mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-13 18:39:48 +00:00
Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B * Move diffusion to examples * Move stuff to examples. Add patch to not use kv-cache * Address review comments * Make sampling fast * llama: remove diffusion functions * Add basic timings + cleanup * More cleanup * Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length * fixup! * Review: move everything to diffusion-cli for now
This commit is contained in:
parent
64978340b0
commit
ab14019821
13 changed files with 804 additions and 0 deletions
|
@ -849,6 +849,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_DREAM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
// Dream models are primarily 7B with 28 layers
|
||||
switch (hparams.n_layer) {
|
||||
case 28:
|
||||
type = LLM_TYPE_7B;
|
||||
break;
|
||||
default:
|
||||
type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
// Set non-causal attention for diffusion models
|
||||
hparams.causal_attn = false;
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
|
@ -2670,6 +2685,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
} break;
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
case LLM_ARCH_DREAM:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
|
@ -7756,6 +7772,109 @@ struct llm_build_qwen2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_dream : public llm_graph_context {
|
||||
llm_build_dream(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) :
|
||||
llm_graph_context(params) {
|
||||
//copied from qwen2
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr,
|
||||
nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_qwen2vl : public llm_graph_context {
|
||||
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
@ -16487,6 +16606,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
case LLM_ARCH_NOMIC_BERT_MOE:
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
case LLM_ARCH_DREAM:
|
||||
{
|
||||
res = nullptr;
|
||||
} break;
|
||||
|
@ -16638,6 +16758,11 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
{
|
||||
llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_DREAM:
|
||||
{
|
||||
llm = std::make_unique<llm_build_dream>(*this, params, gf);
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
|
||||
|
@ -17055,6 +17180,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
case LLM_ARCH_BITNET:
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_QWEN3:
|
||||
case LLM_ARCH_QWEN3MOE:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue