddings.data.embedding]
return embeddings
@ -833,7 +889,6 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
f' {n_predicted} <> {expected_predicted_n}')
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
@ -899,6 +954,8 @@ def assert_embeddings(embeddings):
assert len(embeddings) > 0
embeddings_computed = False
for emb in embeddings:
if not isinstance(emb, float):
assert False, f"Bad embeddings: {embeddings}"
if emb != 0:
embeddings_computed = True
assert embeddings_computed, f"Embeddings: {embeddings}"

View file

@ -1,5 +1,6 @@
aiohttp~=3.9.3
behave~=1.2.6
huggingface_hub~=0.20.3
numpy~=1.24.4
openai~=0.25.0
prometheus-client~=0.20.0

View file

@ -1,15 +1,16 @@
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "llama.h"
#include "common.h"
#include "json.hpp"
#include "../llava/clip.h"
#include <string>
#include <vector>
#include <sstream>
#include <random>
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
@ -37,61 +38,13 @@ extern bool server_log_json;
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE,
TASK_TYPE_METRICS
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// completion token output with probabilities
struct completion_token_output {
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
struct token_translator {
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value) {
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
std::stringstream ss_tid;
@ -102,18 +55,18 @@ static inline void server_log(const char *level, const char *function, int line,
};
if (server_log_json) {
log.merge_patch(
{
log.merge_patch( {
{"level", level},
{"function", function},
{"line", line},
{"msg", message},
});
if (!extra.empty()) {
log.merge_patch(extra);
}
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
} else {
char buf[1024];
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
@ -136,22 +89,13 @@ static inline void server_log(const char *level, const char *function, int line,
}
//
// server utils
// chat template utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value) {
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
@ -163,7 +107,7 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
std::vector<llama_chat_message> chat(messages.size());
for (size_t i = 0; i < messages.size(); ++i) {
auto &curr_msg = messages[i];
const auto & curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length();
@ -183,261 +127,13 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
const std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat;
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
bool running;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_run_slots;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask when it is finished
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when all slots data is ready to be processed
void on_run_slots(std::function<void(void)> callback) {
callback_run_slots = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// end the start_loop routine
void terminate() {
{
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
}
condition_tasks.notify_all();
}
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Run all slots
*/
void start_loop() {
running = true;
while (true) {
LOG_VERBOSE("new task may arrive", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
callback_new_task(task);
}
LOG_VERBOSE("update_multitasks", {});
// check if we have any finished multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is processed, slots data is now ready
LOG_VERBOSE("callback_run_slots", {});
callback_run_slots();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
LOG_VERBOSE("ending start_loop", {});
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
// add the task_id to the list of tasks waiting for response
void add_waiting_task_id(int task_id) {
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int task_id) {
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {{"task_id", result.id}});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
queue_results.push_back(result);
condition_results.notify_all();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
@ -447,13 +143,11 @@ static const std::string base64_chars =
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
static inline bool is_base64(uint8_t c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
int i = 0;
int j = 0;
int in_ = 0;
@ -465,13 +159,10 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
if (i == 4) {
for (i = 0; i < 4; i++) {
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
@ -479,23 +170,20 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
for (i = 0; (i < 3); i++) {
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
if (i) {
for (j = i; j < 4; j++) {
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
for (j = 0; j < 4; j++) {
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
@ -503,8 +191,7 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
for (j = 0; j < i - 1; j++) {
ret.push_back(char_array_3[j]);
}
}
@ -516,8 +203,7 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
// random string / id
//
static std::string random_string()
{
static std::string random_string() {
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
@ -532,10 +218,10 @@ static std::string random_string()
return result;
}
static std::string gen_chatcmplid()
{
static std::string gen_chatcmplid() {
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
@ -543,91 +229,316 @@ static std::string gen_chatcmplid()
// other common utils
//
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
return i;
}
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
static bool ends_with(const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
if (!text.empty() && !stop.empty()) {
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
if (stop[char_index] == text_last_char) {
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
if (ends_with(text, current_partial)) {
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin)
{
for (; begin != end; ++begin) {
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
struct completion_token_output {
llama_token tok;
std::string text_to_send;
struct token_prob {
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
};
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
json out = json::array();
for (const auto &prob : probs)
{
for (const auto & prob : probs) {
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json
{
for (const auto & p : prob.probs) {
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json {
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json {
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}
//
// OAI utils
//
static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
const std::string & chat_template) {
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(const json & request, json result, bool streaming = false) {
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res = json {
{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage", json {
{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
}},
{"id", gen_chatcmplid()}
};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(json result) {
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({result});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json {
{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}
};
return std::vector<json>({ret});
}
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", 0},
{"total_tokens", 0}
}},
{"data", embeddings}
};
return res;
}
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
return json {
{"tokens", tokens}
};
}
static json format_detokenized_response(const std::string & content) {
return json {
{"content", content}
};
}

View file

@ -465,8 +465,8 @@ inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
}
// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
int8x16_t res;
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
uint8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
@ -9565,7 +9565,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
const __m256i full_signs = _mm256_set_m128i(full_sign_bits, full_sign_bits);
const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits);
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
@ -9587,8 +9587,8 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
const __m256i sc1 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
const __m256i sc2 = _mm256_set_m128i(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
@ -9655,8 +9655,8 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void *
const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
__m256i signs;
signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
@ -10553,9 +10553,9 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
@ -10663,9 +10663,9 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void *
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -10,6 +10,7 @@ extern "C" {
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
GGML_API void ggml_vk_init_cpu_assist(void);
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);

386
ggml.c
View file

@ -1841,6 +1841,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"FLASH_ATTN",
"FLASH_FF",
"FLASH_ATTN_BACK",
"SSM_CONV",
"SSM_SCAN",
"WIN_PART",
"WIN_UNPART",
"GET_REL_POS",
@ -1863,7 +1865,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1929,6 +1931,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"flash_attn(x)",
"flash_ff(x)",
"flash_attn_back(x)",
"ssm_conv(x)",
"ssm_scan(x)",
"win_part(x)",
"win_unpart(x)",
"get_rel_pos(x)",
@ -1951,7 +1955,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -2154,9 +2158,12 @@ void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
// getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
//#else
// // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
// // getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
// // koboldcpp fix: we don't use numa and this thing breaks runpod
//# if !defined(SYS_getcpu) && defined(SYS_get_cpu)
//# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
//# endif
// getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
//#endif
// koboldcpp fix: we don't use numa and this thing breaks runpod
if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
g_state.numa.n_nodes = 0;
@ -6152,6 +6159,108 @@ struct ggml_tensor * ggml_flash_attn_back(
return result;
}
// ggml_ssm_conv
struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * c,
struct ggml_tensor * sq) {
GGML_ASSERT(ggml_is_3d(s));
GGML_ASSERT(ggml_is_matrix(x));
GGML_ASSERT(ggml_is_matrix(c));
GGML_ASSERT(ggml_is_matrix(sq));
GGML_ASSERT(sq->type == GGML_TYPE_I32);
const int64_t d_conv = c->ne[0];
const int64_t d_inner = c->ne[1];
const int64_t n_tokens = x->ne[1];
const int64_t n_kv = s->ne[2];
GGML_ASSERT( s->ne[0] == d_conv - 1);
GGML_ASSERT( s->ne[1] == d_inner);
GGML_ASSERT( x->ne[0] == d_inner);
GGML_ASSERT(sq->ne[0] == n_kv);
GGML_ASSERT(sq->ne[1] == n_tokens);
bool is_node = false;
if (s->grad || x->grad || c->grad || sq->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
// 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
result->op = GGML_OP_SSM_CONV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = s;
result->src[1] = x;
result->src[2] = c;
result->src[3] = sq;
return result;
}
// ggml_ssm_scan
struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C,
struct ggml_tensor * sq) {
GGML_ASSERT(ggml_is_contiguous(s));
GGML_ASSERT(ggml_is_contiguous(x));
GGML_ASSERT(ggml_is_contiguous(dt));
GGML_ASSERT(ggml_is_contiguous(A));
GGML_ASSERT(sq->type == GGML_TYPE_I32);
GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
GGML_ASSERT(ggml_are_same_shape(x, dt));
{
const int64_t d_state = s->ne[0];
const int64_t d_inner = s->ne[1];
const int64_t n_tokens = x->ne[1];
GGML_ASSERT(x->ne[0] == d_inner);
GGML_ASSERT(A->ne[0] == d_state);
GGML_ASSERT(A->ne[1] == d_inner);
GGML_ASSERT(B->ne[0] == d_state);
GGML_ASSERT(B->ne[1] == n_tokens);
GGML_ASSERT(C->ne[0] == d_state);
GGML_ASSERT(C->ne[1] == n_tokens);
}
bool is_node = false;
if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
// 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
result->op = GGML_OP_SSM_SCAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = s;
result->src[1] = x;
result->src[2] = dt;
result->src[3] = A;
result->src[4] = B;
result->src[5] = C;
result->src[6] = sq;
return result;
}
// ggml_win_part
struct ggml_tensor * ggml_win_part(
@ -14769,6 +14878,257 @@ static void ggml_compute_forward_flash_attn_back(
}
}
// ggml_compute_forward_ssm_conv
static void ggml_compute_forward_ssm_conv_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0]; // conv_state
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
const struct ggml_tensor * src3 = dst->src[3]; // state_seq
const int ith = params->ith;
const int nth = params->nth;
const int nc = src2->ne[0]; // d_conv
const int nr = src0->ne[1]; // d_inner
const int n_t = src1->ne[1]; // n_tokens
const int n_kv = src0->ne[2]; // max number of sequences in the batch
GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// for use with the destination state offset between sequences
GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
if (n_kv > 1) {
// multiple sequences means it's hard to know when it's the first time a state is read,
// so copy them all over to the destination, just to be sure.
for (int i3 = 0; i3 < n_kv; ++i3) {
float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
// can't use memcpy because of d_conv vs d_conv - 1
for (int i1 = 0; i1 < ir; ++i1) {
for (int i0 = 0; i0 < nc - 1; ++i0) {
// copy s0 to last (d_conv - 1) columns of s
s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
}
}
}
}
for (int i2 = 0; i2 < n_t; ++i2) {
int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
float * s0; // {d_conv - 1, d_inner, n_kv}
float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
int ne0s0;
GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
// avoid needing to copy the state for the first token
if (i2 == 0) {
s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
ne0s0 = src0->ne[0];
} else {
// the source is the last (d_conv - 1) columns of the destination
s0 = s + 1;
ne0s0 = nc;
}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// shift state left
for (int i0 = 0; i0 < nc - 1; ++i0) {
s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
}
// insert x on the last column
s[(nc - 1) + i1*nc] = x0[i1];
}
// handle copies when there are multiple output states
for (int i3 = 1; i3 < n_kv; ++i3) {
int32_t seq = sq[i3];
if (0 <= seq && seq < n_kv) {
float * s1 = s + (seq - sq[0])*nc*nr;
memcpy(s1, s, nc*ir*sizeof(float));
} else {
// stop at negative or too big seq_ids
break;
}
}
// it seems a little faster when this is separate from the state shift
for (int i1 = 0; i1 < ir; ++i1) {
// rowwise dot product
float sumf = 0.0f;
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
sumf += s[i] * c[i];
}
x[i1] = sumf;
}
}
}
static void ggml_compute_forward_ssm_conv(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_conv_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_ssm_scan
static void ggml_compute_forward_ssm_scan_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
const struct ggml_tensor * src0 = dst->src[0]; // s
const struct ggml_tensor * src1 = dst->src[1]; // x
const struct ggml_tensor * src2 = dst->src[2]; // dt
const struct ggml_tensor * src3 = dst->src[3]; // A
const struct ggml_tensor * src4 = dst->src[4]; // B
const struct ggml_tensor * src5 = dst->src[5]; // C
const struct ggml_tensor * src6 = dst->src[6]; // sq
const int ith = params->ith;
const int nth = params->nth;
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens in the batch
const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C, and when copying the states
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[2])
GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
if (n_kv > 1) {
// it's hard to know if the source states have already been copied
// when there are multiple, so copy them already.
for (int i3 = 0; i3 < n_kv; ++i3) {
float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
memcpy(s, s0, nc*ir*sizeof(float));
}
}
for (int i2 = 0; i2 < n_t; ++i2) {
int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
float * s0;
float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
// avoid needing to copy the state for the first token
if (i2 == 0) {
s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
} else {
// otherwise the source is the same as the destination
s0 = s;
}
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
}
y[i1] = sumf;
}
// handle copies when there are multiple output states
for (int i3 = 1; i3 < n_kv; ++i3) {
int32_t seq = sq[i3];
if (0 <= seq && seq < n_kv) {
float * s1 = s + (seq - sq[0])*nc*nr;
memcpy(s1, s, nc*ir*sizeof(float));
} else {
// stop at negative or too big seq_ids
break;
}
}
}
}
static void ggml_compute_forward_ssm_scan(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_scan_f32(params, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_part
static void ggml_compute_forward_win_part_f32(
@ -15828,6 +16188,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
bool masked = t != 0;
ggml_compute_forward_flash_attn_back(params, masked, tensor);
} break;
case GGML_OP_SSM_CONV:
{
ggml_compute_forward_ssm_conv(params, tensor);
} break;
case GGML_OP_SSM_SCAN:
{
ggml_compute_forward_ssm_scan(params, tensor);
} break;
case GGML_OP_WIN_PART:
{
ggml_compute_forward_win_part(params, tensor);
@ -16882,6 +17250,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_UNARY:
@ -17588,6 +17961,11 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
{
n_tasks = n_threads;
} break;
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
{
n_tasks = n_threads;
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:

19
ggml.h
View file

@ -479,6 +479,8 @@ extern "C" {
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN,
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
@ -1735,6 +1737,23 @@ extern "C" {
struct ggml_tensor * c0,
struct ggml_tensor * c1);
GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * c,
struct ggml_tensor * sq);
GGML_API struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C,
struct ggml_tensor * sq);
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1

File diff suppressed because it is too large Load diff

View file

@ -61,6 +61,12 @@ class Keys:
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel"
INNER_SIZE = "{arch}.ssm.inner_size"
STATE_SIZE = "{arch}.ssm.state_size"
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
LIST = "tokenizer.ggml.tokens"
@ -113,6 +119,7 @@ class MODEL_ARCH(IntEnum):
MINICPM = auto()
GEMMA = auto()
STARCODER2 = auto()
MAMBA = auto()
class MODEL_TENSOR(IntEnum):
@ -144,6 +151,13 @@ class MODEL_TENSOR(IntEnum):
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
SSM_IN = auto()
SSM_CONV1D = auto()
SSM_X = auto()
SSM_DT = auto()
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -171,6 +185,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.MINICPM: "minicpm",
MODEL_ARCH.GEMMA: "gemma",
MODEL_ARCH.STARCODER2: "starcoder2",
MODEL_ARCH.MAMBA: "mamba",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -202,6 +217,13 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -543,6 +565,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.SSM_IN,
MODEL_TENSOR.SSM_CONV1D,
MODEL_TENSOR.SSM_X,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_D,
MODEL_TENSOR.SSM_OUT,
],
# TODO
}
@ -734,6 +769,12 @@ KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
# SSM
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
# tokenization
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST

View file

@ -382,6 +382,18 @@ class GGUFWriter:
def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
def add_ssm_inner_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.INNER_SIZE.format(arch=self.arch), value)
def add_ssm_state_size(self, value: int) -> None:
self.add_uint32(Keys.SSM.STATE_SIZE.format(arch=self.arch), value)
def add_ssm_time_step_rank(self, value: int) -> None:
self.add_uint32(Keys.SSM.TIME_STEP_RANK.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)

View file

@ -20,6 +20,9 @@ class TensorNameMap:
"wte", # gpt2
"transformer.embd.wte", # phi2
"model.tok_embeddings", # internlm2
"model.embedding", # mamba-qbert
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
),
# Token type embeddings
@ -44,7 +47,7 @@ class TensorNameMap:
# Output
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
@ -61,6 +64,8 @@ class TensorNameMap:
"language_model.encoder.final_layernorm", # persimmon
"model.final_layernorm", # persimmon
"lm_head.ln", # phi2
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
),
# Rope frequencies
@ -86,6 +91,8 @@ class TensorNameMap:
"transformer.h.{bid}.ln", # phi2
"model.layers.layers.{bid}.norm", # plamo
"model.layers.{bid}.attention_norm", # internlm2
"model.layers.{bid}.norm", # mamba-qbert
"backbone.layers.{bid}.norm", # mamba
),
# Attention norm 2
@ -282,7 +289,42 @@ class TensorNameMap:
MODEL_TENSOR.LAYER_OUT_NORM: (
"encoder.layer.{bid}.output.LayerNorm", # bert
"encoder.layers.{bid}.norm2", # nomic-bert
)
),
MODEL_TENSOR.SSM_IN: (
"model.layers.{bid}.in_proj",
"backbone.layers.{bid}.mixer.in_proj",
),
MODEL_TENSOR.SSM_CONV1D: (
"model.layers.{bid}.conv1d",
"backbone.layers.{bid}.mixer.conv1d",
),
MODEL_TENSOR.SSM_X: (
"model.layers.{bid}.x_proj",
"backbone.layers.{bid}.mixer.x_proj",
),
MODEL_TENSOR.SSM_DT: (
"model.layers.{bid}.dt_proj",
"backbone.layers.{bid}.mixer.dt_proj",
),
MODEL_TENSOR.SSM_A: (
"model.layers.{bid}.A_log",
"backbone.layers.{bid}.mixer.A_log",
),
MODEL_TENSOR.SSM_D: (
"model.layers.{bid}.D",
"backbone.layers.{bid}.mixer.D",
),
MODEL_TENSOR.SSM_OUT: (
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
),
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]

File diff suppressed because one or more lines are too long

View file

@ -581,7 +581,7 @@ maxhordelen = 256
modelbusy = threading.Lock()
requestsinqueue = 0
defaultport = 5001
KcppVersion = "1.60.1"
KcppVersion = "1.61"
showdebug = True
showsamplerwarning = True
showmaxctxwarning = True

715
llama.cpp

File diff suppressed because it is too large Load diff

View file

@ -235,6 +235,7 @@ extern "C" {
uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_parallel; // number of parallel sequences (i.e. distinct states for recurrent models)
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
@ -376,6 +377,7 @@ extern "C" {
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_max_seq (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
@ -502,7 +504,7 @@ extern "C" {
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_rm(
LLAMA_API bool llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,