Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	README.md
#	docs/build.md
#	examples/infill/infill.cpp
#	examples/main/README.md
#	examples/server/README.md
#	flake.lock
#	scripts/sync-ggml.last
#	src/llama.cpp
#	tests/test-json-schema-to-grammar.cpp
#	tests/test-sampling.cpp
This commit is contained in:
Concedo 2024-10-17 16:36:02 +08:00
commit a9dbcdd3ec
34 changed files with 1701 additions and 928 deletions

View file

@ -129,14 +129,14 @@ struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
int32_t n_predict = -1; // new tokens to predict
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct server_slot {
@ -166,8 +166,13 @@ struct server_slot {
json prompt; // can be either a string, array of strings or array of token ids
json input_prefix;
json input_suffix;
json input_extra;
// when a task is submitted, we first tokenize the prompt and store it here
std::vector<llama_token> prompt_tokens;
std::vector<llama_token> extra_tokens;
std::string generated_text;
std::vector<llama_token> cache_tokens;
@ -176,6 +181,7 @@ struct server_slot {
server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
bool has_next_token = true;
bool has_new_line = false;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
@ -194,21 +200,15 @@ struct server_slot {
llama_token sampled;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
int32_t n_past_se = 0; // self-extend
// stats
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_generation;
double t_prompt_processing; // ms
double t_token_generation; // ms
double t_token_generation; // ms
std::function<void(int)> callback_on_release;
@ -217,6 +217,7 @@ struct server_slot {
n_prompt_tokens = 0;
generated_text = "";
has_new_line = false;
truncated = false;
stopped_eos = false;
stopped_word = false;
@ -226,8 +227,6 @@ struct server_slot {
n_sent_text = 0;
n_sent_token_probs = 0;
cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
ga_i = 0;
n_past_se = 0;
generated_token_probs.clear();
}
@ -624,12 +623,6 @@ struct server_context {
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
// slots / clients
std::vector<server_slot> slots;
json default_generation_settings_for_props;
@ -666,7 +659,7 @@ struct server_context {
bool load_model(const common_params & params_) {
params = params_;
// dedicate one sequence to the system prompt
// reserve one extra sequence (seq_id == 0) for extra features
params.n_parallel += 1;
common_init_result llama_init = common_init_from_params(params);
@ -712,22 +705,6 @@ struct server_context {
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
SLT_INF(slot, "slot self-extend: ga_n = %d, ga_w = %d\n", ga_n, ga_w);
}
slot.ga_i = 0;
slot.ga_n = ga_n;
slot.ga_w = ga_w;
slot.sparams = params.sparams;
slot.callback_on_release = [this](int) {
@ -754,12 +731,7 @@ struct server_context {
metrics.init();
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
std::vector<llama_token> tokenize(const json & json_prompt, bool add_special, bool parse_special) const {
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
@ -772,10 +744,10 @@ struct server_context {
std::vector<llama_token> p;
if (first) {
p = common_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
p = common_tokenize(ctx, s, add_special, parse_special);
first = false;
} else {
p = common_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
p = common_tokenize(ctx, s, false, parse_special);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
@ -789,7 +761,7 @@ struct server_context {
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
}
return prompt_tokens;
@ -831,7 +803,7 @@ struct server_context {
int slot_prompt_len = slot_prompt.size();
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
int lcp_len = common_part(slot_prompt, prompt);
int lcp_len = longest_common_prefix(slot_prompt, prompt);
// fraction of the common substring length compared to the current slot's prompt length
similarity = static_cast<float>(lcp_len) / slot_prompt_len;
@ -892,6 +864,8 @@ struct server_context {
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
@ -910,6 +884,8 @@ struct server_context {
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
@ -918,19 +894,14 @@ struct server_context {
}
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
} catch (const std::exception & e) {
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
return false;
}
} else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
if (slot.params.cache_prompt && slot.ga_n != 1) {
slot.params.cache_prompt = false;
SLT_WRN(slot, "%s", "group-attention is not supported with prompt caching. disabling cache\n");
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
@ -940,11 +911,29 @@ struct server_context {
}
// infill
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
slot.input_prefix = json_value(data, "input_prefix", json());
slot.input_suffix = json_value(data, "input_suffix", json());
slot.input_extra = json_value(data, "input_extra", json());
SLT_DBG(slot, "extra_context chunks: %d\n", (int) slot.input_extra.size());
for (const auto & chunk : slot.input_extra) {
// { "text": string, "filename": string }
if (!chunk.contains("text") || !chunk["text"].is_string()) {
send_error(task, "extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST);
return false;
}
// filename is optional
if (chunk.contains("filename") && !chunk["filename"].is_string()) {
send_error(task, "extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST);
return false;
}
SLT_DBG(slot, "extra_context chunk in file '%s':\n%s\n", chunk.value("filename", "").c_str(), chunk.value("text", "").c_str());
}
// get prompt
if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
{
const auto & prompt = data.find("prompt");
if (prompt == data.end()) {
send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
@ -1067,51 +1056,6 @@ struct server_context {
clean_kv_cache = false;
}
void system_prompt_update() {
SRV_DBG("updating system prompt: '%s'\n", system_prompt.c_str());
kv_cache_clear();
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = common_tokenize(ctx, system_prompt, true);
const int32_t n_batch = llama_n_batch(ctx);
const int32_t n_tokens_prompt = system_tokens.size();
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
common_batch_clear(batch);
for (int32_t j = 0; j < n_tokens; ++j) {
common_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0) {
SRV_ERR("%s", "llama_decode() failed\n");
return;
}
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= params.n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
}
system_need_update = false;
}
bool system_prompt_set(const std::string & sys_prompt) {
SRV_DBG("system prompt set: '%s'\n", system_prompt.c_str());
system_prompt = sys_prompt;
// update system_tokens and KV cache as soon as all slots are idle
system_need_update = true;
return true;
}
bool process_token(completion_token_output & result, server_slot & slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
@ -1147,22 +1091,21 @@ struct server_context {
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
bool send_text = true;
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
if (stop_pos != std::string::npos) {
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
} else {
is_stop_full = false;
} else if (slot.has_next_token) {
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
send_text = stop_pos == std::string::npos;
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
if (send_text) {
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
@ -1187,13 +1130,28 @@ struct server_context {
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
}
// if we have already seen a new line, we stop after a certain time limit
if (slot.has_new_line && slot.params.t_max_predict_ms > 0 &&
(ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stopped_limit = true;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
// check if there is a new line in the generated text
if (result.text_to_send.find('\n') != std::string::npos) {
slot.has_new_line = true;
}
// if context shift is disabled, we stop when it reaches the context limit
if (slot.n_decoded >= slot.n_ctx) {
if (slot.n_past >= slot.n_ctx) {
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false;
SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx);
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
}
if (llama_token_is_eog(model, result.tok)) {
@ -1205,18 +1163,18 @@ struct server_context {
const auto n_ctx_train = llama_n_ctx_train(model);
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
slot.truncated = true;
slot.stopped_limit = true;
slot.has_next_token = false; // stop prediction
SLT_WRN(slot,
"n_predict (%d) is not set and self-context extend is disabled. "
"n_predict (%d) is set for infinite generation. "
"Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
slot.params.n_predict, n_ctx_train);
}
SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: '%s'\n", slot.n_decoded, slot.n_remaining, token_str.c_str());
SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
return slot.has_next_token; // continue
}
@ -1240,6 +1198,8 @@ struct server_context {
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"xtc_probability", slot.sparams.xtc_probability},
{"xtc_threshold", slot.sparams.xtc_threshold},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
@ -1335,6 +1295,7 @@ struct server_context {
{"tokens_evaluated", slot.n_prompt_tokens},
{"generation_settings", get_formated_generation(slot)},
{"prompt", slot.prompt},
{"has_new_line", slot.has_new_line},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
@ -1484,9 +1445,8 @@ struct server_context {
if (prompt.is_string() || json_is_array_of_numbers(prompt)) {
data["index"] = 0;
create_task(data, false, nullptr);
}
// otherwise, it's a multiple-prompt task, we break it into smaller tasks
else if (prompt.is_array()) {
} else if (prompt.is_array()) {
// otherwise, it's a multiple-prompt task, we break it into smaller tasks
std::vector<json> prompts = prompt;
if (cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
// prompts[0] is the question
@ -1511,9 +1471,8 @@ struct server_context {
}
}
}
}
// invalid case
else {
} else {
// invalid case
throw std::runtime_error(error_msg);
}
@ -1663,6 +1622,7 @@ struct server_context {
slot_data["prompt"] = slot.prompt;
slot_data["next_token"] = {
{"has_next_token", slot.has_next_token},
{"has_new_line", slot.has_new_line},
{"n_remain", slot.n_remaining},
{"n_decoded", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
@ -1786,6 +1746,9 @@ struct server_context {
}
slot->cache_tokens.resize(token_count);
// TODO: maybe detokenize the slot->cache_tokens instead?
slot->prompt = string_format("[restored %d tokens from file]", (int) token_count);
const int64_t t_end = ggml_time_us();
const double t_restore_ms = (t_end - t_start) / 1000.0;
@ -1860,12 +1823,8 @@ struct server_context {
}
if (all_idle) {
if (system_need_update) {
system_prompt_update();
}
SRV_INF("%s", "all slots are idle\n");
if (system_prompt.empty() && clean_kv_cache) {
if (clean_kv_cache) {
kv_cache_clear();
}
@ -1886,38 +1845,36 @@ struct server_context {
// apply context-shift if needed
// TODO: simplify and improve
for (server_slot & slot : slots) {
if (slot.ga_n == 1) {
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
if (!params.ctx_shift) {
// this check is redundant (for good)
// we should never get here, because generation should already stopped in process_token()
slot.release();
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
continue;
}
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
}
slot.n_past -= n_discard;
slot.truncated = true;
if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
if (!params.ctx_shift) {
// this check is redundant (for good)
// we should never get here, because generation should already stopped in process_token()
slot.release();
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
continue;
}
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = slot.n_past - n_keep;
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
}
slot.n_past -= n_discard;
slot.truncated = true;
}
}
@ -1932,11 +1889,7 @@ struct server_context {
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id + 1 }, true);
slot.n_past += 1;
@ -1944,8 +1897,8 @@ struct server_context {
slot.cache_tokens.push_back(slot.sampled);
}
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_system_tokens = %d, n_cache_tokens = %d, truncated = %d\n",
slot.n_ctx, slot.n_past, (int) system_tokens.size(), (int) slot.cache_tokens.size(), slot.truncated);
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
}
// process in chunks of params.n_batch
@ -1972,63 +1925,126 @@ struct server_context {
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_generation = 0;
if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_INFILL) {
const bool add_bos = llama_add_bos_token(model);
bool suff_rm_leading_spc = true;
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
suff_rm_leading_spc = false;
}
switch (slot.cmpl_type) {
case SERVER_TASK_CMPL_TYPE_NORMAL:
case SERVER_TASK_CMPL_TYPE_EMBEDDING:
{
prompt_tokens = tokenize(slot.prompt, llama_add_bos_token(model), true);
} break;
case SERVER_TASK_CMPL_TYPE_RERANK:
{
// require slot.prompt to be array of 2 strings
if (!slot.prompt.is_array() || slot.prompt.size() != 2) {
SLT_ERR(slot, "%s", "invalid prompt for rerank task\n");
slot.release();
send_error(slot, "invalid prompt for rerank task", ERROR_TYPE_INVALID_REQUEST);
continue;
}
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
// prompt: [BOS]query[EOS][SEP]doc[EOS]
prompt_tokens.clear();
prompt_tokens.push_back(llama_token_bos(model));
{
const auto part = tokenize(slot.prompt[0], false, false);
prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
}
prompt_tokens.push_back(llama_token_eos(model));
prompt_tokens.push_back(llama_token_sep(model));
{
const auto part = tokenize(slot.prompt[1], false, false);
prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
}
prompt_tokens.push_back(llama_token_eos(model));
} break;
case SERVER_TASK_CMPL_TYPE_INFILL:
{
// TODO: optimize this block by reducing memory allocations and movement
const int space_token = 29871; // TODO: this should not be hardcoded
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
suffix_tokens.erase(suffix_tokens.begin());
}
// use FIM repo-level pattern:
// ref: https://arxiv.org/pdf/2409.12186
//
// [FIM_REP]myproject
// [FIM_SEP]filename0
// extra chunk 0
// [FIM_SEP]filename1
// extra chunk 1
// ...
// [FIM_SEP]filename
// [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
//
auto tokens_prefix = tokenize(slot.input_prefix, false, false);
auto tokens_suffix = tokenize(slot.input_suffix, false, false);
auto tokens_prompt = tokenize(slot.prompt, false, false);
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
slot.extra_tokens.clear();
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
static const auto k_fim_repo = tokenize("myproject\n", false, false);
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
slot.extra_tokens.push_back(llama_token_fim_rep(model));
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
}
const llama_token middle_token = llama_token_middle(model);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
for (const auto & chunk : slot.input_extra) {
// { "text": string, "filename": string }
const std::string text = chunk.value("text", "");
const std::string filename = chunk.value("filename", "tmp");
prompt_tokens = embd_inp;
} else if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) {
// require slot.prompt to be array of 2 strings
if (!slot.prompt.is_array() || slot.prompt.size() != 2) {
SLT_ERR(slot, "%s", "invalid prompt for rerank task\n");
slot.release();
send_error(slot, "invalid prompt for rerank task", ERROR_TYPE_INVALID_REQUEST);
continue;
}
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
const auto k_fim_file = tokenize(filename + "\n", false, false);
// prompt: [BOS]query[EOS][SEP]doc[EOS]
prompt_tokens.clear();
prompt_tokens.push_back(llama_token_bos(model));
{
const auto part = tokenize(slot.prompt[0], false);
prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
}
prompt_tokens.push_back(llama_token_eos(model));
prompt_tokens.push_back(llama_token_sep(model));
{
const auto part = tokenize(slot.prompt[1], false);
prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end());
}
prompt_tokens.push_back(llama_token_eos(model));
} else {
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
} else {
// chunk separator in binary form to avoid confusing the AI
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
static const auto k_chunk_prefix_tokens = tokenize(k_chunk_prefix_str, false, false);
slot.extra_tokens.insert(slot.extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
}
const auto chunk_tokens = tokenize(text, false, false);
slot.extra_tokens.insert(slot.extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
}
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
// TODO: current filename
static const auto k_fim_file = tokenize("filename\n", false, false);
slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
}
// for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
const int n_suffix_take = std::min<int>(tokens_suffix.size(), (n_batch/4));
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4) - 3);
// fill the rest of the context with extra chunks
const int n_extra_take = std::min<int>(std::max<int>(0, slot.n_ctx - (n_batch) - 2*slot.n_predict), slot.extra_tokens.size());
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
tokens_suffix.resize(n_suffix_take);
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
auto embd_inp = params.spm_infill ? tokens_suffix : tokens_prefix;
auto embd_end = params.spm_infill ? tokens_prefix : tokens_suffix;
if (llama_add_bos_token(model)) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
SLT_DBG(slot, "extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", slot.n_ctx, n_extra_take, (int) slot.extra_tokens.size());
// put the extra context before the FIM prefix
embd_inp.insert(embd_inp.begin(), slot.extra_tokens.end() - n_extra_take, slot.extra_tokens.end());
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
embd_inp.push_back(llama_token_fim_mid(model));
prompt_tokens = std::move(embd_inp);
} break;
}
slot.n_past = 0;
@ -2036,6 +2052,19 @@ struct server_context {
SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
// print prompt tokens (for debugging)
if (1) {
// first 16 tokens (avoid flooding logs)
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
}
} else {
// all
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
}
}
// empty prompt passed -> release the slot and send empty response
if (prompt_tokens.empty()) {
SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
@ -2056,7 +2085,9 @@ struct server_context {
} else {
if (!params.ctx_shift) {
// if context shift is disabled, we make sure prompt size is smaller than KV size
if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) {
// TODO: there should be a separate parameter that control prompt truncation
// context shift should be applied only during the generation phase
if (slot.n_prompt_tokens >= slot.n_ctx) {
slot.release();
send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
continue;
@ -2067,8 +2098,8 @@ struct server_context {
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
// if input prompt is too big, truncate it
if (slot.n_prompt_tokens >= slot.n_ctx) {
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
@ -2095,19 +2126,61 @@ struct server_context {
common_sampler_reset(slot.smpl);
if (!slot.params.cache_prompt) {
slot.n_past_se = 0;
slot.ga_i = 0;
} else {
GGML_ASSERT(slot.ga_n == 1);
if (slot.params.cache_prompt) {
// reuse any previously computed tokens that are common with the new prompt
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
// push the prompt into the sampling context (do not apply grammar)
for (int i = 0; i < slot.n_past; ++i) {
common_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
}
// reuse chunks from the cached prompt by shifting their KV cache in the new position
if (params.n_cache_reuse > 0) {
size_t head_c = slot.n_past; // cache
size_t head_p = slot.n_past; // current prompt
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params.n_cache_reuse, slot.n_past);
while (head_c < slot.cache_tokens.size() &&
head_p < prompt_tokens.size()) {
size_t n_match = 0;
while (head_c + n_match < slot.cache_tokens.size() &&
head_p + n_match < prompt_tokens.size() &&
slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
n_match++;
}
if (n_match >= (size_t) params.n_cache_reuse) {
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
//for (size_t i = head_p; i < head_p + n_match; i++) {
// SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
//}
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id + 1, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id + 1, head_c, -1, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
common_sampler_accept(slot.smpl, slot.cache_tokens[head_p + i], false);
slot.n_past++;
}
head_c += n_match;
head_p += n_match;
} else {
head_c += 1;
}
}
SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
}
}
}
@ -2116,9 +2189,6 @@ struct server_context {
SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
slot.n_past--;
if (slot.ga_i > 0) {
slot.n_past_se--;
}
}
slot.n_prompt_tokens_processed = 0;
@ -2144,55 +2214,31 @@ struct server_context {
}
// keep only the common part
int p0 = (int) system_tokens.size() + slot.n_past;
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
p0 = (int) system_tokens.size();
if (p0 != 0) {
// copy over the system prompt when there is one
llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
}
// there is no common part left (except for the system prompt)
// there is no common part left
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
// TODO: is the system prompt ever in the sampling context?
common_sampler_reset(slot.smpl);
}
SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
// remove the non-common part from the cache
slot.cache_tokens.resize(slot.n_past);
SLT_INF(slot, "kv cache rm [%d, end)\n", p0);
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
// add prompt tokens for processing in the current batch
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
if (slot.ga_n != 1) {
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
}
common_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id + 1 }, false);
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
}
slot.n_prompt_tokens_processed++;
slot_npast++;
slot.n_past++;
}
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
@ -2233,34 +2279,6 @@ struct server_context {
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) {
if (slot.ga_n != 1) {
// context extension via Self-Extend
// TODO: simplify and/or abstract this
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
SLT_DBG(slot, "div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
slot.ga_i += slot.ga_w / slot.ga_n;
SLT_DBG(slot, "\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view = {
n_tokens,
batch.token + i,
@ -2415,10 +2433,6 @@ int main(int argc, char ** argv) {
// struct that contains llama context and inference
server_context ctx_server;
if (!params.system_prompt.empty()) {
ctx_server.system_prompt_set(params.system_prompt);
}
if (params.model_alias == "unknown") {
params.model_alias = params.model;
}
@ -2846,7 +2860,6 @@ int main(int argc, char ** argv) {
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
json data = {
{ "system_prompt", ctx_server.system_prompt },
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params.n_parallel },
{ "chat_template", llama_get_chat_template(ctx_server.model) },
@ -2862,10 +2875,8 @@ int main(int argc, char ** argv) {
}
json data = json::parse(req.body);
if (data.contains("system_prompt")) {
std::string system_prompt = data.at("system_prompt");
ctx_server.system_prompt_set(system_prompt);
}
// update any props here
res_ok(res, {{ "success", true }});
};
@ -2925,7 +2936,23 @@ int main(int argc, char ** argv) {
return handle_completions_generic(SERVER_TASK_CMPL_TYPE_NORMAL, data, res);
};
const auto handle_infill = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
std::string err;
if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
err += "prefix token is missing. ";
}
if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
err += "suffix token is missing. ";
}
if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
err += "middle token is missing. ";
}
if (!err.empty()) {
res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
return;
}
json data = json::parse(req.body);
return handle_completions_generic(SERVER_TASK_CMPL_TYPE_INFILL, data, res);
};
@ -3011,7 +3038,8 @@ int main(int argc, char ** argv) {
if (body.count("content") != 0) {
const bool add_special = json_value(body, "add_special", false);
const bool with_pieces = json_value(body, "with_pieces", false);
std::vector<llama_token> tokens = ctx_server.tokenize(body.at("content"), add_special);
std::vector<llama_token> tokens = ctx_server.tokenize(body.at("content"), add_special, true);
if (with_pieces) {
for (const auto& token : tokens) {
@ -3362,6 +3390,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.on_new_task(std::bind(
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
ctx_server.queue_tasks.on_update_slots(std::bind(
&server_context::update_slots, &ctx_server));