mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
model : add support for Seed-OSS (#15490)
* First draft * Fix linter errors * Added missing sinks nullptr * Don't forget the llama-arch! * We're through to the generation stage. * Fix post-attention norm * Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Fix RoPE type * Fix tensor name and reorder llm_types * Update gguf-py/gguf/constants.py Remove nonexistent FFN_POST_NORM tensor Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-model.h Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Add basic chat template * Add chat template tests * Remake chat template test * Apply suggestions from code review Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Update src/llama-chat.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> * Reorder llm type descriptions * Update src/llama-model.cpp Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com> --------- Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
parent
9ef536907d
commit
b1afcab804
9 changed files with 244 additions and 0 deletions
|
@ -5854,6 +5854,11 @@ class OlmoModel(TextModel):
|
|||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@ModelBase.register("SeedOssForCausalLM")
|
||||
class SeedOssModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.SEED_OSS
|
||||
|
||||
|
||||
@ModelBase.register("Olmo2ForCausalLM")
|
||||
class Olmo2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO2
|
||||
|
|
|
@ -385,6 +385,7 @@ class MODEL_ARCH(IntEnum):
|
|||
DREAM = auto()
|
||||
SMALLTHINKER = auto()
|
||||
LLADA = auto()
|
||||
SEED_OSS = auto()
|
||||
|
||||
|
||||
class VISION_PROJECTOR_TYPE(IntEnum):
|
||||
|
@ -717,6 +718,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.DREAM: "dream",
|
||||
MODEL_ARCH.SMALLTHINKER: "smallthinker",
|
||||
MODEL_ARCH.LLADA: "llada",
|
||||
MODEL_ARCH.SEED_OSS: "seed_oss",
|
||||
}
|
||||
|
||||
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
|
||||
|
@ -1973,6 +1975,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.SEED_OSS: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
],
|
||||
MODEL_ARCH.OLMOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
|
|
@ -93,6 +93,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_DREAM, "dream" },
|
||||
{ LLM_ARCH_SMALLTHINKER, "smallthinker" },
|
||||
{ LLM_ARCH_LLADA, "llada" },
|
||||
{ LLM_ARCH_SEED_OSS, "seed_oss" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
|
@ -2068,6 +2069,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_SEED_OSS,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
|
|
@ -97,6 +97,7 @@ enum llm_arch {
|
|||
LLM_ARCH_DREAM,
|
||||
LLM_ARCH_SMALLTHINKER,
|
||||
LLM_ARCH_LLADA,
|
||||
LLM_ARCH_SEED_OSS,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
@ -69,6 +69,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||
{ "gpt-oss", LLM_CHAT_TEMPLATE_OPENAI_MOE },
|
||||
{ "hunyuan-dense", LLM_CHAT_TEMPLATE_HUNYUAN_DENSE },
|
||||
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
|
||||
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
|
@ -201,6 +202,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
|||
return LLM_CHAT_TEMPLATE_HUNYUAN_DENSE;
|
||||
} else if (tmpl_contains("<|im_assistant|>assistant<|im_middle|>")) {
|
||||
return LLM_CHAT_TEMPLATE_KIMI_K2;
|
||||
} else if (tmpl_contains("<seed:bos>")) {
|
||||
return LLM_CHAT_TEMPLATE_SEED_OSS;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
@ -752,6 +755,14 @@ int32_t llm_chat_apply_template(
|
|||
if (add_ass) {
|
||||
ss << "<|im_assistant|>assistant<|im_middle|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_SEED_OSS) {
|
||||
for (auto message: chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<seed:bos>" << role << "\n" << (role == "assistant" ? trim(message->content) : message->content) << "<seed:eos>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<seed:bos>assistant\n";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
|
|
@ -49,6 +49,7 @@ enum llm_chat_template {
|
|||
LLM_CHAT_TEMPLATE_OPENAI_MOE,
|
||||
LLM_CHAT_TEMPLATE_HUNYUAN_DENSE,
|
||||
LLM_CHAT_TEMPLATE_KIMI_K2,
|
||||
LLM_CHAT_TEMPLATE_SEED_OSS,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
@ -83,6 +83,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_32B: return "32B";
|
||||
case LLM_TYPE_34B: return "34B";
|
||||
case LLM_TYPE_35B: return "35B";
|
||||
case LLM_TYPE_36B: return "36B";
|
||||
case LLM_TYPE_40B: return "40B";
|
||||
case LLM_TYPE_65B: return "65B";
|
||||
case LLM_TYPE_70B: return "70B";
|
||||
|
@ -1288,6 +1289,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_SEED_OSS:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 64: type = LLM_TYPE_36B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_OLMOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
@ -3967,6 +3976,43 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_SEED_OSS:
|
||||
{
|
||||
const uint32_t head_dim = hparams.n_embd_head_k;
|
||||
const int64_t n_qo_dim = n_head * head_dim;
|
||||
const int64_t n_kv_dim = n_head_kv * head_dim;
|
||||
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
|
||||
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
}
|
||||
} break;
|
||||
|
||||
case LLM_ARCH_OLMOE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
@ -17934,6 +17980,137 @@ struct llm_build_lfm2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_seed_oss : public llm_graph_context {
|
||||
llm_build_seed_oss(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].attn_post_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_post_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
template <bool iswa>
|
||||
struct llm_build_smallthinker : public llm_graph_context{
|
||||
llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
|
||||
|
@ -18472,6 +18649,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
{
|
||||
llm = std::make_unique<llm_build_bailingmoe>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_SEED_OSS:
|
||||
{
|
||||
llm = std::make_unique<llm_build_seed_oss>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_DOTS1:
|
||||
{
|
||||
llm = std::make_unique<llm_build_dots1>(*this, params);
|
||||
|
@ -18530,6 +18711,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
return llm->res->get_gf();
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// interface implementation
|
||||
//
|
||||
|
@ -18724,6 +18906,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_LFM2:
|
||||
case LLM_ARCH_SMALLTHINKER:
|
||||
case LLM_ARCH_GLM4_MOE:
|
||||
case LLM_ARCH_SEED_OSS:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
|
|
|
@ -76,6 +76,7 @@ enum llm_type {
|
|||
LLM_TYPE_32B,
|
||||
LLM_TYPE_34B,
|
||||
LLM_TYPE_35B,
|
||||
LLM_TYPE_36B,
|
||||
LLM_TYPE_40B,
|
||||
LLM_TYPE_65B,
|
||||
LLM_TYPE_70B,
|
||||
|
|
|
@ -290,6 +290,14 @@ int main(void) {
|
|||
/* .bos_token= */ "",
|
||||
/* .eos_token= */ "",
|
||||
},
|
||||
{
|
||||
/* .name= */ "ByteDance-Seed/Seed-OSS-36B-Instruct",
|
||||
/* .template_str */ "{# <seed:bos> #}{%- for message in messages %}{%- if message.role in [\"user\", \"system\"] %}{{ bos_token + message.role + \"\\n\" + message.content + eos_token }}{%- elif message.role == \"assistant\" %}{{ bos_token + message.role }}{%- if message.content is defined and message.content is string and message.content|trim|length > 0 %}{{ \"\\n\" + message.content|trim + eos_token }}{%- endif %}{%- else %}{{ bos_token + message.role + \"\\n\" + message.content + eos_token }}{%- endif %}{%- endfor %}{%- if add_generation_prompt %}{{ bos_token + \"assistant\\n\" }}{%- endif %}",
|
||||
/* .expected_output= */ "<seed:bos>system\nYou are a helpful assistant<seed:eos><seed:bos>user\nHello<seed:eos><seed:bos>assistant\nHi there<seed:eos><seed:bos>user\nWho are you<seed:eos><seed:bos>assistant\nI am an assistant<seed:eos><seed:bos>user\nAnother question<seed:eos><seed:bos>assistant\n",
|
||||
/* .expected_output_jinja= */ "<seed:bos>system\nYou are a helpful assistant<seed:eos><seed:bos>user\nHello<seed:eos><seed:bos>assistant\nHi there<seed:eos><seed:bos>user\nWho are you<seed:eos><seed:bos>assistant\nI am an assistant<seed:eos><seed:bos>user\nAnother question<seed:eos><seed:bos>assistant\n",
|
||||
/* .bos_token= */ "<seed:bos>",
|
||||
/* .eos_token= */ "<seed:eos>",
|
||||
}
|
||||
};
|
||||
std::vector<char> formatted_chat(1024);
|
||||
int32_t res;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue