From 271ff3fc44a6ecfcea3ebc192e67567d578b7772 Mon Sep 17 00:00:00 2001 From: Brian Date: Tue, 28 May 2024 20:27:27 +1000 Subject: [PATCH 01/47] github: add refactor to issue template (#7561) * github: add refactor issue template [no ci] * Update 07-refactor.yml --- .github/ISSUE_TEMPLATE/05-enhancement.yml | 2 +- .github/ISSUE_TEMPLATE/06-question.yml | 2 +- .github/ISSUE_TEMPLATE/07-refactor.yml | 28 +++++++++++++++++++++++ 3 files changed, 30 insertions(+), 2 deletions(-) create mode 100644 .github/ISSUE_TEMPLATE/07-refactor.yml diff --git a/.github/ISSUE_TEMPLATE/05-enhancement.yml b/.github/ISSUE_TEMPLATE/05-enhancement.yml index 7f516abb0..58fca7318 100644 --- a/.github/ISSUE_TEMPLATE/05-enhancement.yml +++ b/.github/ISSUE_TEMPLATE/05-enhancement.yml @@ -1,4 +1,4 @@ -name: Enhancement template +name: Enhancement description: Used to request enhancements for llama.cpp title: "Feature Request: " labels: ["enhancement"] diff --git a/.github/ISSUE_TEMPLATE/06-question.yml b/.github/ISSUE_TEMPLATE/06-question.yml index 23ad2f419..9d3ff4972 100644 --- a/.github/ISSUE_TEMPLATE/06-question.yml +++ b/.github/ISSUE_TEMPLATE/06-question.yml @@ -1,4 +1,4 @@ -name: Question template +name: Question description: Used to ask questions about llama.cpp title: "Question: " labels: ["question"] diff --git a/.github/ISSUE_TEMPLATE/07-refactor.yml b/.github/ISSUE_TEMPLATE/07-refactor.yml new file mode 100644 index 000000000..3a68d3d53 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/07-refactor.yml @@ -0,0 +1,28 @@ +name: Refactor (Maintainers) +description: Used to track refactoring opportunities +title: "Refactor: " +labels: ["refactor"] +body: + - type: markdown + attributes: + value: | + Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered. + Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too. + + - type: textarea + id: background-description + attributes: + label: Background Description + description: Please provide a detailed written description of the pain points you are trying to solve. + placeholder: Detailed description behind your motivation to request refactor + validations: + required: true + + - type: textarea + id: possible-approaches + attributes: + label: Possible Refactor Approaches + description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list. + placeholder: Your idea of possible refactoring opportunity/approaches + validations: + required: false From 8b99e2aa66ba39e4e1114effea6ef7430881eca4 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 28 May 2024 13:55:35 +0300 Subject: [PATCH 02/47] llama : handle unknown utf8 bytes (#7588) --- llama.cpp | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index f67cb7e23..aa4935320 100644 --- a/llama.cpp +++ b/llama.cpp @@ -17940,7 +17940,16 @@ static std::string llama_decode_text(const std::string & text) { const auto cpts = unicode_cpts_from_utf8(text); for (const auto cpt : cpts) { - decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt)); + const auto utf8 = unicode_cpt_to_utf8(cpt); + try { + decoded_text += unicode_utf8_to_byte(utf8); + } catch (const std::out_of_range & e) { + decoded_text += "[UNK_BYTE_0x"; + for (const auto c : utf8) { + decoded_text += format("%02x", (uint8_t) c); + } + decoded_text += text + "]"; + } } return decoded_text; From edc29433fa08b4e5aeb67649a29fc7713af13d04 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 28 May 2024 15:04:09 +0300 Subject: [PATCH 03/47] tests : fix test-tokenizer-0.sh --- tests/test-tokenizer-0.sh | 2 ++ 1 file changed, 2 insertions(+) diff --git a/tests/test-tokenizer-0.sh b/tests/test-tokenizer-0.sh index 1fec8bbf1..4d2b83655 100755 --- a/tests/test-tokenizer-0.sh +++ b/tests/test-tokenizer-0.sh @@ -28,6 +28,8 @@ printf "Tokenizing using (cpp) llama.cpp ...\n" cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in" +set +e + diff $input.tok $input.tokcpp > /dev/null 2>&1 if [ $? -eq 0 ]; then From ee3dff6b8e39bb8c1cdea1782a7b95ef0118f970 Mon Sep 17 00:00:00 2001 From: fairydreaming <166155368+fairydreaming@users.noreply.github.com> Date: Tue, 28 May 2024 17:07:05 +0200 Subject: [PATCH 04/47] Add support for DeepseekV2ForCausalLM (#7519) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * common : increase max number of experts to 160 * common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture * common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier * convert-hf : add model conversion support for DeepseekV2ForCausalLM * llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models * llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor) * llama : add inference support for LLM_ARCH_DEEPSEEK2 --------- Co-authored-by: Stanisław Szymczyk --- convert-hf-to-gguf.py | 79 ++++++ gguf-py/gguf/constants.py | 74 +++++- gguf-py/gguf/gguf_writer.py | 21 ++ gguf-py/gguf/tensor_mapping.py | 29 ++- llama.cpp | 422 +++++++++++++++++++++++++++++++-- 5 files changed, 599 insertions(+), 26 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index a342f6b1c..1b060e4e6 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2620,6 +2620,85 @@ class ArcticModel(Model): raise ValueError(f"Unprocessed experts: {experts}") +@Model.register("DeepseekV2ForCausalLM") +class DeepseekV2Model(Model): + model_arch = gguf.MODEL_ARCH.DEEPSEEK2 + + def set_vocab(self): + self._set_vocab_gpt2() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + hparams = self.hparams + + self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"]) + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None: + self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"]) + self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"]) + self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"]) + self.gguf_writer.add_value_length(hparams["v_head_dim"]) + self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_count(hparams["n_routed_experts"]) + self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"]) + self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"]) + self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"]) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "yarn": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"]) + self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"]) + + _experts: list[dict[str, Tensor]] | None = None + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + # process the experts separately + if name.find("mlp.experts") != -1: + n_experts = self.hparams["n_routed_experts"] + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + tensors: list[tuple[str, Tensor]] = [] + + # merge the experts into a single 3d tensor + for w_name in ["down_proj", "gate_proj", "up_proj"]: + datas: list[Tensor] = [] + + for xid in range(n_experts): + ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + + data_torch = torch.stack(datas, dim=0) + + merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight" + + new_name = self.map_tensor_name(merged_name) + + tensors.append((new_name, data_torch)) + return tensors + else: + return [] + + return [(self.map_tensor_name(name), data_torch)] + + def write_tensors(self): + super().write_tensors() + + if self._experts is not None: + # flatten `list[dict[str, Tensor]]` into `list[str]` + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + ###### CONVERSION LOGIC ###### diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index c9ae259e1..55ec2cb5c 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -33,17 +33,21 @@ class Keys: FILE_TYPE = "general.file_type" class LLM: - VOCAB_SIZE = "{arch}.vocab_size" - CONTEXT_LENGTH = "{arch}.context_length" - EMBEDDING_LENGTH = "{arch}.embedding_length" - BLOCK_COUNT = "{arch}.block_count" - FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" - USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" - TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" - EXPERT_COUNT = "{arch}.expert_count" - EXPERT_USED_COUNT = "{arch}.expert_used_count" - POOLING_TYPE = "{arch}.pooling_type" - LOGIT_SCALE = "{arch}.logit_scale" + VOCAB_SIZE = "{arch}.vocab_size" + CONTEXT_LENGTH = "{arch}.context_length" + EMBEDDING_LENGTH = "{arch}.embedding_length" + BLOCK_COUNT = "{arch}.block_count" + LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count" + FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" + EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length" + USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" + TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" + EXPERT_COUNT = "{arch}.expert_count" + EXPERT_USED_COUNT = "{arch}.expert_used_count" + EXPERT_SHARED_COUNT = "{arch}.expert_shared_count" + EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale" + POOLING_TYPE = "{arch}.pooling_type" + LOGIT_SCALE = "{arch}.logit_scale" class Attention: HEAD_COUNT = "{arch}.attention.head_count" @@ -55,6 +59,8 @@ class Keys: LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" CAUSAL = "{arch}.attention.causal" + Q_LORA_RANK = "{arch}.attention.q_lora_rank" + KV_LORA_RANK = "{arch}.attention.kv_lora_rank" class Rope: DIMENSION_COUNT = "{arch}.rope.dimension_count" @@ -64,6 +70,7 @@ class Keys: SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" + SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" class SSM: CONV_KERNEL = "{arch}.ssm.conv_kernel" @@ -140,6 +147,7 @@ class MODEL_ARCH(IntEnum): DBRX = auto() OLMO = auto() ARCTIC = auto() + DEEPSEEK2 = auto() class MODEL_TENSOR(IntEnum): @@ -185,6 +193,12 @@ class MODEL_TENSOR(IntEnum): SSM_A = auto() SSM_D = auto() SSM_OUT = auto() + ATTN_Q_A = auto() + ATTN_Q_B = auto() + ATTN_KV_A_MQA = auto() + ATTN_KV_B = auto() + ATTN_Q_A_NORM = auto() + ATTN_KV_A_NORM = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -221,6 +235,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.OLMO: "olmo", MODEL_ARCH.ARCTIC: "arctic", + MODEL_ARCH.DEEPSEEK2: "deepseek2", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -266,6 +281,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", + MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", + MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", + MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", + MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", + MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", + MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -757,6 +778,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.DEEPSEEK2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_A, + MODEL_TENSOR.ATTN_Q_B, + MODEL_TENSOR.ATTN_KV_A_MQA, + MODEL_TENSOR.ATTN_KV_B, + MODEL_TENSOR.ATTN_Q_A_NORM, + MODEL_TENSOR.ATTN_KV_A_NORM, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + ], # TODO } @@ -790,6 +838,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.DEEPSEEK2: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } # diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index c194dd5dd..b93747aff 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -374,9 +374,15 @@ class GGUFWriter: def add_block_count(self, length: int) -> None: self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length) + def add_leading_dense_block_count(self, length: int) -> None: + self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length) + def add_feed_forward_length(self, length: int) -> None: self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) + def add_expert_feed_forward_length(self, length: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length) + def add_parallel_residual(self, use: bool) -> None: self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) @@ -407,6 +413,12 @@ class GGUFWriter: def add_expert_used_count(self, count: int) -> None: self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count) + def add_expert_shared_count(self, count: int) -> None: + self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count) + + def add_expert_weights_scale(self, value: float) -> None: + self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) + def add_layer_norm_eps(self, value: float) -> None: self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) @@ -416,6 +428,12 @@ class GGUFWriter: def add_causal_attention(self, value: bool) -> None: self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) + def add_q_lora_rank(self, length: int) -> None: + self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length) + + def add_kv_lora_rank(self, length: int) -> None: + self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length) + def add_pooling_type(self, value: PoolingType) -> None: self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) @@ -440,6 +458,9 @@ class GGUFWriter: def add_rope_scaling_finetuned(self, value: bool) -> None: self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value) + def add_rope_scaling_yarn_log_mul(self, value: float) -> None: + self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value) + def add_ssm_conv_kernel(self, value: int) -> None: self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 8b1b21d78..83e3c4c33 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -256,6 +256,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_UP_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2 ), # AWQ-activation gate @@ -285,6 +286,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_GATE_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2 ), # Feed-forward down @@ -320,6 +322,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_DOWN_SHEXP: ( "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe + "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2 ), MODEL_TENSOR.ATTN_Q_NORM: ( @@ -383,6 +386,30 @@ class TensorNameMap: "model.layers.{bid}.out_proj", "backbone.layers.{bid}.mixer.out_proj", ), + + MODEL_TENSOR.ATTN_Q_A: ( + "model.layers.{bid}.self_attn.q_a_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_Q_B: ( + "model.layers.{bid}.self_attn.q_b_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_A_MQA: ( + "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_B: ( + "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2 + ), + + MODEL_TENSOR.ATTN_Q_A_NORM: ( + "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2 + ), + + MODEL_TENSOR.ATTN_KV_A_NORM: ( + "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2 + ), } # architecture-specific block mappings @@ -415,7 +442,7 @@ class TensorNameMap: if tensor not in MODEL_TENSORS[arch]: continue # TODO: make this configurable - n_experts = 128 + n_experts = 160 for xid in range(n_experts): tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) self.mapping[tensor_name] = (tensor, tensor_name) diff --git a/llama.cpp b/llama.cpp index aa4935320..10c9e47dd 100644 --- a/llama.cpp +++ b/llama.cpp @@ -103,7 +103,7 @@ #endif #define LLAMA_MAX_NODES 8192 -#define LLAMA_MAX_EXPERTS 128 +#define LLAMA_MAX_EXPERTS 160 // // logging @@ -222,6 +222,7 @@ enum llm_arch { LLM_ARCH_DBRX, LLM_ARCH_OLMO, LLM_ARCH_ARCTIC, + LLM_ARCH_DEEPSEEK2, LLM_ARCH_UNKNOWN, }; @@ -259,6 +260,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_DBRX, "dbrx" }, { LLM_ARCH_OLMO, "olmo" }, { LLM_ARCH_ARCTIC, "arctic" }, + { LLM_ARCH_DEEPSEEK2, "deepseek2" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -279,11 +281,15 @@ enum llm_kv { LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, + LLM_KV_LEADING_DENSE_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, + LLM_KV_EXPERT_FEED_FORWARD_LENGTH, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, + LLM_KV_EXPERT_SHARED_COUNT, + LLM_KV_EXPERT_WEIGHTS_SCALE, LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, @@ -296,6 +302,8 @@ enum llm_kv { LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ATTENTION_CAUSAL, + LLM_KV_ATTENTION_Q_LORA_RANK, + LLM_KV_ATTENTION_KV_LORA_RANK, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, @@ -305,6 +313,7 @@ enum llm_kv { LLM_KV_ROPE_SCALING_ATTN_FACTOR, LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, LLM_KV_ROPE_SCALING_FINETUNED, + LLM_KV_ROPE_SCALING_YARN_LOG_MUL, LLM_KV_SPLIT_NO, LLM_KV_SPLIT_COUNT, @@ -353,17 +362,21 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, - { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, - { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, - { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, - { LLM_KV_BLOCK_COUNT, "%s.block_count" }, - { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, - { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, - { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, - { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, - { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, - { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, - { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, + { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, + { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, + { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, + { LLM_KV_BLOCK_COUNT, "%s.block_count" }, + { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" }, + { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, + { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, + { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, + { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, + { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, + { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, + { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, + { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, + { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, + { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, @@ -374,6 +387,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, + { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" }, + { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, @@ -383,6 +398,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, @@ -474,6 +490,12 @@ enum llm_tensor { LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_OUT, + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_NORM, }; static const std::map> LLM_TENSOR_NAMES = { @@ -1057,6 +1079,35 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, + { + LLM_ARCH_DEEPSEEK2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, + { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, + { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" }, + { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" }, + { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1741,6 +1792,7 @@ enum e_model { MODEL_13B, MODEL_14B, MODEL_15B, + MODEL_16B, MODEL_20B, MODEL_30B, MODEL_34B, @@ -1748,6 +1800,7 @@ enum e_model { MODEL_40B, MODEL_65B, MODEL_70B, + MODEL_236B, MODEL_314B, MODEL_SMALL, MODEL_MEDIUM, @@ -1783,6 +1836,13 @@ struct llama_hparams { uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types + uint32_t n_layer_dense_lead = 0; + uint32_t n_lora_q = 0; + uint32_t n_lora_kv = 0; + uint32_t n_ff_exp = 0; + uint32_t n_expert_shared = 0; + float expert_weights_scale = 0.0; + float f_norm_eps; float f_norm_rms_eps; @@ -1790,6 +1850,7 @@ struct llama_hparams { float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_yarn_orig_ctx; + float rope_yarn_log_mul; // for State Space Models uint32_t ssm_d_conv = 0; @@ -1823,6 +1884,12 @@ struct llama_hparams { if (this->n_expert != other.n_expert) return true; if (this->n_expert_used != other.n_expert_used) return true; + if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true; + if (this->n_lora_q != other.n_lora_q) return true; + if (this->n_lora_kv != other.n_lora_kv) return true; + if (this->n_ff_exp != other.n_ff_exp) return true; + if (this->n_expert_shared != other.n_expert_shared) return true; + if (this->rope_finetuned != other.rope_finetuned) return true; if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true; @@ -1838,6 +1905,8 @@ struct llama_hparams { if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; + if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; + if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; return false; } @@ -1913,6 +1982,8 @@ struct llama_layer { struct ggml_tensor * attn_k_norm_b; struct ggml_tensor * attn_out_norm; struct ggml_tensor * attn_out_norm_b; + struct ggml_tensor * attn_q_a_norm; + struct ggml_tensor * attn_kv_a_norm; // attention struct ggml_tensor * wq; @@ -1920,6 +1991,10 @@ struct llama_layer { struct ggml_tensor * wv; struct ggml_tensor * wo; struct ggml_tensor * wqkv; + struct ggml_tensor * wq_a; + struct ggml_tensor * wq_b; + struct ggml_tensor * wkv_a_mqa; + struct ggml_tensor * wkv_b; // attention bias struct ggml_tensor * bq; @@ -3832,6 +3907,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_13B: return "13B"; case MODEL_14B: return "14B"; case MODEL_15B: return "15B"; + case MODEL_16B: return "16B"; case MODEL_20B: return "20B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; @@ -3839,6 +3915,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_40B: return "40B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; + case MODEL_236B: return "236B"; case MODEL_314B: return "314B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; @@ -4384,6 +4461,26 @@ static void llm_load_hparams( model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_DEEPSEEK2: + { + bool is_lite = (hparams.n_layer == 27); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + if (!is_lite) { + ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); + } + ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); + + switch (hparams.n_layer) { + case 27: model.type = e_model::MODEL_16B; break; + case 60: model.type = e_model::MODEL_236B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -4895,6 +4992,16 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); } if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); } if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); } + + if (model.arch == LLM_ARCH_DEEPSEEK2) { + LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead); + LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q); + LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv); + LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); + LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared); + LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale); + LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul); + } } // Returns false if cancelled by progress_callback @@ -5051,8 +5158,6 @@ static bool llm_load_tensors( throw std::runtime_error("model has expert layers but no expert layers are used"); } - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); @@ -6213,6 +6318,70 @@ static bool llm_load_tensors( layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); } } break; + case LLM_ARCH_DEEPSEEK2: + { + bool is_lite = (hparams.n_layer == 27); + + const uint32_t n_embd_head_qk_rope = hparams.n_rot; + const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; + const uint32_t q_lora_rank = hparams.n_lora_q; + const uint32_t kv_lora_rank = hparams.n_lora_kv; + const uint32_t n_ff_exp = hparams.n_ff_exp; + + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + if (!is_lite) { + layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}); + } + layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}); + + if (!is_lite) { + layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}); + layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k}); + } else { + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); + } + layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}); + layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + if ((uint32_t) i < hparams.n_layer_dense_lead) { + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } else { + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + GGML_ASSERT(hparams.n_expert > 0); + GGML_ASSERT(hparams.n_expert_used > 0); + + // MoE branch + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + + // Shared expert branch + layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared}); + layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd}); + layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared}); + } + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -6667,6 +6836,8 @@ static struct ggml_tensor * llm_build_moe_ffn( int64_t n_expert_used, llm_ffn_op_type type_op, bool norm_w, + bool scale_w, + float w_scale, const llm_build_cb & cb, int il) { int64_t n_embd = cur->ne[0]; @@ -6698,6 +6869,10 @@ static struct ggml_tensor * llm_build_moe_ffn( weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens); } + if (scale_w) { + weights = ggml_scale(ctx, weights, w_scale); + cb(weights, "ffn_moe_weights_scaled", il); + } cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens); ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] @@ -7328,6 +7503,7 @@ struct llm_build_context { model.layers[il].ffn_down_exps, n_expert, n_expert_used, LLM_FFN_SILU, true, + false, 0.0, cb, il); cb(cur, "ffn_moe_out", il); } @@ -7809,6 +7985,7 @@ struct llm_build_context { model.layers[il].ffn_down_exps, n_expert, n_expert_used, LLM_FFN_GELU, true, + false, 0.0, cb, il); cb(cur, "ffn_moe_out", il); @@ -7952,6 +8129,7 @@ struct llm_build_context { model.layers[il].ffn_down_exps, n_expert, n_expert_used, LLM_FFN_SILU, true, + false, 0.0, cb, il); cb(cur, "ffn_moe_out", il); @@ -9090,6 +9268,7 @@ struct llm_build_context { model.layers[il].ffn_down_exps, n_expert, n_expert_used, LLM_FFN_SILU, false, + false, 0.0, cb, il); cb(cur, "ffn_moe_out", il); @@ -10977,6 +11156,7 @@ struct llm_build_context { model.layers[il].ffn_down_exps, n_expert, n_expert_used, LLM_FFN_SILU, true, + false, 0.0, cb, il); cb(cur, "ffn_moe_out", il); @@ -11008,6 +11188,215 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_deepseek2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + bool is_lite = (hparams.n_layer == 27); + + // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly. + // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. + const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale)); + const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k)); + const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)); + + const uint32_t n_embd_head_qk_rope = hparams.n_rot; + const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot; + const uint32_t kv_lora_rank = hparams.n_lora_kv; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + // {n_embd, n_tokens} + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self_attention + { + struct ggml_tensor * q = NULL; + if (!is_lite) { + // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens} + q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); + cb(q, "q", il); + + q = llm_build_norm(ctx0, q, hparams, + model.layers[il].attn_q_a_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(q, "q", il); + + // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens} + q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); + cb(q, "q", il); + } else { + q = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(q, "q", il); + } + + // split into {n_head * n_embd_head_qk_nope, n_tokens} + struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_element_size(q) * hparams.n_embd_head_k, ggml_element_size(q) * hparams.n_embd_head_k * n_head, 0); + cb(q_nope, "q_nope", il); + // and {n_head * n_embd_head_qk_rope, n_tokens} + struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_element_size(q) * hparams.n_embd_head_k, ggml_element_size(q) * hparams.n_embd_head_k * n_head, ggml_element_size(q) * n_embd_head_qk_nope); + cb(q_pe, "q_pe", il); + + // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} + struct ggml_tensor * compressed_kv_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); + cb(compressed_kv_pe, "compressed_kv_pe", il); + + // split into {kv_lora_rank, n_tokens} + struct ggml_tensor * compressed_kv = ggml_view_2d(ctx0, compressed_kv_pe, kv_lora_rank, n_tokens, compressed_kv_pe->nb[1], 0); + cb(compressed_kv, "compressed_kv", il); + // and {n_embd_head_qk_rope, n_tokens} + struct ggml_tensor * k_pe = ggml_view_2d(ctx0, compressed_kv_pe, n_embd_head_qk_rope, n_tokens, compressed_kv_pe->nb[1], ggml_element_size(compressed_kv_pe)*kv_lora_rank); + cb(k_pe, "k_pe", il); + + compressed_kv = llm_build_norm(ctx0, compressed_kv, hparams, + model.layers[il].attn_kv_a_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(compressed_kv, "compressed_kv", il); + + // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} + struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, compressed_kv); + cb(kv, "kv", il); + + // split into {n_head * n_embd_head_qk_nope, n_tokens} + struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_element_size(kv) * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v), 0); + cb(k_nope, "k_nope", il); + + // and {n_head * n_embd_head_v, n_tokens} + struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, ggml_element_size(kv) * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_embd_head_qk_nope); + cb(v_states, "v_states", il); + + v_states = ggml_cont(ctx0, v_states); + cb(v_states, "v_states", il); + + v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, ggml_element_size(kv) * hparams.n_embd_head_v * n_head, 0); + cb(v_states, "v_states", il); + + q_pe = ggml_rope_ext( + ctx0, q_pe, inp_pos, nullptr, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor_scaled, beta_fast, beta_slow + ); + cb(q_pe, "q_pe", il); + + // shared RoPE key + k_pe = ggml_rope_ext( + ctx0, ggml_view_3d(ctx0, k_pe, n_embd_head_qk_rope, 1, n_tokens, k_pe->nb[0], k_pe->nb[1], 0), inp_pos, nullptr, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor_scaled, beta_fast, beta_slow + ); + cb(k_pe, "k_pe", il); + + struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0); + cb(q_states, "q_states", il); + + struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0); + cb(k_states, "k_states", il); + + cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, + model.layers[il].wo, NULL, + k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + if ((uint32_t) il < hparams.n_layer_dense_lead) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } else { + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + ggml_tensor * moe_out = + llm_build_moe_ffn(ctx0, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, false, + true, hparams.expert_weights_scale, + cb, il); + cb(moe_out, "ffn_moe_out", il); + + // FFN shared expert + { + ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up_shexp, NULL, + model.layers[il].ffn_gate_shexp, NULL, + model.layers[il].ffn_down_shexp, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(ffn_shexp, "ffn_shexp", il); + + cur = ggml_add(ctx0, moe_out, ffn_shexp); + cb(cur, "ffn_out", il); + } + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -11226,6 +11615,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_arctic(); } break; + case LLM_ARCH_DEEPSEEK2: + { + result = llm.build_deepseek2(); + } break; default: GGML_ASSERT(false); } @@ -16239,6 +16632,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_COMMAND_R: case LLM_ARCH_OLMO: case LLM_ARCH_ARCTIC: + case LLM_ARCH_DEEPSEEK2: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 From 2b737caae100cf0ac963206984332e422058f2b9 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Tue, 28 May 2024 18:13:36 +0300 Subject: [PATCH 05/47] rpc : resource management rework (#7562) * rpc : resource management rework * address review comments --- ggml-rpc.cpp | 131 +++++++++++++++++++++++++++++---------------------- 1 file changed, 74 insertions(+), 57 deletions(-) diff --git a/ggml-rpc.cpp b/ggml-rpc.cpp index cc1d3ace1..49a20df4b 100644 --- a/ggml-rpc.cpp +++ b/ggml-rpc.cpp @@ -6,6 +6,7 @@ #include #include #include +#include #include #include #ifdef _WIN32 @@ -47,6 +48,7 @@ struct socket_t { sockfd_t fd; socket_t(sockfd_t fd) : fd(fd) {} ~socket_t() { + GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd); #ifdef _WIN32 closesocket(this->fd); #else @@ -97,7 +99,7 @@ static ggml_guid_t ggml_backend_rpc_guid() { } struct ggml_backend_rpc_buffer_type_context { - std::shared_ptr sock; + std::string endpoint; std::string name; size_t alignment; size_t max_size; @@ -106,8 +108,6 @@ struct ggml_backend_rpc_buffer_type_context { struct ggml_backend_rpc_context { std::string endpoint; std::string name; - std::shared_ptr sock; - ggml_backend_buffer_type_t buft; }; struct ggml_backend_rpc_buffer_context { @@ -231,14 +231,13 @@ static bool recv_data(sockfd_t sockfd, void * data, size_t size) { return true; } -static bool parse_endpoint(const char * endpoint, std::string & host, int & port) { - std::string str(endpoint); - size_t pos = str.find(':'); +static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) { + size_t pos = endpoint.find(':'); if (pos == std::string::npos) { return false; } - host = str.substr(0, pos); - port = std::stoi(str.substr(pos + 1)); + host = endpoint.substr(0, pos); + port = std::stoi(endpoint.substr(pos + 1)); return true; } @@ -273,6 +272,44 @@ static bool send_rpc_cmd(const std::shared_ptr & sock, enum rpc_cmd cm // RPC client-side implementation +static std::shared_ptr get_socket(const std::string & endpoint) { + static std::mutex mutex; + std::lock_guard lock(mutex); + static std::unordered_map> sockets; + static bool initialized = false; + + auto it = sockets.find(endpoint); + if (it != sockets.end()) { + if (auto sock = it->second.lock()) { + return sock; + } + } + std::string host; + int port; + if (!parse_endpoint(endpoint, host, port)) { + return nullptr; + } +#ifdef _WIN32 + if (!initialized) { + WSADATA wsaData; + int res = WSAStartup(MAKEWORD(2, 2), &wsaData); + if (res != 0) { + return nullptr; + } + initialized = true; + } +#else + UNUSED(initialized); +#endif + auto sock = socket_connect(host.c_str(), port); + if (sock == nullptr) { + return nullptr; + } + GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd); + sockets[endpoint] = sock; + return sock; +} + GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; return ctx->name.c_str(); @@ -442,7 +479,8 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer std::vector input(input_size, 0); memcpy(input.data(), &size, sizeof(size)); std::vector output; - bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output); + auto sock = get_socket(buft_ctx->endpoint); + bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | @@ -453,7 +491,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer if (remote_ptr != 0) { ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, ggml_backend_rpc_buffer_interface, - new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"}, + new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC"}, remote_size); return buffer; } else { @@ -508,7 +546,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend } ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; - return buft_ctx->sock == rpc_ctx->sock; + return buft_ctx->endpoint == rpc_ctx->endpoint; } static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { @@ -521,7 +559,6 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { /* .is_host = */ NULL, }; - GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; @@ -530,16 +567,13 @@ GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) { ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; - ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context; - delete buft_ctx; - delete rpc_ctx->buft; delete rpc_ctx; delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; - return ctx->buft; + return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str()); } GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { @@ -590,7 +624,8 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t std::vector input; serialize_graph(cgraph, input); std::vector output; - bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output); + auto sock = get_socket(rpc_ctx->endpoint); + bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output); GGML_ASSERT(status); GGML_ASSERT(output.size() == 1); return (enum ggml_status)output[0]; @@ -624,65 +659,48 @@ static ggml_backend_i ggml_backend_rpc_interface = { /* .event_synchronize = */ NULL, }; -static std::unordered_map instances; - GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { - ggml_backend_t backend = ggml_backend_rpc_init(endpoint); - return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr; -} - -GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { - std::string endpoint_str(endpoint); - if (instances.find(endpoint_str) != instances.end()) { - return instances[endpoint_str]; + static std::mutex mutex; + std::lock_guard lock(mutex); + // NOTE: buffer types are allocated and never freed; this is by design + static std::unordered_map buft_map; + auto it = buft_map.find(endpoint); + if (it != buft_map.end()) { + return it->second; } -#ifdef _WIN32 - { - WSADATA wsaData; - int res = WSAStartup(MAKEWORD(2, 2), &wsaData); - if (res != 0) { - return nullptr; - } - } -#endif - fprintf(stderr, "Connecting to %s\n", endpoint); - std::string host; - int port; - if (!parse_endpoint(endpoint, host, port)) { - return nullptr; - } - auto sock = socket_connect(host.c_str(), port); + auto sock = get_socket(endpoint); if (sock == nullptr) { return nullptr; } size_t alignment = get_alignment(sock); size_t max_size = get_max_size(sock); ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context { - /* .sock = */ sock, - /* .name = */ "RPC" + std::to_string(sock->fd), + /* .endpoint = */ endpoint, + /* .name = */ "RPC[" + std::string(endpoint) + "]", /* .alignment = */ alignment, - /* .max_size = */ max_size + /* .max_size = */ max_size }; ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type { /* .iface = */ ggml_backend_rpc_buffer_type_interface, /* .context = */ buft_ctx }; + buft_map[endpoint] = buft; + return buft; +} +GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context { - /* .endpoint = */ endpoint, - /* .name = */ "RPC" + std::to_string(sock->fd), - /* .sock = */ sock, - /* .buft = */ buft + /* .endpoint = */ endpoint, + /* .name = */ "RPC", }; - instances[endpoint] = new ggml_backend { + ggml_backend_t backend = new ggml_backend { /* .guid = */ ggml_backend_rpc_guid(), /* .interface = */ ggml_backend_rpc_interface, /* .context = */ ctx }; - - return instances[endpoint]; + return backend; } GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) { @@ -706,14 +724,13 @@ static void get_device_memory(const std::shared_ptr & sock, size_t * f } GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { - ggml_backend_t backend = ggml_backend_rpc_init(endpoint); - if (backend == nullptr) { + auto sock = get_socket(endpoint); + if (sock == nullptr) { *free = 0; *total = 0; return; } - ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; - get_device_memory(ctx->sock, free, total); + get_device_memory(sock, free, total); } // RPC server-side implementation From 56411a950f255b523a9edd684fd1632752474399 Mon Sep 17 00:00:00 2001 From: "k.h.lai" Date: Wed, 29 May 2024 01:25:08 +0800 Subject: [PATCH 06/47] vulkan: properly initialize vulkan devices for LLAMA_SPLIT_MODE_NONE (#7552) --- ggml-vulkan.cpp | 2 ++ 1 file changed, 2 insertions(+) diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index 79ce1479f..92e622b04 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -6012,6 +6012,8 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { }; GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) { + ggml_vk_instance_init(); + #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_backend_vk_buffer_type(" << dev_num << ")" << std::endl; #endif From 5442939fcc5e6ae41abf40612a95fd71377e487e Mon Sep 17 00:00:00 2001 From: Giuseppe Scrivano Date: Tue, 28 May 2024 20:49:49 +0200 Subject: [PATCH 07/47] llama : support small Granite models (#7481) * Add optional MLP bias for Granite models Add optional MLP bias for ARCH_LLAMA to support Granite models. Partially addresses ggerganov/llama.cpp/issues/7116 Still needs some more changes to properly support Granite. * llama: honor add_space_prefix from the model configuration propagate the add_space_prefix configuration from the HF model configuration to the gguf file and honor it with the gpt2 tokenizer. Signed-off-by: Giuseppe Scrivano * llama: add support for small granite models it works only for the small models 3b and 8b. The convert-hf-to-gguf.py script uses the vocabulary size of the granite models to detect granite and set the correct configuration. Signed-off-by: Giuseppe Scrivano --------- Signed-off-by: Giuseppe Scrivano Co-authored-by: Steffen Roecker --- convert-hf-to-gguf.py | 15 +++++++++++++-- llama.cpp | 27 +++++++++++++++++++++------ 2 files changed, 34 insertions(+), 8 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 1b060e4e6..98b50d150 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1317,6 +1317,17 @@ class LlamaModel(Model): self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + if "add_prefix_space" in tokenizer_config_json: + self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"]) + + # Apply to granite small models only + if self.hparams.get("vocab_size", 32000) == 49152: + self.gguf_writer.add_add_bos_token(False) + @staticmethod def permute(weights: Tensor, n_head: int, n_head_kv: int | None): if n_head_kv is not None and n_head != n_head_kv: @@ -1331,9 +1342,9 @@ class LlamaModel(Model): n_head = self.hparams["num_attention_heads"] n_kv_head = self.hparams.get("num_key_value_heads") - if name.endswith("q_proj.weight"): + if name.endswith(("q_proj.weight", "q_proj.bias")): data_torch = LlamaModel.permute(data_torch, n_head, n_head) - if name.endswith("k_proj.weight"): + if name.endswith(("k_proj.weight", "k_proj.bias")): data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) # process the experts separately diff --git a/llama.cpp b/llama.cpp index 10c9e47dd..468a7cb25 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2028,8 +2028,9 @@ struct llama_layer { struct ggml_tensor * ffn_up_shexp; // ff bias - struct ggml_tensor * ffn_down_b; // b2 - struct ggml_tensor * ffn_up_b; // b3 + struct ggml_tensor * ffn_gate_b = nullptr; + struct ggml_tensor * ffn_down_b = nullptr; // b2 + struct ggml_tensor * ffn_up_b = nullptr; // b3 struct ggml_tensor * ffn_act; // mamba proj @@ -4058,7 +4059,9 @@ static void llm_load_hparams( switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 26: model.type = e_model::MODEL_3B; break; - case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break; + // granite uses a vocab with len 49152 + case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break; + case 36: model.type = e_model::MODEL_8B; break; // granite case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; @@ -4328,6 +4331,8 @@ static void llm_load_hparams( case 30: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; + case 52: model.type = e_model::MODEL_20B; break; // granite + case 88: model.type = e_model::MODEL_34B; break; // granite default: model.type = e_model::MODEL_UNKNOWN; } } break; @@ -4590,6 +4595,11 @@ static void llm_load_vocab( } else { if (tokenizer_model == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; + + const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); + if (add_space_prefix_keyidx != -1) { + vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); + } } else { LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str()); LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); @@ -5211,6 +5221,11 @@ static bool llm_load_tensors( layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + + // optional MLP bias + layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); @@ -7483,9 +7498,9 @@ struct llm_build_context { cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, NULL, - model.layers[il].ffn_gate, NULL, - model.layers[il].ffn_down, NULL, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); From 6bd12ce409f949012935b7d1b15a21ffa473a565 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 28 May 2024 22:22:50 +0300 Subject: [PATCH 08/47] sycl : fix assert (#7563) --- ggml-sycl.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 022a52aeb..dccfe9eb4 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -13567,7 +13567,7 @@ inline void ggml_sycl_op_concat(const ggml_tensor *src0, #pragma message("TODO: generalize concat kernel for dim != 2") #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563") int dim = dst->op_params[0]; - GGML_ASSERT(dim != 2); + GGML_ASSERT(dim == 2); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); From 02c1ecad07f0e2d2febe8196271bcc64bdc9c006 Mon Sep 17 00:00:00 2001 From: jaime-m-p <167997752+jaime-m-p@users.noreply.github.com> Date: Tue, 28 May 2024 21:46:34 +0200 Subject: [PATCH 09/47] Tokenizer WPM fixes (#7500) * Update random test: add_bos_token. * Update random test: add WPM models for testing. * Build vocab.special_tokens_cache using vocab token types. * Fix and improve WPM preprocessing. - Fix unicode edge case combinations. - Split by whitspace in the same pass. * Discard all tokens when no matching found. --- llama.cpp | 222 +++++++++------------------------ tests/test-tokenizer-random.py | 20 +-- 2 files changed, 75 insertions(+), 167 deletions(-) diff --git a/llama.cpp b/llama.cpp index 468a7cb25..dac81acc0 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2162,7 +2162,7 @@ struct llama_vocab { std::unordered_map token_to_id; std::vector id_to_token; - std::unordered_map special_tokens_cache; + std::vector special_tokens_cache; std::map, int> bpe_ranks; @@ -4831,97 +4831,19 @@ static void llm_load_vocab( // build special tokens cache { - // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type, - // and will always be correctly labeled in 'added_tokens.json' etc. - // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed - // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer - // are special tokens. - // From testing, this appears to correlate 1:1 with special tokens. - // - - // Counting special tokens and verifying in only one direction - // is sufficient to detect difference in those two sets. - // - uint32_t special_tokens_count_by_type = 0; - uint32_t special_tokens_count_from_verification = 0; - - bool special_tokens_definition_mismatch = false; - - for (const auto & t : vocab.token_to_id) { - const auto & token = t.first; - const auto & id = t.second; - - // Count all non-normal tokens in the vocab while iterating + for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) { if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) { - special_tokens_count_by_type++; - } - - // Skip single character tokens - if (token.length() > 1) { - bool is_tokenizable = false; - - // Split token string representation in two, in all possible ways - // and check if both halves can be matched to a valid token - for (unsigned i = 1; i < token.length();) { - const auto left = token.substr(0, i); - const auto right = token.substr(i); - - // check if we didnt partition in the middle of a utf sequence - auto utf = utf8_len(left.at(left.length() - 1)); - - if (utf == 1) { - if (vocab.token_to_id.find(left) != vocab.token_to_id.end() && - vocab.token_to_id.find(right) != vocab.token_to_id.end() ) { - is_tokenizable = true; - break; - } - i++; - } else { - // skip over the rest of multibyte utf sequence - i += utf - 1; - } - } - - if (!is_tokenizable) { - // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1 - // it's faster to re-filter them here, since there are way less candidates now - - // Calculate a total "utf" length of a token string representation - size_t utf8_str_len = 0; - for (unsigned i = 0; i < token.length();) { - utf8_str_len++; - i += utf8_len(token.at(i)); - } - - // And skip the ones which are one character - if (utf8_str_len > 1) { - // At this point what we have left are special tokens only - vocab.special_tokens_cache[token] = id; - - // Count manually found special tokens - special_tokens_count_from_verification++; - - // If this manually found special token is not marked as such, flag a mismatch - if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) { - special_tokens_definition_mismatch = true; - } - } - } + vocab.special_tokens_cache.push_back(id); } } - if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) { - LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n", - __func__, - special_tokens_count_from_verification, vocab.id_to_token.size(), - special_tokens_count_by_type, vocab.id_to_token.size() - ); - } else { - LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n", - __func__, - special_tokens_count_from_verification, vocab.id_to_token.size() - ); - } + std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(), + [&] (const llama_vocab::id a, const llama_vocab::id b) { + return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size(); + } + ); + + LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size()); } } @@ -13146,7 +13068,7 @@ struct llm_tokenizer_wpm { llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { - auto * token_map = &vocab.token_to_id; + const auto & token_map = vocab.token_to_id; // normalize and split by whitespace std::vector words = preprocess(text); @@ -13161,108 +13083,89 @@ struct llm_tokenizer_wpm { } // prepend phantom space - std::string word1 = "\xe2\x96\x81" + word; - int n = word1.size(); + const std::string word1 = "\xe2\x96\x81" + word; + const int n = word1.size(); + + const size_t current_tokens = output.size(); // we're at the start of a new word - int i = 0; - bool match_any = false; - // move through character position in word - while (i < n) { + for (int i = 0; i < n; ++i) { // loop through possible match length bool match = false; for (int j = n; j > i; j--) { - auto it = token_map->find(word1.substr(i, j - i)); - if (it != token_map->end()) { + auto it = token_map.find(word1.substr(i, j - i)); + if (it != token_map.end()) { output.push_back(it->second); match = true; - match_any = true; - i = j; + i = j - 1; break; } } - // must be an unknown character - if (!match) { - i++; + if (!match) { // discard all + output.resize(current_tokens); + break; // and discard next tokens } } // we didn't find any matches for this word - if (!match_any) { + if (current_tokens == output.size()) { output.push_back(vocab.special_unk_id); } } } std::vector preprocess(const std::string & text) { - std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); + const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); + std::vector words(1, ""); - // strip accents, strip control, uniformize whitespace, - // to lowercase, pad chinese characters, pad punctuation - std::string new_str = ""; - for (uint32_t code : cpts_nfd) { - const codepoint_flags flags = unicode_cpt_flags(code); - if (flags.is_accent_mark || flags.is_control) { + for (const char32_t cpt : cpts_nfd) { + const auto flags = unicode_cpt_flags(cpt); + + if (flags.is_whitespace) { + if (words.back().size()) { // finish previous word if any + words.emplace_back(); + } continue; } - code = unicode_tolower(code); - if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ? - code = ' '; + + assert (!flags.is_separator); + if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { + continue; } - std::string s = unicode_cpt_to_utf8(code); - if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) { - new_str += " "; - new_str += s; - new_str += " "; + + const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); + if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { + if (words.back().size()) { // finish previous word if any + words.emplace_back(); + } + words.back() = s; // single char word + words.emplace_back(); // start a new word } else { - new_str += s; + words.back() += s; // append char to word } } - // split by whitespace - uint64_t l = 0; - uint64_t r = 0; - std::vector words; - while (r < new_str.size()) { - // if is whitespace - if (isspace(new_str[r], std::locale::classic())) { - if (r > l) words.push_back(new_str.substr(l, (r - l))); - l = r + 1; - r = l; - } else { - r += 1; - } - } - if (r > l) { - words.push_back(new_str.substr(l, (r - l))); + if (!words.back().size()) { + words.pop_back(); } + return words; } - bool is_ascii_punct(uint32_t code) { - if (code > 0xFF) { - return false; - } - auto c = char(static_cast(code)); - return ispunct(c, std::locale::classic()); - } - - bool is_chinese_char(uint32_t cpt) { - if ((cpt >= 0x4E00 && cpt <= 0x9FFF) || - (cpt >= 0x3400 && cpt <= 0x4DBF) || + static bool is_chinese_char(uint32_t cpt) { + return + (cpt >= 0x04E00 && cpt <= 0x09FFF) || + (cpt >= 0x03400 && cpt <= 0x04DBF) || (cpt >= 0x20000 && cpt <= 0x2A6DF) || (cpt >= 0x2A700 && cpt <= 0x2B73F) || (cpt >= 0x2B740 && cpt <= 0x2B81F) || (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 - (cpt >= 0xF900 && cpt <= 0xFAFF) || - (cpt >= 0x2F800 && cpt <= 0x2FA1F) || - (cpt >= 0x3000 && cpt <= 0x303F) || - (cpt >= 0xFF00 && cpt <= 0xFFEF)) { - return true; // NOLINT - } - return false; + (cpt >= 0x0F900 && cpt <= 0x0FAFF) || + (cpt >= 0x2F800 && cpt <= 0x2FA1F); + //(cpt >= 0x3000 && cpt <= 0x303F) || + //(cpt >= 0xFF00 && cpt <= 0xFFEF); } const llama_vocab & vocab; @@ -13306,9 +13209,8 @@ struct fragment_buffer_variant { static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { // for each special token - for (const auto & st: vocab.special_tokens_cache) { - const auto & special_token = st.first; - const auto & special_id = st.second; + for (const llama_vocab::id special_id : vocab.special_tokens_cache) { + const auto & special_token = vocab.id_to_token[special_id].text; // for each text fragment std::forward_list::iterator it = buffer.begin(); @@ -13317,7 +13219,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< // if a fragment is text ( not yet processed ) if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { - auto * raw_text = &(fragment.raw_text); + auto & raw_text = fragment.raw_text; auto raw_text_base_offset = fragment.offset; auto raw_text_base_length = fragment.length; @@ -13327,7 +13229,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< // find the first occurrence of a given special token in this fragment // passing offset argument only limit the "search area" but match coordinates // are still relative to the source full raw_text - auto match = raw_text->find(special_token, raw_text_base_offset); + auto match = raw_text.find(special_token, raw_text_base_offset); // no occurrences found, stop processing this fragment for a given special token if (match == std::string::npos) break; @@ -13346,7 +13248,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< // left const int64_t left_reminder_offset = raw_text_base_offset + 0; const int64_t left_reminder_length = match - raw_text_base_offset; - buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); + buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); @@ -13362,7 +13264,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { const int64_t right_reminder_offset = match + special_token.length(); const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); - buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); + buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index 7e1b656e5..ec1b2837c 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -167,8 +167,10 @@ def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]: for m in range(iterations): rand.seed(m) words = rand.choices(special_tokens, k=500) - if tokenizer.add_bos_token: # skip spam warning of double BOS - while words and words[0] == tokenizer.bos_token: + if words[0] == tokenizer.bos_token: # skip spam warning of double BOS + while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS + words.pop(0) + if tokenizer.add_bos_token: # drop all starting BOS words.pop(0) yield "".join(words) @@ -293,15 +295,17 @@ def main(argv: list[str] = None): model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) - tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True) - tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False) - def func_tokenize1(text: str): return model.tokenize(text, add_special=True, parse_special=True) def func_tokenize2(text: str): return tokenizer.encode(text, add_special_tokens=True) + ids = func_tokenize2("a") + assert 1 <= len(ids) <= 3 + add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0] + tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token) + vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text()) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) @@ -324,8 +328,10 @@ if __name__ == "__main__": # import os # tokenizers = os.listdir(path_tokenizers) tokenizers = [ - "llama-spm", # SPM - "phi-3", # SPM + # "llama-spm", # SPM + # "phi-3", # SPM + "jina-v2-en", # WPM + "bert-bge", # WPM ] for tokenizer in tokenizers: From b864b50ce5e2beefc8c2fd31733e4e1a978b7754 Mon Sep 17 00:00:00 2001 From: "Meng, Hengyu" Date: Wed, 29 May 2024 07:00:24 +0800 Subject: [PATCH 10/47] [SYCL] Align GEMM dispatch (#7566) * align GEMM dispatch --- CMakeLists.txt | 4 ++ README.md | 3 +- ggml-sycl.cpp | 122 ++++++++++++++++++++++--------------------------- 3 files changed, 61 insertions(+), 68 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index c5add8239..fbbc38644 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -628,6 +628,10 @@ if (LLAMA_SYCL) add_compile_definitions(GGML_SYCL_F16) endif() + if (LLAMA_CUDA_FORCE_MMQ) + add_compile_definitions(GGML_SYCL_FORCE_MMQ) + endif() + add_compile_options(-I./) #include DPCT add_compile_options(-I/${SYCL_INCLUDE_DIR}) diff --git a/README.md b/README.md index 15519c97f..1cab7f19d 100644 --- a/README.md +++ b/README.md @@ -477,7 +477,8 @@ Building the program with BLAS support may lead to some performance improvements |--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. | | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | - | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. | + | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. | + | LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | | | LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | | LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. | diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index dccfe9eb4..a73448136 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -3022,20 +3022,19 @@ static int g_work_group_size = 0; // typedef sycl::half ggml_fp16_t; #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP -#define VER_4VEC 610 //todo for hardward optimize. +#define VER_4VEC 130 //todo for hardward optimize. #define VER_GEN9 700 //todo for hardward optimize. #define VER_GEN12 1000000 //todo for hardward optimize. #define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize. #define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares - -//define for XMX in Intel GPU -//TODO: currently, it's not used for XMX really. -#define SYCL_USE_XMX +#if !defined(GGML_SYCL_FORCE_MMQ) + #define SYCL_USE_XMX +#endif // max batch size to use MMQ kernels when tensor cores are available -#define XMX_MAX_BATCH_SIZE 32 +#define MMQ_MAX_BATCH_SIZE 32 #if defined(_MSC_VER) @@ -15249,6 +15248,29 @@ catch (sycl::exception const &exc) { std::exit(1); } +inline bool ggml_sycl_supports_mmq(enum ggml_type type) { + // TODO: accuracy issues in MMQ + return false; +} + +bool ggml_sycl_supports_dmmv(enum ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_F16: + return true; + default: + return false; + } +} static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const bool all_on_device = @@ -15265,76 +15287,42 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 } } + // check data types and tensor shapes for custom matrix multiplication kernels: + bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1; + + bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; + + bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + + // mmvq and mmq need the __dp4a instruction which is available for gen12+ + // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e + use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS); #ifdef SYCL_USE_XMX - const bool use_xmx = true; -#else - const bool use_xmx = false; -#endif + use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE); +#endif // SYCL_USE_XMX - // debug helpers - //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); - //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); - //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); - //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); - //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); - //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); - - if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { // KQ single-batch - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n"); ggml_sycl_mul_mat_vec_p021(src0, src1, dst); - } else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { + } else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { // KQV single-batch - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n"); ggml_sycl_mul_mat_vec_nc(src0, src1, dst); - } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) { + } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { // KQ + KQV multi-batch - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n"); ggml_sycl_mul_mat_batched_sycl(src0, src1, dst); - } else if (src0->type == GGML_TYPE_F32) { - // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n"); - ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); - } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { - // GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n"); - if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) { -#ifdef GGML_SYCL_FORCE_DMMV - const bool use_mul_mat_vec_q = false; -#else - bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type); - use_mul_mat_vec_q = use_mul_mat_vec_q || - (src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) || - (src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) || - (src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) || - (src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M); - - -#endif // GGML_SYCL_FORCE_DMMV - - if (use_mul_mat_vec_q) { - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n"); - ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true); - } else { - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n"); - ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false); - } - } else { - bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type); - use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS); - - if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) { - use_mul_mat_q = false; - } - - if (use_mul_mat_q) { - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n"); - ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true); - } else { - // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n"); - ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); - } - } + } else if (use_dequantize_mul_mat_vec) { + ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false); + } else if (use_mul_mat_vec_q) { + ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true); + } else if (use_mul_mat_q) { + ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true); } else { - GGML_ASSERT(false); + ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); } } From 504f0c340f6b5e04de682f6ddefdd3b81208df5d Mon Sep 17 00:00:00 2001 From: zhouwg Date: Wed, 29 May 2024 10:09:31 +0800 Subject: [PATCH 11/47] ggml : fix typo in ggml.c (#7603) --- ggml.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml.c b/ggml.c index 023077ca6..8bfb9531e 100644 --- a/ggml.c +++ b/ggml.c @@ -11012,7 +11012,7 @@ static void ggml_compute_forward_concat_f32( static void ggml_compute_forward_concat( const struct ggml_compute_params * params, - struct ggml_tensor* dst) { + struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; From 0e8d8bfd6caf1d0a8cbdf9d3d5c06fbbb9dfced8 Mon Sep 17 00:00:00 2001 From: Akarshan Biswas Date: Wed, 29 May 2024 12:23:47 +0530 Subject: [PATCH 12/47] Add Arc A750 and Arch linux to readme-sycl.md as verified GPU model and Linux distro (#7605) --- README-sycl.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README-sycl.md b/README-sycl.md index cfa248a95..37f0306dc 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -54,10 +54,10 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, ## OS -| OS | Status | Verified | -|---------|---------|------------------------------------| -| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 | -| Windows | Support | Windows 11 | +| OS | Status | Verified | +|---------|---------|------------------------------------------------| +| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux | +| Windows | Support | Windows 11 | ## Hardware @@ -70,7 +70,7 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, |-------------------------------|---------|---------------------------------------| | Intel Data Center Max Series | Support | Max 1550, 1100 | | Intel Data Center Flex Series | Support | Flex 170 | -| Intel Arc Series | Support | Arc 770, 730M | +| Intel Arc Series | Support | Arc 770, 730M, Arc A750 | | Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake | | Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 | From 72de268bec49f67e2883880f573c55cea32de736 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 26 May 2024 18:35:23 +0300 Subject: [PATCH 13/47] ggml : restore ggml_rope_xpos_inplace (ggml/0) ggml-ci --- ggml.c | 10 ++++++++++ ggml.h | 8 ++++++++ 2 files changed, 18 insertions(+) diff --git a/ggml.c b/ggml.c index 8bfb9531e..5025ec23b 100644 --- a/ggml.c +++ b/ggml.c @@ -6392,6 +6392,16 @@ struct ggml_tensor * ggml_rope_custom_inplace( ); } +struct ggml_tensor * ggml_rope_xpos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + float base, + bool down) { + return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true); +} + // ggml_rope_back struct ggml_tensor * ggml_rope_back( diff --git a/ggml.h b/ggml.h index 4e6bcb30f..3859895b6 100644 --- a/ggml.h +++ b/ggml.h @@ -1548,6 +1548,14 @@ extern "C" { float beta_slow), "use ggml_rope_ext_inplace instead"); + struct ggml_tensor * ggml_rope_xpos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + float base, + bool down); + // compute correction dims for YaRN RoPE scaling GGML_CALL void ggml_rope_yarn_corr_dims( int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]); From 2ab977282b02ccd6783fbbaec393c96886cf33b1 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 14:29:52 +0300 Subject: [PATCH 14/47] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 57bede67b..5042f82ae 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -126d34985705a5a2222723c145cb4e125ac689f3 +2aae01fd9b8f9399f343cf18f46f38996ef52e2c From 00281b7be32462754618c42ed93f95743af46627 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 14:31:18 +0300 Subject: [PATCH 15/47] scripts : remove mpi remnants --- scripts/sync-ggml-am.sh | 4 ---- scripts/sync-ggml.sh | 2 -- 2 files changed, 6 deletions(-) diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index cf22afc41..3f8ddf37b 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -106,8 +106,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then # src/ggml-kompute.h -> ggml-kompute.h # src/ggml-metal.h -> ggml-metal.h # src/ggml-metal.m -> ggml-metal.m - # src/ggml-mpi.h -> ggml-mpi.h - # src/ggml-mpi.c -> ggml-mpi.c # src/ggml-opencl.cpp -> ggml-opencl.cpp # src/ggml-opencl.h -> ggml-opencl.h # src/ggml-quants.c -> ggml-quants.c @@ -145,8 +143,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then -e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \ -e 's/src\/ggml-metal\.h/ggml-metal.h/g' \ -e 's/src\/ggml-metal\.m/ggml-metal.m/g' \ - -e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \ - -e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \ -e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \ -e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \ -e 's/src\/ggml-quants\.c/ggml-quants.c/g' \ diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index ec47fb27c..fbae6b7f8 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -14,8 +14,6 @@ cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal -cp -rpv ../ggml/src/ggml-mpi.h ./ggml-mpi.h -cp -rpv ../ggml/src/ggml-mpi.c ./ggml-mpi.c cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c From 87bdf2a199acd62e19814d7a4d0500a04a7f09f3 Mon Sep 17 00:00:00 2001 From: slaren Date: Wed, 29 May 2024 13:36:39 +0200 Subject: [PATCH 16/47] ggml : use atomic_flag for critical section (#7598) * ggml : use atomic_flag for critical section * add windows shims --- ggml.c | 23 ++++++++++++++--------- 1 file changed, 14 insertions(+), 9 deletions(-) diff --git a/ggml.c b/ggml.c index 5025ec23b..d8f74f3ce 100644 --- a/ggml.c +++ b/ggml.c @@ -60,6 +60,9 @@ typedef volatile LONG atomic_int; typedef atomic_int atomic_bool; +typedef atomic_int atomic_flag; + +#define ATOMIC_FLAG_INIT 0 static void atomic_store(atomic_int * ptr, LONG val) { InterlockedExchange(ptr, val); @@ -73,6 +76,12 @@ static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) { return atomic_fetch_add(ptr, -(dec)); } +static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { + return InterlockedExchange(ptr, 1); +} +static void atomic_flag_clear(atomic_flag * ptr) { + InterlockedExchange(ptr, 0); +} typedef HANDLE pthread_t; @@ -2883,24 +2892,20 @@ struct ggml_state { // global state static struct ggml_state g_state; -static atomic_int g_state_barrier = 0; +static atomic_flag g_state_critical = ATOMIC_FLAG_INIT; // barrier via spin lock inline static void ggml_critical_section_start(void) { - int processing = atomic_fetch_add(&g_state_barrier, 1); - - while (processing > 0) { - // wait for other threads to finish - atomic_fetch_sub(&g_state_barrier, 1); - sched_yield(); // TODO: reconsider this - processing = atomic_fetch_add(&g_state_barrier, 1); + while (atomic_flag_test_and_set(&g_state_critical)) { + // spin + sched_yield(); } } // TODO: make this somehow automatically executed // some sort of "sentry" mechanism inline static void ggml_critical_section_end(void) { - atomic_fetch_sub(&g_state_barrier, 1); + atomic_flag_clear(&g_state_critical); } #if defined(__gnu_linux__) From 210d99173dc82aafb48f6e39d787c387951fe3a9 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Wed, 29 May 2024 14:45:44 +0300 Subject: [PATCH 17/47] llama-bench : add support for the RPC backend (#7435) --- examples/llama-bench/llama-bench.cpp | 28 ++++++++++++++++++++++++++-- ggml.c | 8 ++++++++ ggml.h | 1 + 3 files changed, 35 insertions(+), 2 deletions(-) diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 2afdb3abd..c00890447 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -178,6 +178,7 @@ struct cmd_params { std::vector type_v; std::vector n_threads; std::vector n_gpu_layers; + std::vector rpc_servers; std::vector split_mode; std::vector main_gpu; std::vector no_kv_offload; @@ -202,6 +203,7 @@ static const cmd_params cmd_params_defaults = { /* type_v */ {GGML_TYPE_F16}, /* n_threads */ {cpu_get_num_math()}, /* n_gpu_layers */ {99}, + /* rpc_servers */ {""}, /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, /* main_gpu */ {0}, /* no_kv_offload */ {false}, @@ -230,6 +232,7 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -ctv, --cache-type-v (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); + printf(" -rpc, --rpc (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str()); printf(" -sm, --split-mode (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); @@ -384,6 +387,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } auto p = split(argv[i], split_delim); params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); + } else if (arg == "-rpc" || arg == "--rpc") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.rpc_servers.push_back(argv[i]); } else if (arg == "-sm" || arg == "--split-mode") { if (++i >= argc) { invalid_param = true; @@ -519,6 +528,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; } if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; } if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } + if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; } if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } @@ -541,6 +551,7 @@ struct cmd_params_instance { ggml_type type_v; int n_threads; int n_gpu_layers; + std::string rpc_servers; llama_split_mode split_mode; int main_gpu; bool no_kv_offload; @@ -553,6 +564,9 @@ struct cmd_params_instance { llama_model_params mparams = llama_model_default_params(); mparams.n_gpu_layers = n_gpu_layers; + if (!rpc_servers.empty()) { + mparams.rpc_servers = rpc_servers.c_str(); + } mparams.split_mode = split_mode; mparams.main_gpu = main_gpu; mparams.tensor_split = tensor_split.data(); @@ -564,6 +578,7 @@ struct cmd_params_instance { bool equal_mparams(const cmd_params_instance & other) const { return model == other.model && n_gpu_layers == other.n_gpu_layers && + rpc_servers == other.rpc_servers && split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap && @@ -592,6 +607,7 @@ static std::vector get_cmd_params_instances(const cmd_param // this ordering minimizes the number of times that each model needs to be reloaded for (const auto & m : params.model) for (const auto & nl : params.n_gpu_layers) + for (const auto & rpc : params.rpc_servers) for (const auto & sm : params.split_mode) for (const auto & mg : params.main_gpu) for (const auto & ts : params.tensor_split) @@ -618,6 +634,7 @@ static std::vector get_cmd_params_instances(const cmd_param /* .type_v = */ tv, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, + /* .rpc_servers = */ rpc, /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, @@ -643,6 +660,7 @@ static std::vector get_cmd_params_instances(const cmd_param /* .type_v = */ tv, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, + /* .rpc_servers = */ rpc, /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, @@ -668,6 +686,7 @@ static std::vector get_cmd_params_instances(const cmd_param /* .type_v = */ tv, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, + /* .rpc_servers = */ rpc, /* .split_mode = */ sm, /* .main_gpu = */ mg, /* .no_kv_offload= */ nkvo, @@ -692,6 +711,7 @@ struct test { static const bool kompute; static const bool metal; static const bool sycl; + static const bool rpc; static const bool gpu_blas; static const bool blas; static const std::string cpu_info; @@ -790,6 +810,9 @@ struct test { if (sycl) { return GGML_SYCL_NAME; } + if (rpc) { + return "RPC"; + } if (gpu_blas) { return "GPU BLAS"; } @@ -803,7 +826,7 @@ struct test { static const std::vector & get_fields() { static const std::vector fields = { "build_commit", "build_number", - "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", + "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", @@ -859,7 +882,7 @@ struct test { std::vector values = { build_commit, std::to_string(build_number), std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan), - std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas), + std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas), cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), std::to_string(n_batch), std::to_string(n_ubatch), @@ -894,6 +917,7 @@ const bool test::metal = !!ggml_cpu_has_metal(); const bool test::gpu_blas = !!ggml_cpu_has_gpublas(); const bool test::blas = !!ggml_cpu_has_blas(); const bool test::sycl = !!ggml_cpu_has_sycl(); +const bool test::rpc = !!ggml_cpu_has_rpc(); const std::string test::cpu_info = get_cpu_info(); const std::string test::gpu_info = get_gpu_info(); diff --git a/ggml.c b/ggml.c index d8f74f3ce..e6e2397b7 100644 --- a/ggml.c +++ b/ggml.c @@ -22872,6 +22872,14 @@ int ggml_cpu_has_sycl(void) { #endif } +int ggml_cpu_has_rpc(void) { +#if defined(GGML_USE_RPC) + return 1; +#else + return 0; +#endif +} + int ggml_cpu_has_gpublas(void) { return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl(); diff --git a/ggml.h b/ggml.h index 3859895b6..f9deac7e8 100644 --- a/ggml.h +++ b/ggml.h @@ -2428,6 +2428,7 @@ extern "C" { GGML_API int ggml_cpu_has_sse3 (void); GGML_API int ggml_cpu_has_ssse3 (void); GGML_API int ggml_cpu_has_sycl (void); + GGML_API int ggml_cpu_has_rpc (void); GGML_API int ggml_cpu_has_vsx (void); GGML_API int ggml_cpu_has_matmul_int8(void); From cce3dcffc5695bd24835f04e6080070a2a119873 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 15:38:26 +0300 Subject: [PATCH 18/47] cuda : non-cont concat support (#7610) * tests : add non-cont concat tests * cuda : non-cont concat support ggml-ci --- ggml-cuda/concat.cu | 108 +++++++++++++++++++++++++++++-------- tests/test-backend-ops.cpp | 33 +++++++++--- 2 files changed, 112 insertions(+), 29 deletions(-) diff --git a/ggml-cuda/concat.cu b/ggml-cuda/concat.cu index fb9dee8f8..dac10ec36 100644 --- a/ggml-cuda/concat.cu +++ b/ggml-cuda/concat.cu @@ -1,5 +1,6 @@ #include "concat.cuh" +// contiguous kernels static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) { int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { @@ -92,39 +93,104 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n concat_f32_dim2<<>>(x, y, dst, ne0, ne02); } +// non-contiguous kernel (slow) +static __global__ void concat_f32_non_cont( + const char * src0, + const char * src1, + char * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne03, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + uint64_t nb03, + int64_t /*ne10*/, + int64_t /*ne11*/, + int64_t /*ne12*/, + int64_t /*ne13*/, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + uint64_t nb13, + int64_t ne0, + int64_t /*ne1*/, + int64_t /*ne2*/, + int64_t /*ne3*/, + uint64_t nb0, + uint64_t nb1, + uint64_t nb2, + uint64_t nb3, + int32_t dim) { + const int64_t i3 = blockIdx.z; + const int64_t i2 = blockIdx.y; + const int64_t i1 = blockIdx.x; + + int64_t o[4] = {0, 0, 0, 0}; + o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03)); + + const float * x; + + for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) { + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00); + } else { + x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10); + } + + float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + *y = *x; + } +} + + void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; - const float * src0_d = (const float *)src0->data; - const float * src1_d = (const float *)src1->data; - - float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); const int32_t dim = ((int32_t *) dst->op_params)[0]; - GGML_ASSERT(ggml_is_contiguous(src0)); - GGML_ASSERT(ggml_is_contiguous(src1)); - GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); - if (dim != 3) { - for (int i3 = 0; i3 < dst->ne[3]; i3++) { - concat_f32_cuda( - src0_d + i3 * (src0->nb[3] / 4), - src1_d + i3 * (src1->nb[3] / 4), - dst_d + i3 * ( dst->nb[3] / 4), - src0->ne[0], src0->ne[1], src0->ne[2], - dst->ne[0], dst->ne[1], dst->ne[2], dim, stream); + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { + const float * src0_d = (const float *)src0->data; + const float * src1_d = (const float *)src1->data; + + float * dst_d = (float *)dst->data; + + if (dim != 3) { + for (int i3 = 0; i3 < dst->ne[3]; i3++) { + concat_f32_cuda( + src0_d + i3 * (src0->nb[3] / 4), + src1_d + i3 * (src1->nb[3] / 4), + dst_d + i3 * ( dst->nb[3] / 4), + src0->ne[0], src0->ne[1], src0->ne[2], + dst->ne[0], dst->ne[1], dst->ne[2], dim, stream); + } + } else { + const size_t size0 = ggml_nbytes(src0); + const size_t size1 = ggml_nbytes(src1); + + CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream)); + CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream)); } } else { - const size_t size0 = ggml_nbytes(src0); - const size_t size1 = ggml_nbytes(src1); - - CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream)); - CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream)); + dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]); + concat_f32_non_cont<<>>( + (const char *)src0->data, + (const char *)src1->data, + ( char *)dst->data, + src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], + src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], + src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], + src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3], + dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], + dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim); } } diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index b200ccccd..5cde21c66 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1262,22 +1262,37 @@ struct test_concat : public test_case { const std::array ne_a; const int64_t ne_b_d; const int dim; + const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b) std::string vars() override { - return VARS_TO_STR4(type, ne_a, ne_b_d, dim); + return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v); } test_concat(ggml_type type = GGML_TYPE_F32, std::array ne_a = {10, 10, 10, 10}, int64_t ne_b_d = 10, - int dim = 2) - : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {} + int dim = 2, int v = 0) + : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { auto ne_b = ne_a; ne_b[dim] = ne_b_d; - ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data()); - ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data()); + ggml_tensor * a; + if (v & 1) { + auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; + a = ggml_new_tensor(ctx, type, 4, ne.data()); + a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); + } else { + a = ggml_new_tensor(ctx, type, 4, ne_a.data()); + } + ggml_tensor * b; + if (v & 2) { + auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4; + b = ggml_new_tensor(ctx, type, 4, ne.data()); + b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0); + } else { + b = ggml_new_tensor(ctx, type, 4, ne_b.data()); + } ggml_tensor * out = ggml_concat(ctx, a, b, dim); return out; } @@ -2215,9 +2230,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op } } - for (int dim : { 0, 1, 2, 3, }) { - test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim)); - test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim)); + for (int v : { 0, 1, 2, 3 }) { + for (int dim : { 0, 1, 2, 3, }) { + test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v)); + test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v)); + } } for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { From fb76ec31a9914b7761c1727303ab30380fd4f05c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 20:17:31 +0300 Subject: [PATCH 19/47] ggml : fix YARN + add tests + add asserts (#7617) * tests : add rope tests ggml-ci * ggml : fixes (hopefully) ggml-ci * tests : add non-cont tests ggml-ci * cuda : add asserts for rope/norm + fix DS2 ggml-ci * ggml : assert contiguousness * tests : reduce RoPE tests ggml-ci --- ggml-cuda.cu | 4 +- ggml-cuda/norm.cu | 6 +++ ggml-cuda/rope.cu | 18 ++++----- ggml-kompute.cpp | 4 +- ggml-metal.m | 8 +++- ggml-metal.metal | 16 +++----- ggml-sycl.cpp | 2 +- ggml.c | 74 +++++++++++++++++------------------ ggml.h | 6 ++- ggml_vk_generate_shaders.py | 4 +- llama.cpp | 52 ++++++++++++++++++------- tests/test-backend-ops.cpp | 77 +++++++++++++++++++++++++------------ 12 files changed, 167 insertions(+), 104 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index d0a754ee1..1172f7b2f 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1870,7 +1870,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co } } #else - if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { + if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 // use cublasGemmStridedBatchedEx CUBLAS_CHECK( @@ -2886,7 +2886,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons case GGML_OP_CONT: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX: + return true; case GGML_OP_ROPE: + return ggml_is_contiguous(op->src[0]); case GGML_OP_IM2COL: case GGML_OP_POOL_2D: case GGML_OP_SUM_ROWS: diff --git a/ggml-cuda/norm.cu b/ggml-cuda/norm.cu index 86f774534..30866d512 100644 --- a/ggml-cuda/norm.cu +++ b/ggml-cuda/norm.cu @@ -170,6 +170,8 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -188,6 +190,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); @@ -202,6 +206,8 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); diff --git a/ggml-cuda/rope.cu b/ggml-cuda/rope.cu index 50f2cf415..0dd07977e 100644 --- a/ggml-cuda/rope.cu +++ b/ggml-cuda/rope.cu @@ -61,7 +61,7 @@ static __global__ void rope( template static __global__ void rope_neox( const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, - float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors + float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors ) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); @@ -85,15 +85,13 @@ static __global__ void rope_neox( const int i = row*ncols + ib*n_dims + ic/2; const int i2 = row/p_delta_rows; - float cur_rot = inv_ndims * ic - ib; - const int p = has_pos ? pos[i2] : 0; const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f; - const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor; + const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor; float cos_theta, sin_theta; - rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); + rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta); const float x0 = x[i + 0]; const float x1 = x[i + n_dims/2]; @@ -174,30 +172,29 @@ static void rope_neox_cuda( const dim3 block_nums(nrows, num_blocks_x, 1); const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float inv_ndims = -1.0f / n_dims; if (pos == nullptr) { if (freq_factors == nullptr) { rope_neox<<>>( x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims, freq_factors + theta_scale, freq_factors ); } else { rope_neox<<>>( x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims, freq_factors + theta_scale, freq_factors ); } } else { if (freq_factors == nullptr) { rope_neox<<>>( x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims, freq_factors + theta_scale, freq_factors ); } else { rope_neox<<>>( x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims, - theta_scale, inv_ndims, freq_factors + theta_scale, freq_factors ); } } @@ -254,6 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); + GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == dst->type); diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 6c6058b2a..ed59d2be6 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1597,7 +1597,9 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml { GGML_ASSERT(ne00 == ne10); - // TODO: assert that dim2 and dim3 are contiguous + ggml_is_contiguous_2(src0); + ggml_is_contiguous_2(src1); + GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); diff --git a/ggml-metal.m b/ggml-metal.m index 4ba498e87..a7e13bdcf 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1519,7 +1519,9 @@ static enum ggml_status ggml_metal_graph_compute( { GGML_ASSERT(ne00 == ne10); - // TODO: assert that dim2 and dim3 are contiguous + ggml_is_contiguous_2(src0); + ggml_is_contiguous_2(src1); + GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); @@ -2187,6 +2189,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_OP_RMS_NORM: { GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(ggml_is_contiguous_1(src0)); float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -2214,6 +2217,7 @@ static enum ggml_status ggml_metal_graph_compute( case GGML_OP_GROUP_NORM: { GGML_ASSERT(ne00 % 4 == 0); + GGML_ASSERT(ggml_is_contiguous(src0)); //float eps; //memcpy(&eps, dst->op_params, sizeof(float)); @@ -2247,6 +2251,8 @@ static enum ggml_status ggml_metal_graph_compute( } break; case GGML_OP_NORM: { + GGML_ASSERT(ggml_is_contiguous_1(src0)); + float eps; memcpy(&eps, dst->op_params, sizeof(float)); diff --git a/ggml-metal.metal b/ggml-metal.metal index b16f2b7e0..0cb85e1a5 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -1767,13 +1767,13 @@ kernel void kernel_rope( const int64_t p = pos[i2]; - const float theta_0 = (float)p; + const float theta_base = (float)p; const float inv_ndims = -1.f/n_dims; if (!is_neox) { for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) { + const float theta = theta_base * pow(freq_base, inv_ndims*i0); - const float theta = theta_0 * pow(freq_base, inv_ndims*i0); float cos_theta, sin_theta; rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); @@ -1789,18 +1789,14 @@ kernel void kernel_rope( } else { for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) { if (ic < n_dims) { - const int64_t ib = 0; + const int64_t i0 = ic/2; - // simplified from `(ib * n_dims + ic) * inv_ndims` - const float cur_rot = inv_ndims*ic - ib; - const float freq_factor = src2 != src0 ? src2[ic/2] : 1.0f; + const float freq_factor = src2 != src0 ? src2[i0] : 1.0f; - const float theta = theta_0 * pow(freq_base, cur_rot) / freq_factor; + const float theta = theta_base * pow(freq_base, inv_ndims*ic); float cos_theta, sin_theta; - rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); - - const int64_t i0 = ib*n_dims + ic/2; + rope_yarn(theta/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta); device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index a73448136..5cd97e4ff 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -15183,7 +15183,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0, const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; - if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { + if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) { // there is no broadcast and src0, src1 are contiguous across dims 2, 3 SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans, diff --git a/ggml.c b/ggml.c index e6e2397b7..b2b725f65 100644 --- a/ggml.c +++ b/ggml.c @@ -3221,7 +3221,11 @@ GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) { tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } -static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) { +GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) { + return ggml_is_contiguous(tensor); +} + +GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return @@ -3230,6 +3234,14 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } +GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == ggml_type_size(tensor->type) && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); @@ -11420,8 +11432,8 @@ static void ggml_compute_forward_gelu_f32( const struct ggml_tensor * src0 = dst->src[0]; - GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); - GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_is_contiguous_1(src0)); + GGML_ASSERT(ggml_is_contiguous_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { @@ -11483,8 +11495,8 @@ static void ggml_compute_forward_gelu_quick_f32( const struct ggml_tensor * src0 = dst->src[0]; - GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); - GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_is_contiguous_1(src0)); + GGML_ASSERT(ggml_is_contiguous_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { @@ -11546,8 +11558,8 @@ static void ggml_compute_forward_silu_f32( const struct ggml_tensor * src0 = dst->src[0]; - GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); - GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_is_contiguous_1(src0)); + GGML_ASSERT(ggml_is_contiguous_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { @@ -11658,9 +11670,9 @@ static void ggml_compute_forward_silu_back_f32( const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * grad = dst->src[1]; - GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad)); - GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); - GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_is_contiguous_1(grad)); + GGML_ASSERT(ggml_is_contiguous_1(src0)); + GGML_ASSERT(ggml_is_contiguous_1(dst)); GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_are_same_shape(src0, grad)); @@ -14358,7 +14370,7 @@ static void ggml_compute_forward_rope_f32( int ir = 0; const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float inv_ndims = -1.f/n_dims; + float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); @@ -14407,7 +14419,7 @@ static void ggml_compute_forward_rope_f32( const float cos_block_theta = cosf(block_theta); const float sin_block_theta = sinf(block_theta) * sin_sign; - theta_base *= theta_scale; + theta_base *= theta_scale; block_theta *= theta_scale; const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); @@ -14442,29 +14454,22 @@ static void ggml_compute_forward_rope_f32( dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta; } } else { - // TODO: this might be wrong for ne0 != n_dims - need double check - // it seems we have to rope just the first n_dims elements and do nothing with the rest - // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26 - theta_base *= freq_scale; + // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py for (int64_t ic = 0; ic < ne0; ic += 2) { if (ic < n_dims) { - const int64_t ib = 0; + const int64_t i0 = ic/2; - // simplified from `(ib * n_dims + ic) * inv_ndims` - float cur_rot = inv_ndims * ic - ib; - float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f; + const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f; float cos_theta, sin_theta; rope_yarn( - theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta ); - sin_theta *= sin_sign; + sin_theta *= sin_sign; theta_base *= theta_scale; - const int64_t i0 = ib*n_dims + ic/2; - const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -14543,7 +14548,7 @@ static void ggml_compute_forward_rope_f16( int ir = 0; const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float inv_ndims = -1.f/n_dims; + float corr_dims[2]; ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); @@ -14592,7 +14597,7 @@ static void ggml_compute_forward_rope_f16( const float cos_block_theta = cosf(block_theta); const float sin_block_theta = sinf(block_theta) * sin_sign; - theta_base *= theta_scale; + theta_base *= theta_scale; block_theta *= theta_scale; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); @@ -14623,29 +14628,22 @@ static void ggml_compute_forward_rope_f16( dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); } } else { - // TODO: this might be wrong for ne0 != n_dims - need double check - // it seems we have to rope just the first n_dims elements and do nothing with the rest - // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26 - theta_base *= freq_scale; + // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py for (int64_t ic = 0; ic < ne0; ic += 2) { if (ic < n_dims) { - const int64_t ib = 0; + const int64_t i0 = ic/2; - // simplified from `(ib * n_dims + ic) * inv_ndims` - float cur_rot = inv_ndims * ic - ib; - float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f; + const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f; float cos_theta, sin_theta; rope_yarn( - theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta ); - sin_theta *= sin_sign; + sin_theta *= sin_sign; theta_base *= theta_scale; - const int64_t i0 = ib*n_dims + ic/2; - const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); diff --git a/ggml.h b/ggml.h index f9deac7e8..f38699698 100644 --- a/ggml.h +++ b/ggml.h @@ -756,7 +756,6 @@ extern "C" { GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor); - GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor); GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor); GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor); GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); @@ -765,6 +764,11 @@ extern "C" { GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars + GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous() + GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1 + GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2 + GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1); GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1); diff --git a/ggml_vk_generate_shaders.py b/ggml_vk_generate_shaders.py index a8f7373df..7c85ca7ba 100644 --- a/ggml_vk_generate_shaders.py +++ b/ggml_vk_generate_shaders.py @@ -2670,14 +2670,12 @@ void main() { const uint i = row*p.ncols + ib*p.ndims + ic/2; const uint i2 = row/p.p_delta_rows; - const float cur_rot = p.inv_ndims * ic - ib; - const int pos = data_b[i2]; const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f; const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor; float cos_theta, sin_theta; - rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta); + rope_yarn(theta_base, ic, cos_theta, sin_theta); const float x0 = float(data_a[i + 0]); const float x1 = float(data_a[i + p.ndims/2]); diff --git a/llama.cpp b/llama.cpp index dac81acc0..e7412de4b 100644 --- a/llama.cpp +++ b/llama.cpp @@ -11187,46 +11187,69 @@ struct llm_build_context { } // split into {n_head * n_embd_head_qk_nope, n_tokens} - struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_element_size(q) * hparams.n_embd_head_k, ggml_element_size(q) * hparams.n_embd_head_k * n_head, 0); + struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, + ggml_row_size(q->type, hparams.n_embd_head_k), + ggml_row_size(q->type, hparams.n_embd_head_k * n_head), + 0); cb(q_nope, "q_nope", il); + // and {n_head * n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_element_size(q) * hparams.n_embd_head_k, ggml_element_size(q) * hparams.n_embd_head_k * n_head, ggml_element_size(q) * n_embd_head_qk_nope); + struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, + ggml_row_size(q->type, hparams.n_embd_head_k), + ggml_row_size(q->type, hparams.n_embd_head_k * n_head), + ggml_row_size(q->type, n_embd_head_qk_nope)); cb(q_pe, "q_pe", il); // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * compressed_kv_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); - cb(compressed_kv_pe, "compressed_kv_pe", il); + struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); + cb(kv_pe_compresseed, "kv_pe_compresseed", il); // split into {kv_lora_rank, n_tokens} - struct ggml_tensor * compressed_kv = ggml_view_2d(ctx0, compressed_kv_pe, kv_lora_rank, n_tokens, compressed_kv_pe->nb[1], 0); - cb(compressed_kv, "compressed_kv", il); + struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens, + kv_pe_compresseed->nb[1], + 0); + cb(kv_compressed, "kv_compressed", il); + // and {n_embd_head_qk_rope, n_tokens} - struct ggml_tensor * k_pe = ggml_view_2d(ctx0, compressed_kv_pe, n_embd_head_qk_rope, n_tokens, compressed_kv_pe->nb[1], ggml_element_size(compressed_kv_pe)*kv_lora_rank); + struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens, + kv_pe_compresseed->nb[1], + kv_pe_compresseed->nb[1], + ggml_row_size(kv_pe_compresseed->type, kv_lora_rank)); cb(k_pe, "k_pe", il); - compressed_kv = llm_build_norm(ctx0, compressed_kv, hparams, + kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm + kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams, model.layers[il].attn_kv_a_norm, NULL, LLM_NORM_RMS, cb, il); - cb(compressed_kv, "compressed_kv", il); + cb(kv_compressed, "kv_compressed", il); // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens} - struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, compressed_kv); + struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed); cb(kv, "kv", il); // split into {n_head * n_embd_head_qk_nope, n_tokens} - struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_element_size(kv) * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v), 0); + struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, + ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v), + ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)), + 0); cb(k_nope, "k_nope", il); // and {n_head * n_embd_head_v, n_tokens} - struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, ggml_element_size(kv) * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v), ggml_element_size(kv) * n_embd_head_qk_nope); + struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens, + ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)), + ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head), + ggml_row_size(kv->type, (n_embd_head_qk_nope))); cb(v_states, "v_states", il); v_states = ggml_cont(ctx0, v_states); cb(v_states, "v_states", il); - v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, ggml_element_size(kv) * hparams.n_embd_head_v * n_head, 0); + v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens, + ggml_row_size(kv->type, hparams.n_embd_head_v * n_head), + 0); cb(v_states, "v_states", il); + q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE q_pe = ggml_rope_ext( ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, @@ -11235,8 +11258,9 @@ struct llm_build_context { cb(q_pe, "q_pe", il); // shared RoPE key + k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE k_pe = ggml_rope_ext( - ctx0, ggml_view_3d(ctx0, k_pe, n_embd_head_qk_rope, 1, n_tokens, k_pe->nb[0], k_pe->nb[1], 0), inp_pos, nullptr, + ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor_scaled, beta_fast, beta_slow ); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 5cde21c66..72edc64a7 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1138,26 +1138,37 @@ struct test_soft_max : public test_case { // GGML_OP_ROPE struct test_rope : public test_case { const ggml_type type; - const std::array ne; + const std::array ne_a; int n_dims; int mode; int n_ctx; + float fs; // freq_scale + float ef; // ext_factor + float af; // attn_factor bool ff; + int v; // view (1 : non-contiguous a) std::string vars() override { - return VARS_TO_STR6(type, ne, n_dims, mode, n_ctx, ff); + return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v); } test_rope(ggml_type type = GGML_TYPE_F32, - std::array ne = {10, 10, 10, 1}, - int n_dims = 10, int mode = 0, int n_ctx = 512, bool ff = false) - : type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx), ff(ff) {} + std::array ne_a = {10, 10, 10, 1}, + int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0) + : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {} ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); - ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]); + ggml_tensor * a; + if (v & 1) { + auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; + a = ggml_new_tensor(ctx, type, 4, ne.data()); + a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0); + } else { + a = ggml_new_tensor(ctx, type, 4, ne_a.data()); + } + ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]); ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr; - ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f); + ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f); return out; } @@ -1165,11 +1176,11 @@ struct test_rope : public test_case { for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { if (t->type == GGML_TYPE_I32) { // pos - std::vector data(ne[2]); - for (int i = 0; i < ne[2]; i++) { + std::vector data(ne_a[2]); + for (int i = 0; i < ne_a[2]; i++) { data[i] = rand() % n_ctx; } - ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int)); + ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int)); } else { if (t->ne[0] == n_dims/2) { // frequency factors in the range [0.9f, 1.1f] @@ -2213,20 +2224,38 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f)); test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f)); - for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { - // TODO: ff not supported yet for !neox - test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, false)); // llama 7B - test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, false)); // llama 13B - test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, false)); // llama 30B - test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, false)); // llama 65B + { + bool all = true; - for (bool ff : {false, true}) { // freq_factors - test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B) - test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B) - test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B) - test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B) - test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, ff)); // neox (stablelm) - test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, ff)); // neox (phi-2) + for (float v : { 0, 1 }) { + for (float fs : { 1.0f, 1.4245f }) { + for (float ef : { 0.0f, 0.7465f }) { + for (float af : { 1.0f, 1.4245f }) { + for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { + // TODO: ff not supported yet for !neox + test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 7B + if (all) { + test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 13B + test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 30B + test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 65B + } + + for (bool ff : {false, true}) { // freq_factors + if (all) { + test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B) + test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B) + test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B) + test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm) + test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2) + } + + test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B) + } + } + all = false; + } + } + } } } From 975ec63ff26cdf96156d1126d86f75a395fdc43a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 20:45:25 +0300 Subject: [PATCH 20/47] metal : add missing asserts (#7617) --- ggml-kompute.cpp | 4 ++-- ggml-metal.m | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index ed59d2be6..18ce95ebf 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1597,8 +1597,8 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml { GGML_ASSERT(ne00 == ne10); - ggml_is_contiguous_2(src0); - ggml_is_contiguous_2(src1); + GGML_ASSERT(ggml_is_contiguous_2(src0)); + GGML_ASSERT(ggml_is_contiguous_2(src1)); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); diff --git a/ggml-metal.m b/ggml-metal.m index a7e13bdcf..e7c4298a2 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1519,8 +1519,8 @@ static enum ggml_status ggml_metal_graph_compute( { GGML_ASSERT(ne00 == ne10); - ggml_is_contiguous_2(src0); - ggml_is_contiguous_2(src1); + GGML_ASSERT(ggml_is_contiguous_2(src0)); + GGML_ASSERT(ggml_is_contiguous_2(src1)); GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); From 55d62262a99cd8bc28a1492975791fe433c8cc0f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 29 May 2024 22:20:40 +0300 Subject: [PATCH 21/47] metal : remove invalid asserts (#7617) --- ggml-kompute.cpp | 3 --- ggml-metal.m | 3 --- 2 files changed, 6 deletions(-) diff --git a/ggml-kompute.cpp b/ggml-kompute.cpp index 18ce95ebf..0c51c322f 100644 --- a/ggml-kompute.cpp +++ b/ggml-kompute.cpp @@ -1597,9 +1597,6 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml { GGML_ASSERT(ne00 == ne10); - GGML_ASSERT(ggml_is_contiguous_2(src0)); - GGML_ASSERT(ggml_is_contiguous_2(src1)); - GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); diff --git a/ggml-metal.m b/ggml-metal.m index e7c4298a2..079912952 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -1519,9 +1519,6 @@ static enum ggml_status ggml_metal_graph_compute( { GGML_ASSERT(ne00 == ne10); - GGML_ASSERT(ggml_is_contiguous_2(src0)); - GGML_ASSERT(ggml_is_contiguous_2(src1)); - GGML_ASSERT(ne12 % ne02 == 0); GGML_ASSERT(ne13 % ne03 == 0); From eb57fee51f7b4d78039f003249873c2eb46f12f6 Mon Sep 17 00:00:00 2001 From: Galunid Date: Thu, 30 May 2024 02:10:40 +0200 Subject: [PATCH 22/47] gguf-py : Add tokenizer.ggml.pre to gguf-new-metadata.py (#7627) --- gguf-py/scripts/gguf-new-metadata.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/gguf-py/scripts/gguf-new-metadata.py b/gguf-py/scripts/gguf-new-metadata.py index c9f1927f6..21e91180c 100755 --- a/gguf-py/scripts/gguf-new-metadata.py +++ b/gguf-py/scripts/gguf-new-metadata.py @@ -144,6 +144,7 @@ def main() -> None: parser.add_argument("--general-description", type=str, help="The models general.description", metavar='"Description ..."') parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)", metavar='"{% ... %} ..."') parser.add_argument("--chat-template-config", type=Path, help="Config file containing chat template(s)", metavar='tokenizer_config.json') + parser.add_argument("--pre-tokenizer", type=str, help="The models tokenizer.ggml.pre", metavar='"pre tokenizer"') parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model", metavar='general.url') parser.add_argument("--special-token", action="append", type=str, help="Special token by value", nargs=2, metavar=(' | '.join(token_names.keys()), '""')) parser.add_argument("--special-token-by-id", action="append", type=str, help="Special token by id", nargs=2, metavar=(' | '.join(token_names.keys()), '0')) @@ -172,6 +173,9 @@ def main() -> None: if template: new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, template) + if args.pre_tokenizer: + new_metadata[gguf.Keys.Tokenizer.PRE] = MetadataDetails(gguf.GGUFValueType.STRING, args.pre_tokenizer) + if remove_metadata: logger.warning('*** Warning *** Warning *** Warning **') logger.warning('* Most metadata is required for a fully functional GGUF file,') From 3854c9d07f67de7f8cd6d86117bfaef47549b05a Mon Sep 17 00:00:00 2001 From: "Meng, Hengyu" Date: Thu, 30 May 2024 14:19:08 +0800 Subject: [PATCH 23/47] [SYCL] fix intel docker (#7630) * Update main-intel.Dockerfile * workaround for https://github.com/intel/oneapi-containers/issues/70 * reset intel docker in CI * add missed in server --- .devops/main-intel.Dockerfile | 8 ++++++++ .devops/server-intel.Dockerfile | 16 ++++++++++++++++ .github/workflows/docker.yml | 5 ++--- 3 files changed, 26 insertions(+), 3 deletions(-) diff --git a/.devops/main-intel.Dockerfile b/.devops/main-intel.Dockerfile index 274b91b71..7516c8313 100644 --- a/.devops/main-intel.Dockerfile +++ b/.devops/main-intel.Dockerfile @@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04 FROM intel/oneapi-basekit:$ONEAPI_VERSION as build +RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ + echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ + chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ + rm /etc/apt/sources.list.d/intel-graphics.list && \ + wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ + echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ + chmod 644 /usr/share/keyrings/intel-graphics.gpg + ARG LLAMA_SYCL_F16=OFF RUN apt-get update && \ apt-get install -y git diff --git a/.devops/server-intel.Dockerfile b/.devops/server-intel.Dockerfile index a8e451fa9..13d00b737 100644 --- a/.devops/server-intel.Dockerfile +++ b/.devops/server-intel.Dockerfile @@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04 FROM intel/oneapi-basekit:$ONEAPI_VERSION as build +RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ + echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ + chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ + rm /etc/apt/sources.list.d/intel-graphics.list && \ + wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ + echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ + chmod 644 /usr/share/keyrings/intel-graphics.gpg + ARG LLAMA_SYCL_F16=OFF RUN apt-get update && \ apt-get install -y git libcurl4-openssl-dev @@ -19,6 +27,14 @@ RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime +RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ + echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ + chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ + rm /etc/apt/sources.list.d/intel-graphics.list && \ + wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ + echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ + chmod 644 /usr/share/keyrings/intel-graphics.gpg + RUN apt-get update && \ apt-get install -y libcurl4-openssl-dev diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index c2838cbd9..9b03d19bc 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -42,9 +42,8 @@ jobs: - { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - # TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507 - #- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" } - #- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" } + - { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" } + - { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" } steps: - name: Check out the repo uses: actions/checkout@v4 From 972b555ab935705f3437abd5909a5c46852811f6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Thu, 30 May 2024 09:52:39 +0200 Subject: [PATCH 24/47] README: explain parallel build [no ci] (#7618) --- README.md | 25 ++++++++++++++++--------- 1 file changed, 16 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index 1cab7f19d..1cedc0d9a 100644 --- a/README.md +++ b/README.md @@ -315,8 +315,6 @@ In order to build llama.cpp you have four different options. make ``` - **Note**: for `Debug` builds, run `make LLAMA_DEBUG=1` - - On Windows: 1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases). @@ -328,23 +326,32 @@ In order to build llama.cpp you have four different options. make ``` + - Notes: + - For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel. + - For faster repeated compilation, install [ccache](https://ccache.dev/). + - For debug builds, run `make LLAMA_DEBUG=1` + - Using `CMake`: - ```bash - cmake -B build - cmake --build build --config Release - ``` + ```bash + cmake -B build + cmake --build build --config Release + ``` - **Note**: for `Debug` builds, there are two cases: + **Notes**: - - Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag): + - For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel. + - For faster repeated compilation, install [ccache](https://ccache.dev/). + - For debug builds, there are two cases: + + 1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag): ```bash cmake -B build -DCMAKE_BUILD_TYPE=Debug cmake --build build ``` - - Multi-config generators (`-G` param set to Visual Studio, XCode...): + 2. Multi-config generators (`-G` param set to Visual Studio, XCode...): ```bash cmake -B build -G "Xcode" From d5c05821f3c3d6cabe8ac45776fe0ecb0da13eca Mon Sep 17 00:00:00 2001 From: junchao-loongson <68935141+junchao-loongson@users.noreply.github.com> Date: Thu, 30 May 2024 17:30:10 +0800 Subject: [PATCH 25/47] ggml : fix loongarch build (O2 issue) (#7636) --- ggml-quants.c | 20 ++++++++++++++------ ggml.c | 2 +- 2 files changed, 15 insertions(+), 7 deletions(-) diff --git a/ggml-quants.c b/ggml-quants.c index 4f2c7224c..1128d66e2 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -6828,6 +6828,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int bit = 0; int is = 0; + __m256i xvbit; const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -6836,21 +6837,25 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r // load low 2 bits const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32; + xvbit = __lasx_xvreplgr2vr_h(bit); // prepare low and high bits const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3); - const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2); ++bit; + xvbit = __lasx_xvreplgr2vr_h(bit); const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3); - const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2); ++bit; + xvbit = __lasx_xvreplgr2vr_h(bit); const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3); - const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2); ++bit; + xvbit = __lasx_xvreplgr2vr_h(bit); const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3); - const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2); ++bit; // load Q8 quants @@ -8033,6 +8038,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r __m256i sumi = __lasx_xvldi(0); int bit = 0; + __m256i xvbit; for (int j = 0; j < QK_K/64; ++j) { @@ -8041,13 +8047,15 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32; + xvbit = __lasx_xvreplgr2vr_h(bit++); const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4); - const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4); + const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4); const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0); hmask = __lasx_xvslli_h(hmask, 1); + xvbit = __lasx_xvreplgr2vr_h(bit++); const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4); - const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4); + const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4); const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1); hmask = __lasx_xvslli_h(hmask, 1); diff --git a/ggml.c b/ggml.c index b2b725f65..f3a90ff2c 100644 --- a/ggml.c +++ b/ggml.c @@ -1580,7 +1580,7 @@ do { \ #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0) #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x)) -static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) { +static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) { float tmp[8]; for (int i = 0; i < 8; i++) { From 59b0d077662fab430446b3119fa142f3291c45b2 Mon Sep 17 00:00:00 2001 From: Chris Elrod Date: Thu, 30 May 2024 07:32:55 -0400 Subject: [PATCH 26/47] faster avx512 exp implementation (#7551) * faster avx512 exp implementation * x->r * improve accuracy, handle special cases * remove `e` --- ggml.c | 43 +++++++++++++++++++------------------------ 1 file changed, 19 insertions(+), 24 deletions(-) diff --git a/ggml.c b/ggml.c index f3a90ff2c..76803639c 100644 --- a/ggml.c +++ b/ggml.c @@ -2315,32 +2315,27 @@ inline static __m512 ggml_v_expf(__m512 x) { const __m512 r = _mm512_set1_ps(0x1.8p23f); const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r); const __m512 n = _mm512_sub_ps(z, r); - const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f), - _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x)); - const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23); - const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1)))); - const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ); - const __m512 u = _mm512_mul_ps(b, b); - const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b, - _mm512_set1_ps(0x1.573e2ep-5f)), u, - _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b, - _mm512_set1_ps(0x1.fffdb6p-2f))), - u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b)); - if (_mm512_kortestz(c, c)) - return _mm512_fmadd_ps(j, k, k); - const __m512i g = _mm512_and_si512( - _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)), - _mm512_set1_epi32(0x82000000u)); - const __m512 s1 = - _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u))); - const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g)); + const __m512 b = + _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f), + _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x)); const __mmask16 d = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ); - return _mm512_mask_blend_ps( - d, _mm512_mask_blend_ps( - c, _mm512_fmadd_ps(k, j, k), - _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)), - _mm512_mul_ps(s1, s1)); + const __m512 u = _mm512_mul_ps(b, b); + const __m512 j = _mm512_fmadd_ps( + _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b, + _mm512_set1_ps(0x1.573e2ep-5f)), + u, + _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b, + _mm512_set1_ps(0x1.fffdb6p-2f))), + u, + _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F))); + const __m512 res = _mm512_scalef_ps(j, n); + if (_mm512_kortestz(d, d)) + return res; + const __m512 zero = _mm512_setzero_ps(); + const __m512 alt = _mm512_mask_blend_ps( + _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero); + return _mm512_mask_blend_ps(d, res, alt); } // computes silu x/(1+exp(-x)) in single precision vector From 9c4c9cc83f7297a10bb3b2af54a22ac154fd5b20 Mon Sep 17 00:00:00 2001 From: Galunid Date: Thu, 30 May 2024 13:40:00 +0200 Subject: [PATCH 27/47] Move convert.py to examples/convert-legacy-llama.py (#7430) * Move convert.py to examples/convert-no-torch.py * Fix CI, scripts, readme files * convert-no-torch -> convert-legacy-llama * Move vocab thing to vocab.py * Fix convert-no-torch -> convert-legacy-llama * Fix lost convert.py in ci/run.sh * Fix imports * Fix gguf not imported correctly * Fix flake8 complaints * Fix check-requirements.sh * Get rid of ADDED_TOKENS_FILE, FAST_TOKENIZER_FILE * Review fixes --- .devops/tools.sh | 2 +- CMakeLists.txt | 2 +- README.md | 7 +- ci/run.sh | 2 +- convert-hf-to-gguf.py | 4 +- docs/HOWTO-add-model.md | 2 +- .../convert-legacy-llama.py | 308 +----------------- examples/llava/MobileVLM-README.md | 4 +- examples/llava/README.md | 6 +- examples/llava/requirements.txt | 2 +- examples/make-ggml.py | 98 ------ gguf-py/gguf/vocab.py | 302 ++++++++++++++++- requirements.txt | 2 +- ...requirements-convert-hf-to-gguf-update.txt | 2 +- .../requirements-convert-hf-to-gguf.txt | 2 +- ... => requirements-convert-legacy-llama.txt} | 0 ...equirements-convert-llama-ggml-to-gguf.txt | 2 +- scripts/check-requirements.sh | 2 +- scripts/convert-gg.sh | 20 +- scripts/pod-llama.sh | 14 +- 20 files changed, 343 insertions(+), 440 deletions(-) rename convert.py => examples/convert-legacy-llama.py (82%) delete mode 100755 examples/make-ggml.py rename requirements/{requirements-convert.txt => requirements-convert-legacy-llama.txt} (100%) diff --git a/.devops/tools.sh b/.devops/tools.sh index 3a7d274e4..97424c3aa 100755 --- a/.devops/tools.sh +++ b/.devops/tools.sh @@ -8,7 +8,7 @@ arg1="$1" shift if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then - python3 ./convert.py "$@" + python3 ./convert-hf-to-gguf.py "$@" elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then ./quantize "$@" elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then diff --git a/CMakeLists.txt b/CMakeLists.txt index fbbc38644..60cf7bdc4 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1314,7 +1314,7 @@ set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR} install(TARGETS llama LIBRARY PUBLIC_HEADER) install( - FILES convert.py + FILES convert-hf-to-gguf.py PERMISSIONS OWNER_READ OWNER_WRITE diff --git a/README.md b/README.md index 1cedc0d9a..29d6c1cb2 100644 --- a/README.md +++ b/README.md @@ -704,7 +704,8 @@ Building the program with BLAS support may lead to some performance improvements To obtain the official LLaMA 2 weights please see the Obtaining and using the Facebook LLaMA 2 model section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face. -Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face. +Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives. +It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face. ```bash # obtain the official LLaMA model weights and place them in ./models @@ -721,10 +722,10 @@ ls ./models python3 -m pip install -r requirements.txt # convert the model to ggml FP16 format -python3 convert.py models/mymodel/ +python3 convert-hf-to-gguf.py models/mymodel/ # [Optional] for models using BPE tokenizers -python convert.py models/mymodel/ --vocab-type bpe +python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe # quantize the model to 4-bits (using Q4_K_M method) ./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M diff --git a/ci/run.sh b/ci/run.sh index 940299025..3fc5f48b2 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -287,7 +287,7 @@ function gg_run_open_llama_7b_v2 { (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log - python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf + python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf model_f16="${path_models}/ggml-model-f16.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf" diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 98b50d150..9f29cda23 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -25,8 +25,6 @@ if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf -from convert import LlamaHfVocab - logger = logging.getLogger("hf-to-gguf") @@ -634,7 +632,7 @@ class Model: special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_llama_hf(self): - vocab = LlamaHfVocab(self.dir_model) + vocab = gguf.LlamaHfVocab(self.dir_model) tokens = [] scores = [] toktypes = [] diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md index 48769cdf6..138124248 100644 --- a/docs/HOWTO-add-model.md +++ b/docs/HOWTO-add-model.md @@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M ### 1. Convert the model to GGUF This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library. -Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py). +Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format). The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors. diff --git a/convert.py b/examples/convert-legacy-llama.py similarity index 82% rename from convert.py rename to examples/convert-legacy-llama.py index da1247957..fd8401015 100755 --- a/convert.py +++ b/examples/convert-legacy-llama.py @@ -24,14 +24,16 @@ from abc import ABC, abstractmethod from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional +from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional import numpy as np -from sentencepiece import SentencePieceProcessor if 'NO_LOCAL_GGUF' not in os.environ: - sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) + # use .parent.parent since we are in "examples" directory + sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py')) + import gguf +from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab if TYPE_CHECKING: from typing_extensions import Self, TypeAlias @@ -380,306 +382,6 @@ class Metadata: return metadata -# -# vocab -# - - -@runtime_checkable -class BaseVocab(Protocol): - tokenizer_model: ClassVar[str] - name: ClassVar[str] - - -class NoVocab(BaseVocab): - tokenizer_model = "no_vocab" - name = "no_vocab" - - def __repr__(self) -> str: - return "" - - -@runtime_checkable -class Vocab(BaseVocab, Protocol): - vocab_size: int - added_tokens_dict: dict[str, int] - added_tokens_list: list[str] - fname_tokenizer: Path - - def __init__(self, base_path: Path): ... - def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ... - - -class BpeVocab(Vocab): - tokenizer_model = "gpt2" - name = "bpe" - - def __init__(self, base_path: Path): - added_tokens: dict[str, int] = {} - - if (fname_tokenizer := base_path / 'vocab.json').exists(): - # "slow" tokenizer - with open(fname_tokenizer, encoding="utf-8") as f: - self.vocab = json.load(f) - - try: - # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. - with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f: - added_tokens = json.load(f) - except FileNotFoundError: - pass - else: - # "fast" tokenizer - fname_tokenizer = base_path / FAST_TOKENIZER_FILE - - # if this fails, FileNotFoundError propagates to caller - with open(fname_tokenizer, encoding="utf-8") as f: - tokenizer_json = json.load(f) - - tokenizer_model: dict[str, Any] = tokenizer_json['model'] - if ( - tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False) - or tokenizer_json['decoder']['type'] != 'ByteLevel' - ): - raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer') - - self.vocab = tokenizer_model["vocab"] - - if (added := tokenizer_json.get('added_tokens')) is not None: - # Added tokens here can be duplicates of the main vocabulary. - added_tokens = {item['content']: item['id'] - for item in added - if item['content'] not in self.vocab} - - vocab_size = len(self.vocab) - expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) - actual_ids = sorted(added_tokens.values()) - if expected_ids != actual_ids: - expected_end_id = vocab_size + len(actual_ids) - 1 - raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range " - f"{vocab_size} - {expected_end_id}; got {actual_ids}") - - items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) - self.added_tokens_dict = added_tokens - self.added_tokens_list = [text for (text, idx) in items] - self.vocab_size_base = vocab_size - self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - self.fname_tokenizer = fname_tokenizer - - def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()} - - for i, _ in enumerate(self.vocab): - yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL - - def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - for text in self.added_tokens_list: - score = -1000.0 - yield text.encode("utf-8"), score, gguf.TokenType.CONTROL - - def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - yield from self.bpe_tokens() - yield from self.added_tokens() - - def __repr__(self) -> str: - return f"" - - -class SentencePieceVocab(Vocab): - tokenizer_model = "llama" - name = "spm" - - def __init__(self, base_path: Path): - added_tokens: dict[str, int] = {} - if (fname_tokenizer := base_path / 'tokenizer.model').exists(): - # normal location - try: - with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f: - added_tokens = json.load(f) - except FileNotFoundError: - pass - elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists(): - # not found in alternate location either - raise FileNotFoundError('Cannot find tokenizer.model') - - self.sentencepiece_tokenizer = SentencePieceProcessor() - self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer)) - vocab_size = self.sentencepiece_tokenizer.vocab_size() - - new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size} - expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) - actual_new_ids = sorted(new_tokens.keys()) - - if expected_new_ids != actual_new_ids: - raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}") - - # Token pieces that were added to the base vocabulary. - self.added_tokens_dict = added_tokens - self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] - self.vocab_size_base = vocab_size - self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - self.fname_tokenizer = fname_tokenizer - - def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - tokenizer = self.sentencepiece_tokenizer - for i in range(tokenizer.vocab_size()): - piece = tokenizer.IdToPiece(i) - text = piece.encode("utf-8") - score: float = tokenizer.GetScore(i) - - toktype = gguf.TokenType.NORMAL - if tokenizer.IsUnknown(i): - toktype = gguf.TokenType.UNKNOWN - if tokenizer.IsControl(i): - toktype = gguf.TokenType.CONTROL - - # NOTE: I think added_tokens are user defined. - # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto - # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED - - if tokenizer.IsUnused(i): - toktype = gguf.TokenType.UNUSED - if tokenizer.IsByte(i): - toktype = gguf.TokenType.BYTE - - yield text, score, toktype - - def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - for text in self.added_tokens_list: - score = -1000.0 - yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED - - def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - yield from self.sentencepiece_tokens() - yield from self.added_tokens() - - def __repr__(self) -> str: - return f"" - - -class LlamaHfVocab(Vocab): - tokenizer_model = "llama" - name = "hfft" - - def __init__(self, base_path: Path): - fname_tokenizer = base_path / FAST_TOKENIZER_FILE - # if this fails, FileNotFoundError propagates to caller - with open(fname_tokenizer, encoding='utf-8') as f: - tokenizer_json = json.load(f) - - # pre-check so we know if we need transformers - tokenizer_model: dict[str, Any] = tokenizer_json['model'] - is_llama3 = ( - tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False) - and not tokenizer_model.get('byte_fallback', True) - ) - if is_llama3: - raise TypeError('Llama 3 must be converted with BpeVocab') - - if not is_llama3 and ( - tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False) - or tokenizer_json['decoder']['type'] != 'Sequence' - ): - raise FileNotFoundError('Cannot find Llama BPE tokenizer') - - try: - from transformers import AutoTokenizer - except ImportError as e: - raise ImportError( - "To use LlamaHfVocab, please install the `transformers` package. " - "You can install it with `pip install transformers`." - ) from e - - # Allow the tokenizer to default to slow or fast versions. - # Explicitly set tokenizer to use local paths. - self.tokenizer = AutoTokenizer.from_pretrained( - base_path, - cache_dir=base_path, - local_files_only=True, - ) - assert self.tokenizer.is_fast # assume tokenizer.json is used - - # Initialize lists and dictionaries for added tokens - self.added_tokens_list = [] - self.added_tokens_dict = dict() - self.added_tokens_ids = set() - - # Process added tokens - for tok, tokidx in sorted( - self.tokenizer.get_added_vocab().items(), key=lambda x: x[1] - ): - # Only consider added tokens that are not in the base vocabulary - if tokidx >= self.tokenizer.vocab_size: - self.added_tokens_list.append(tok) - self.added_tokens_dict[tok] = tokidx - self.added_tokens_ids.add(tokidx) - - # Store special tokens and their IDs - self.specials = { - tok: self.tokenizer.get_vocab()[tok] - for tok in self.tokenizer.all_special_tokens - } - self.special_ids = set(self.tokenizer.all_special_ids) - - # Set vocabulary sizes - self.vocab_size_base = self.tokenizer.vocab_size - self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - - self.fname_tokenizer = fname_tokenizer - - def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - reverse_vocab = { - id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() - } - - for token_id in range(self.vocab_size_base): - # Skip processing added tokens here - if token_id in self.added_tokens_ids: - continue - - # Convert token text to bytes - token_text = reverse_vocab[token_id].encode("utf-8") - - # Yield token text, score, and type - yield token_text, self.get_token_score(token_id), self.get_token_type( - token_id, token_text, self.special_ids # Reuse already stored special IDs - ) - - def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType: - # Special case for byte tokens - if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): - return gguf.TokenType.BYTE - - # Determine token type based on whether it's a special token - return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL - - def get_token_score(self, token_id: int) -> float: - # Placeholder for actual logic to determine the token's score - # This needs to be implemented based on specific requirements - return -1000.0 # Default score - - def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - for text in self.added_tokens_list: - if text in self.specials: - toktype = self.get_token_type(self.specials[text], b'', self.special_ids) - score = self.get_token_score(self.specials[text]) - else: - toktype = gguf.TokenType.USER_DEFINED - score = -1000.0 - - yield text.encode("utf-8"), score, toktype - - def has_newline_token(self): - return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab - - def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - yield from self.hf_tokens() - yield from self.added_tokens() - - def __repr__(self) -> str: - return f"" - - # # data loading # TODO: reuse (probably move to gguf.py?) diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md index 413e433dd..74f021dec 100644 --- a/examples/llava/MobileVLM-README.md +++ b/examples/llava/MobileVLM-README.md @@ -54,10 +54,10 @@ python ./examples/llava/convert-image-encoder-to-gguf \ --projector-type ldpv2 ``` -4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: +4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF: ```sh -python ./convert.py path/to/MobileVLM-1.7B +python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B ``` 5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k` diff --git a/examples/llava/README.md b/examples/llava/README.md index 4fb0cf381..8d1ae5270 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -50,10 +50,10 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b ``` -5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: +5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF: ```sh -python ./convert.py ../llava-v1.5-7b --skip-unknown +python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown ``` Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory. @@ -92,7 +92,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto 6) Then convert the model to gguf format: ```console -python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown +python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown ``` 7) And finally we can run the llava-cli using the 1.6 model version: diff --git a/examples/llava/requirements.txt b/examples/llava/requirements.txt index f80f727a7..17cb4d5e5 100644 --- a/examples/llava/requirements.txt +++ b/examples/llava/requirements.txt @@ -1,3 +1,3 @@ --r ../../requirements/requirements-convert.txt +-r ../../requirements/requirements-convert-legacy-llama.txt pillow~=10.2.0 torch~=2.1.1 diff --git a/examples/make-ggml.py b/examples/make-ggml.py deleted file mode 100755 index c73485ebf..000000000 --- a/examples/make-ggml.py +++ /dev/null @@ -1,98 +0,0 @@ -#!/usr/bin/env python3 -""" -This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them. - -Usage: -python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)] - -Arguments: -- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub. -- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox. -- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used. -- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used. -- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'. -- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created. - -Old quant types (some base model types require these): -- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M -- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L -- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M -- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M - -New quant types (recommended): -- Q2_K: smallest, extreme quality loss - not recommended -- Q3_K: alias for Q3_K_M -- Q3_K_S: very small, very high quality loss -- Q3_K_M: very small, very high quality loss -- Q3_K_L: small, substantial quality loss -- Q4_K: alias for Q4_K_M -- Q4_K_S: small, significant quality loss -- Q4_K_M: medium, balanced quality - recommended -- Q5_K: alias for Q5_K_M -- Q5_K_S: large, low quality loss - recommended -- Q5_K_M: large, very low quality loss - recommended -- Q6_K: very large, extremely low quality loss -- Q8_0: very large, extremely low quality loss - not recommended -- F16: extremely large, virtually no quality loss - not recommended -- F32: absolutely huge, lossless - not recommended -""" -import subprocess -subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True) - -import argparse -import os -from huggingface_hub import snapshot_download - -def main(model, model_type, outname, outdir, quants, keep_fp16): - if not os.path.isdir(model): - print(f"Model not found at {model}. Downloading...") - try: - if outname is None: - outname = model.split('/')[-1] - model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache') - except Exception as e: - raise Exception(f"Could not download the model: {e}") - - if outdir is None: - outdir = f'../models/{outname}' - - if not os.path.isfile(f"{model}/config.json"): - raise Exception(f"Could not find config.json in {model}") - - os.makedirs(outdir, exist_ok=True) - - print("Building llama.cpp") - subprocess.run(f"cd .. && make quantize", shell=True, check=True) - - fp16 = f"{outdir}/{outname}.gguf.fp16.bin" - - print(f"Making unquantised GGUF at {fp16}") - if not os.path.isfile(fp16): - if model_type != "llama": - subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True) - else: - subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True) - else: - print(f"Unquantised GGML already exists at: {fp16}") - - print("Making quants") - for type in quants: - outfile = f"{outdir}/{outname}.gguf.{type}.bin" - print(f"Making {type} : {outfile}") - subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True) - - if not keep_fp16: - os.remove(fp16) - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.') - parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name') - parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.') - parser.add_argument('--outname', default=None, help='Output model(s) name') - parser.add_argument('--outdir', default=None, help='Output directory') - parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types') - parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False) - - args = parser.parse_args() - - main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16) diff --git a/gguf-py/gguf/vocab.py b/gguf-py/gguf/vocab.py index 3ba99be4f..dc5749913 100644 --- a/gguf-py/gguf/vocab.py +++ b/gguf-py/gguf/vocab.py @@ -1,10 +1,15 @@ from __future__ import annotations +import re import logging import json import os from pathlib import Path -from typing import Any, Callable, Sequence, Mapping, Iterable +from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable + +from sentencepiece import SentencePieceProcessor + +import gguf from .gguf_writer import GGUFWriter @@ -163,3 +168,298 @@ class SpecialVocab: for typ in self.special_token_types: self._set_special_token(typ, config.get(f'{typ}_token_id')) return True + + +@runtime_checkable +class BaseVocab(Protocol): + tokenizer_model: ClassVar[str] + name: ClassVar[str] + + +@runtime_checkable +class Vocab(BaseVocab, Protocol): + vocab_size: int + added_tokens_dict: dict[str, int] + added_tokens_list: list[str] + fname_tokenizer: Path + + def __init__(self, base_path: Path): ... + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ... + + +class NoVocab(BaseVocab): + tokenizer_model = "no_vocab" + name = "no_vocab" + + def __repr__(self) -> str: + return "" + + +class BpeVocab(Vocab): + tokenizer_model = "gpt2" + name = "bpe" + + def __init__(self, base_path: Path): + added_tokens: dict[str, int] = {} + + if (fname_tokenizer := base_path / 'vocab.json').exists(): + # "slow" tokenizer + with open(fname_tokenizer, encoding="utf-8") as f: + self.vocab = json.load(f) + + try: + # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. + with open(base_path / 'added_tokens.json', encoding="utf-8") as f: + added_tokens = json.load(f) + except FileNotFoundError: + pass + else: + # "fast" tokenizer + fname_tokenizer = base_path / 'tokenizer.json' + + # if this fails, FileNotFoundError propagates to caller + with open(fname_tokenizer, encoding="utf-8") as f: + tokenizer_json = json.load(f) + + tokenizer_model: dict[str, Any] = tokenizer_json['model'] + if ( + tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False) + or tokenizer_json['decoder']['type'] != 'ByteLevel' + ): + raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer') + + self.vocab = tokenizer_model["vocab"] + + if (added := tokenizer_json.get('added_tokens')) is not None: + # Added tokens here can be duplicates of the main vocabulary. + added_tokens = {item['content']: item['id'] + for item in added + if item['content'] not in self.vocab} + + vocab_size = len(self.vocab) + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + expected_end_id = vocab_size + len(actual_ids) - 1 + raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range " + f"{vocab_size} - {expected_end_id}; got {actual_ids}") + + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_dict = added_tokens + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base = vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + + def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()} + + for i, _ in enumerate(self.vocab): + yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL + + def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score, gguf.TokenType.CONTROL + + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + yield from self.bpe_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class SentencePieceVocab(Vocab): + tokenizer_model = "llama" + name = "spm" + + def __init__(self, base_path: Path): + added_tokens: dict[str, int] = {} + if (fname_tokenizer := base_path / 'tokenizer.model').exists(): + # normal location + try: + with open(base_path / 'added_tokens.json', encoding="utf-8") as f: + added_tokens = json.load(f) + except FileNotFoundError: + pass + elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists(): + # not found in alternate location either + raise FileNotFoundError('Cannot find tokenizer.model') + + self.sentencepiece_tokenizer = SentencePieceProcessor() + self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer)) + vocab_size = self.sentencepiece_tokenizer.vocab_size() + + new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size} + expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) + actual_new_ids = sorted(new_tokens.keys()) + + if expected_new_ids != actual_new_ids: + raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}") + + # Token pieces that were added to the base vocabulary. + self.added_tokens_dict = added_tokens + self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] + self.vocab_size_base = vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + + def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + tokenizer = self.sentencepiece_tokenizer + for i in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(i) + text = piece.encode("utf-8") + score: float = tokenizer.GetScore(i) + + toktype = gguf.TokenType.NORMAL + if tokenizer.IsUnknown(i): + toktype = gguf.TokenType.UNKNOWN + if tokenizer.IsControl(i): + toktype = gguf.TokenType.CONTROL + + # NOTE: I think added_tokens are user defined. + # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto + # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED + + if tokenizer.IsUnused(i): + toktype = gguf.TokenType.UNUSED + if tokenizer.IsByte(i): + toktype = gguf.TokenType.BYTE + + yield text, score, toktype + + def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED + + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + yield from self.sentencepiece_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class LlamaHfVocab(Vocab): + tokenizer_model = "llama" + name = "hfft" + + def __init__(self, base_path: Path): + fname_tokenizer = base_path / 'tokenizer.json' + # if this fails, FileNotFoundError propagates to caller + with open(fname_tokenizer, encoding='utf-8') as f: + tokenizer_json = json.load(f) + + # pre-check so we know if we need transformers + tokenizer_model: dict[str, Any] = tokenizer_json['model'] + is_llama3 = ( + tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False) + and not tokenizer_model.get('byte_fallback', True) + ) + if is_llama3: + raise TypeError('Llama 3 must be converted with BpeVocab') + + if not is_llama3 and ( + tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False) + or tokenizer_json['decoder']['type'] != 'Sequence' + ): + raise FileNotFoundError('Cannot find Llama BPE tokenizer') + + try: + from transformers import AutoTokenizer + except ImportError as e: + raise ImportError( + "To use LlamaHfVocab, please install the `transformers` package. " + "You can install it with `pip install transformers`." + ) from e + + # Allow the tokenizer to default to slow or fast versions. + # Explicitly set tokenizer to use local paths. + self.tokenizer = AutoTokenizer.from_pretrained( + base_path, + cache_dir=base_path, + local_files_only=True, + ) + assert self.tokenizer.is_fast # assume tokenizer.json is used + + # Initialize lists and dictionaries for added tokens + self.added_tokens_list = [] + self.added_tokens_dict = dict() + self.added_tokens_ids = set() + + # Process added tokens + for tok, tokidx in sorted( + self.tokenizer.get_added_vocab().items(), key=lambda x: x[1] + ): + # Only consider added tokens that are not in the base vocabulary + if tokidx >= self.tokenizer.vocab_size: + self.added_tokens_list.append(tok) + self.added_tokens_dict[tok] = tokidx + self.added_tokens_ids.add(tokidx) + + # Store special tokens and their IDs + self.specials = { + tok: self.tokenizer.get_vocab()[tok] + for tok in self.tokenizer.all_special_tokens + } + self.special_ids = set(self.tokenizer.all_special_ids) + + # Set vocabulary sizes + self.vocab_size_base = self.tokenizer.vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + + self.fname_tokenizer = fname_tokenizer + + def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + reverse_vocab = { + id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() + } + + for token_id in range(self.vocab_size_base): + # Skip processing added tokens here + if token_id in self.added_tokens_ids: + continue + + # Convert token text to bytes + token_text = reverse_vocab[token_id].encode("utf-8") + + # Yield token text, score, and type + yield token_text, self.get_token_score(token_id), self.get_token_type( + token_id, token_text, self.special_ids # Reuse already stored special IDs + ) + + def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType: + # Special case for byte tokens + if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): + return gguf.TokenType.BYTE + + # Determine token type based on whether it's a special token + return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL + + def get_token_score(self, token_id: int) -> float: + # Placeholder for actual logic to determine the token's score + # This needs to be implemented based on specific requirements + return -1000.0 # Default score + + def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + for text in self.added_tokens_list: + if text in self.specials: + toktype = self.get_token_type(self.specials[text], b'', self.special_ids) + score = self.get_token_score(self.specials[text]) + else: + toktype = gguf.TokenType.USER_DEFINED + score = -1000.0 + + yield text.encode("utf-8"), score, toktype + + def has_newline_token(self): + return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab + + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + yield from self.hf_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" diff --git a/requirements.txt b/requirements.txt index 43f82dc2e..e5cfbf10b 100644 --- a/requirements.txt +++ b/requirements.txt @@ -4,7 +4,7 @@ # Package versions must stay compatible across all top-level python scripts. # --r ./requirements/requirements-convert.txt +-r ./requirements/requirements-convert-legacy-llama.txt -r ./requirements/requirements-convert-hf-to-gguf.txt -r ./requirements/requirements-convert-hf-to-gguf-update.txt diff --git a/requirements/requirements-convert-hf-to-gguf-update.txt b/requirements/requirements-convert-hf-to-gguf-update.txt index 6ac402610..6eacaf429 100644 --- a/requirements/requirements-convert-hf-to-gguf-update.txt +++ b/requirements/requirements-convert-hf-to-gguf-update.txt @@ -1,2 +1,2 @@ --r ./requirements-convert.txt +-r ./requirements-convert-legacy-llama.txt torch~=2.1.1 diff --git a/requirements/requirements-convert-hf-to-gguf.txt b/requirements/requirements-convert-hf-to-gguf.txt index 6ac402610..6eacaf429 100644 --- a/requirements/requirements-convert-hf-to-gguf.txt +++ b/requirements/requirements-convert-hf-to-gguf.txt @@ -1,2 +1,2 @@ --r ./requirements-convert.txt +-r ./requirements-convert-legacy-llama.txt torch~=2.1.1 diff --git a/requirements/requirements-convert.txt b/requirements/requirements-convert-legacy-llama.txt similarity index 100% rename from requirements/requirements-convert.txt rename to requirements/requirements-convert-legacy-llama.txt diff --git a/requirements/requirements-convert-llama-ggml-to-gguf.txt b/requirements/requirements-convert-llama-ggml-to-gguf.txt index a0f37cd1c..e80c29012 100644 --- a/requirements/requirements-convert-llama-ggml-to-gguf.txt +++ b/requirements/requirements-convert-llama-ggml-to-gguf.txt @@ -1 +1 @@ --r ./requirements-convert.txt +-r ./requirements-convert-legacy-llama.txt diff --git a/scripts/check-requirements.sh b/scripts/check-requirements.sh index 6a7400d3c..0c6afdd59 100755 --- a/scripts/check-requirements.sh +++ b/scripts/check-requirements.sh @@ -166,7 +166,7 @@ if (( do_cleanup )); then rm -rf -- "$all_venv" fi -check_convert_script convert.py +check_convert_script examples/convert-legacy-llama.py for py in convert-*.py; do # skip convert-hf-to-gguf-update.py # TODO: the check is failing for some reason: diff --git a/scripts/convert-gg.sh b/scripts/convert-gg.sh index 01fda16fd..8a0168432 100755 --- a/scripts/convert-gg.sh +++ b/scripts/convert-gg.sh @@ -3,20 +3,20 @@ set -e # LLaMA v1 -python3 convert.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16 # LLaMA v2 -python3 convert.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16 # Code Llama -python3 convert.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16 -python3 convert.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16 +python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16 # Falcon python3 convert-falcon-hf-to-gguf.py ../falcon/falcon-7b 1 diff --git a/scripts/pod-llama.sh b/scripts/pod-llama.sh index 2058ceabf..5dabbf60e 100644 --- a/scripts/pod-llama.sh +++ b/scripts/pod-llama.sh @@ -75,7 +75,7 @@ if [ "$1" -eq "1" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16 ./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0 ./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k @@ -90,7 +90,7 @@ if [ "$1" -eq "2" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k @@ -105,7 +105,7 @@ if [ "$1" -eq "3" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k @@ -120,7 +120,7 @@ if [ "$1" -eq "4" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k @@ -135,7 +135,7 @@ if [ "$1" -eq "5" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k @@ -150,7 +150,7 @@ if [ "$1" -eq "6" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k @@ -165,7 +165,7 @@ if [ "$1" -eq "7" ]; then cd /workspace/llama.cpp - python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16 + python3 examples/convert-legacy-llama.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16 ./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0 ./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k From e6157f94c8f835f7f774b98409078867472a34fe Mon Sep 17 00:00:00 2001 From: Brian Date: Thu, 30 May 2024 21:55:36 +1000 Subject: [PATCH 28/47] github: add contact links to issues and convert question into research [no ci] (#7612) --- .github/ISSUE_TEMPLATE/06-question.yml | 38 ------------------- .github/ISSUE_TEMPLATE/06-research.yml | 52 ++++++++++++++++++++++++++ .github/ISSUE_TEMPLATE/config.yml | 13 +++++++ 3 files changed, 65 insertions(+), 38 deletions(-) delete mode 100644 .github/ISSUE_TEMPLATE/06-question.yml create mode 100644 .github/ISSUE_TEMPLATE/06-research.yml create mode 100644 .github/ISSUE_TEMPLATE/config.yml diff --git a/.github/ISSUE_TEMPLATE/06-question.yml b/.github/ISSUE_TEMPLATE/06-question.yml deleted file mode 100644 index 9d3ff4972..000000000 --- a/.github/ISSUE_TEMPLATE/06-question.yml +++ /dev/null @@ -1,38 +0,0 @@ -name: Question -description: Used to ask questions about llama.cpp -title: "Question: " -labels: ["question"] -body: - - type: markdown - attributes: - value: | - [Please search your question first in Discussion if you got a common general question.](https://github.com/ggerganov/llama.cpp/discussions/categories/q-a) - - - type: checkboxes - id: prerequisites - attributes: - label: Prerequisites - description: Please confirm the following before submitting your question. - options: - - label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed). - required: true - - label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new useful question to share that cannot be answered within Discussions. - required: true - - - type: textarea - id: background-description - attributes: - label: Background Description - description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an question. - placeholder: Detailed description of your question - validations: - required: true - - - type: textarea - id: possible-answer - attributes: - label: Possible Answer - description: If you have some idea of possible answers you want to confirm, that would also be appreciated. - placeholder: Your idea of possible answers - validations: - required: false diff --git a/.github/ISSUE_TEMPLATE/06-research.yml b/.github/ISSUE_TEMPLATE/06-research.yml new file mode 100644 index 000000000..3ae4e9f8c --- /dev/null +++ b/.github/ISSUE_TEMPLATE/06-research.yml @@ -0,0 +1,52 @@ +name: Research +description: Track new technical research area +title: "Research: " +labels: ["research 🔬"] +body: + - type: markdown + attributes: + value: | + Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22) + + - type: checkboxes + id: research-stage + attributes: + label: Research Stage + description: Track general state of this research ticket + options: + - label: Background Research (Let's try to avoid reinventing the wheel) + - label: Hypothesis Formed (How do you think this will work and it's effect?) + - label: Strategy / Implementation Forming + - label: Analysis of results + - label: Debrief / Documentation (So people in the future can learn from us) + + - type: textarea + id: background + attributes: + label: Previous existing literature and research + description: Whats the current state of the art and whats the motivation for this research? + + - type: textarea + id: hypothesis + attributes: + label: Hypothesis + description: How do you think this will work and it's effect? + + - type: textarea + id: implementation + attributes: + label: Implementation + description: Got an approach? e.g. a PR ready to go? + + - type: textarea + id: analysis + attributes: + label: Analysis + description: How does the proposed implementation behave? + + - type: textarea + id: logs + attributes: + label: Relevant log output + description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks. + render: shell diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 000000000..c88134dbb --- /dev/null +++ b/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,13 @@ +blank_issues_enabled: true +contact_links: + - name: Got an idea? + url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas + about: Pop it there. It may then become an enhancement ticket. + - name: Got a question? + url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a + about: Ask a question there! + - name: Want to contribute? + url: https://github.com/ggerganov/llama.cpp/wiki/contribute + about: Head to the contribution guide page of the wiki for areas you can help with + + From 7846540bd291e52cd4eee53882315760e05239be Mon Sep 17 00:00:00 2001 From: Martin Delille Date: Thu, 30 May 2024 14:52:50 +0200 Subject: [PATCH 29/47] readme : add Conan badge (#7638) --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 29d6c1cb2..ea7099d01 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,8 @@ [Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) +[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp) + Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++ ### Recent API changes From 2e2340de1740b07f2418c04792607387d4dc1442 Mon Sep 17 00:00:00 2001 From: Manuel <44313466+makuche@users.noreply.github.com> Date: Thu, 30 May 2024 16:58:15 +0200 Subject: [PATCH 30/47] Add brew installation instruction to README [no ci] (#7616) --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index ea7099d01..ba06b1ee2 100644 --- a/README.md +++ b/README.md @@ -388,6 +388,14 @@ In order to build llama.cpp you have four different options. CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read the instructions for use and activate this options in this document below. +### Homebrew + +On Mac and Linux, the homebrew package manager can be used via +``` +brew install llama.cpp +``` +The formula is automatically updated with new `llama.cpp` releases. + ### Metal Build On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU. From 5dcdf946764fae49a8e2a90bf2f0960bde1c44e8 Mon Sep 17 00:00:00 2001 From: Martin Delille Date: Thu, 30 May 2024 17:07:39 +0200 Subject: [PATCH 31/47] Fix conan badge display [no ci] (#7645) --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index ba06b1ee2..d85a453be 100644 --- a/README.md +++ b/README.md @@ -2,12 +2,12 @@ ![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png) -[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml) +[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) +[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml) +[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp) [Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml) -[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp) - Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++ ### Recent API changes From 5921b8f089d3b7bda86aac5a66825df6a6c10603 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Thu, 30 May 2024 19:01:41 +0300 Subject: [PATCH 32/47] llama : cache llama_token_to_piece (#7587) * llama : cache llama_token_to_piece ggml-ci * llama : use vectors and avoid has_cache ggml-ci * llama : throw on unknown tokenizer types ggml-ci * llama : print a log of the total cache size --- llama.cpp | 199 ++++++++++++++++++++++++++++++++---------------------- llama.h | 4 +- 2 files changed, 119 insertions(+), 84 deletions(-) diff --git a/llama.cpp b/llama.cpp index e7412de4b..40d2ec2c9 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1702,12 +1702,13 @@ struct llama_mlock { }; using llama_mlocks = std::vector>; -static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { +// NOTE: avoid ever using this except for building the token_to_piece caches +static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); + const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); + int check = llama_token_to_piece(model, token, result.data(), result.size(), special); GGML_ASSERT(check == -n_tokens); } else { @@ -2162,7 +2163,9 @@ struct llama_vocab { std::unordered_map token_to_id; std::vector id_to_token; - std::vector special_tokens_cache; + std::vector cache_special_tokens; + std::vector cache_token_to_piece; // llama_token_to_piece(special = false); + std::vector cache_token_to_piece_special; // llama_token_to_piece(special = true); std::map, int> bpe_ranks; @@ -4592,20 +4595,14 @@ static void llm_load_vocab( vocab.special_cls_id = 101; vocab.special_mask_id = 103; vocab.add_space_prefix = false; - } else { - if (tokenizer_model == "gpt2") { - vocab.type = LLAMA_VOCAB_TYPE_BPE; + } else if (tokenizer_model == "gpt2") { + vocab.type = LLAMA_VOCAB_TYPE_BPE; - const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); - if (add_space_prefix_keyidx != -1) { - vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); - } - } else { - LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str()); - LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); - vocab.type = LLAMA_VOCAB_TYPE_SPM; - return; + const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); + if (add_space_prefix_keyidx != -1) { + vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); } + // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { @@ -4639,6 +4636,8 @@ static void llm_load_vocab( vocab.special_pad_id = -1; vocab.special_cls_id = -1; vocab.special_mask_id = -1; + } else { + throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); } // for now, only BPE models have pre-tokenizers @@ -4833,17 +4832,38 @@ static void llm_load_vocab( { for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) { if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) { - vocab.special_tokens_cache.push_back(id); + vocab.cache_special_tokens.push_back(id); } } - std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(), + std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(), [&] (const llama_vocab::id a, const llama_vocab::id b) { return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size(); } ); - LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size()); + LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size()); + } + + // build token to piece caches + { + size_t size_cache = 0; + + std::vector cache_token_to_piece (n_vocab); + std::vector cache_token_to_piece_special(n_vocab); + + for (uint32_t id = 0; id < n_vocab; ++id) { + cache_token_to_piece[id] = llama_token_to_piece(&model, id, false); + cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true); + + size_cache += cache_token_to_piece[id].size(); + size_cache += cache_token_to_piece_special[id].size(); + } + + std::swap(vocab.cache_token_to_piece, cache_token_to_piece); + std::swap(vocab.cache_token_to_piece_special, cache_token_to_piece_special); + + LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0); } } @@ -13233,7 +13253,7 @@ struct fragment_buffer_variant { static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { // for each special token - for (const llama_vocab::id special_id : vocab.special_tokens_cache) { + for (const llama_vocab::id special_id : vocab.cache_special_tokens) { const auto & special_token = vocab.id_to_token[special_id].text; // for each text fragment @@ -14392,7 +14412,7 @@ void llama_sample_repetition_penalties( void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { GGML_ASSERT(ctx); - const int64_t t_start_sample_us = ggml_time_us(); + int64_t t_start_sample_us = ggml_time_us(); bool allow_eog = false; for (const auto & stack : grammar->stacks) { @@ -14404,12 +14424,13 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c std::vector, llama_partial_utf8>> candidates_decoded; candidates_decoded.reserve(candidates->size); - std::vector candidates_grammar; + + std::vector candidates_grammar; candidates_grammar.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { - const llama_token id = candidates->data[i].id; - const std::string piece = llama_token_to_piece(ctx, id, false); + const llama_token id = candidates->data[i].id; + const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id); if (llama_token_is_eog(&ctx->model, id)) { if (!allow_eog) { @@ -14609,7 +14630,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar GGML_ASSERT(false); } - const std::string piece = llama_token_to_piece(ctx, token, false); + const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece, grammar->partial_utf8); @@ -18292,69 +18313,83 @@ static std::string llama_decode_text(const std::string & text) { // does not write null-terminator to buf int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) { + // if we have a cache - use it + { + const auto & cache = special ? model->vocab.cache_token_to_piece_special : model->vocab.cache_token_to_piece; + + if (!cache.empty()) { + const auto & res = cache.at(token); + if (length < (int) res.size()) { + return -(int) res.size(); + } + memcpy(buf, res.c_str(), res.size()); + return res.size(); + } + } + if (0 <= token && token < llama_n_vocab(model)) { switch (llama_vocab_get_type(model->vocab)) { - case LLAMA_VOCAB_TYPE_WPM: - case LLAMA_VOCAB_TYPE_SPM: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (llama_is_normal_token(model->vocab, token)) { - std::string result = model->vocab.id_to_token[token].text; - llama_unescape_whitespace(result); - if (length < (int) result.length()) { - return -(int) result.length(); + case LLAMA_VOCAB_TYPE_WPM: + case LLAMA_VOCAB_TYPE_SPM: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (llama_is_normal_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + llama_unescape_whitespace(result); + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if ( + (llama_is_user_defined_token(model->vocab, token)) || + (llama_is_control_token (model->vocab, token) && special)) { + std::string result = model->vocab.id_to_token[token].text; + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT + if (length < 3) { + return -3; + } + memcpy(buf, "\xe2\x96\x85", 3); + return 3; + } else if (llama_is_byte_token(model->vocab, token)) { + if (length < 1) { + return -1; + } + buf[0] = llama_token_to_byte(model->vocab, token); + return 1; } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if ( - (llama_is_user_defined_token(model->vocab, token)) || - (llama_is_control_token (model->vocab, token) && special)) { - std::string result = model->vocab.id_to_token[token].text; - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT - if (length < 3) { - return -3; - } - memcpy(buf, "\xe2\x96\x85", 3); - return 3; - } else if (llama_is_byte_token(model->vocab, token)) { - if (length < 1) { - return -1; - } - buf[0] = llama_token_to_byte(model->vocab, token); - return 1; + break; } - break; - } - case LLAMA_VOCAB_TYPE_BPE: { - // NOTE: we accept all unsupported token types, - // suppressing them like CONTROL tokens. - if (llama_is_normal_token(model->vocab, token)) { - std::string result = model->vocab.id_to_token[token].text; - result = llama_decode_text(result); - if (length < (int) result.length()) { - return -(int) result.length(); + case LLAMA_VOCAB_TYPE_BPE: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (llama_is_normal_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + result = llama_decode_text(result); + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if ( + (llama_is_user_defined_token(model->vocab, token)) || + (llama_is_control_token (model->vocab, token) && special)) { + std::string result = model->vocab.id_to_token[token].text; + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); } - memcpy(buf, result.c_str(), result.length()); - return result.length(); - } else if ( - (llama_is_user_defined_token(model->vocab, token)) || - (llama_is_control_token (model->vocab, token) && special)) { - std::string result = model->vocab.id_to_token[token].text; - if (length < (int) result.length()) { - return -(int) result.length(); - } - memcpy(buf, result.c_str(), result.length()); - return result.length(); + break; } - break; - } - default: - GGML_ASSERT(false); + default: + GGML_ASSERT(false); } } return 0; diff --git a/llama.h b/llama.h index 3e4474bb9..95105c28e 100644 --- a/llama.h +++ b/llama.h @@ -424,8 +424,8 @@ extern "C" { LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx); - LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model); - LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); + LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model); + LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); From 9022c33646fbf78da35f40c3f98576cc08c40ddf Mon Sep 17 00:00:00 2001 From: JohnnyB Date: Thu, 30 May 2024 21:32:38 +0100 Subject: [PATCH 33/47] Fixed painfully slow single process builds. (#7326) * Fixed painfully slow single process builds. * Added nproc for systems that don't default to nproc --- .devops/full-cuda.Dockerfile | 2 +- .devops/full-rocm.Dockerfile | 2 +- .devops/full.Dockerfile | 2 +- .devops/main-cuda.Dockerfile | 2 +- .devops/main-rocm.Dockerfile | 2 +- .devops/main.Dockerfile | 2 +- .devops/server-cuda.Dockerfile | 2 +- .devops/server-rocm.Dockerfile | 2 +- .devops/server.Dockerfile | 2 +- 9 files changed, 9 insertions(+), 9 deletions(-) diff --git a/.devops/full-cuda.Dockerfile b/.devops/full-cuda.Dockerfile index 059fd2695..c01006efe 100644 --- a/.devops/full-cuda.Dockerfile +++ b/.devops/full-cuda.Dockerfile @@ -31,6 +31,6 @@ ENV LLAMA_CUDA=1 # Enable cURL ENV LLAMA_CURL=1 -RUN make +RUN make -j$(nproc) ENTRYPOINT ["/app/.devops/tools.sh"] diff --git a/.devops/full-rocm.Dockerfile b/.devops/full-rocm.Dockerfile index 6ecf3bcc7..0314d469b 100644 --- a/.devops/full-rocm.Dockerfile +++ b/.devops/full-rocm.Dockerfile @@ -45,6 +45,6 @@ ENV LLAMA_CURL=1 RUN apt-get update && \ apt-get install -y libcurl4-openssl-dev -RUN make +RUN make -j$(nproc) ENTRYPOINT ["/app/.devops/tools.sh"] diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile index 432fb5dad..6d5943a2f 100644 --- a/.devops/full.Dockerfile +++ b/.devops/full.Dockerfile @@ -18,7 +18,7 @@ COPY . . ENV LLAMA_CURL=1 -RUN make +RUN make -j$(nproc) ENV LC_ALL=C.utf8 diff --git a/.devops/main-cuda.Dockerfile b/.devops/main-cuda.Dockerfile index b937a4829..23f428944 100644 --- a/.devops/main-cuda.Dockerfile +++ b/.devops/main-cuda.Dockerfile @@ -23,7 +23,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH} # Enable CUDA ENV LLAMA_CUDA=1 -RUN make +RUN make -j$(nproc) FROM ${BASE_CUDA_RUN_CONTAINER} as runtime diff --git a/.devops/main-rocm.Dockerfile b/.devops/main-rocm.Dockerfile index 0a706dc73..37576d68e 100644 --- a/.devops/main-rocm.Dockerfile +++ b/.devops/main-rocm.Dockerfile @@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1 ENV CC=/opt/rocm/llvm/bin/clang ENV CXX=/opt/rocm/llvm/bin/clang++ -RUN make +RUN make -j$(nproc) ENTRYPOINT [ "/app/main" ] diff --git a/.devops/main.Dockerfile b/.devops/main.Dockerfile index 3ab1decd6..763d75fce 100644 --- a/.devops/main.Dockerfile +++ b/.devops/main.Dockerfile @@ -9,7 +9,7 @@ WORKDIR /app COPY . . -RUN make +RUN make -j$(nproc) FROM ubuntu:$UBUNTU_VERSION as runtime diff --git a/.devops/server-cuda.Dockerfile b/.devops/server-cuda.Dockerfile index 59a52ba21..7f5228185 100644 --- a/.devops/server-cuda.Dockerfile +++ b/.devops/server-cuda.Dockerfile @@ -25,7 +25,7 @@ ENV LLAMA_CUDA=1 # Enable cURL ENV LLAMA_CURL=1 -RUN make +RUN make -j$(nproc) FROM ${BASE_CUDA_RUN_CONTAINER} as runtime diff --git a/.devops/server-rocm.Dockerfile b/.devops/server-rocm.Dockerfile index c02a31dd8..a6b76dee8 100644 --- a/.devops/server-rocm.Dockerfile +++ b/.devops/server-rocm.Dockerfile @@ -45,6 +45,6 @@ ENV LLAMA_CURL=1 RUN apt-get update && \ apt-get install -y libcurl4-openssl-dev -RUN make +RUN make -j$(nproc) ENTRYPOINT [ "/app/server" ] diff --git a/.devops/server.Dockerfile b/.devops/server.Dockerfile index be964e0e8..0d09d3627 100644 --- a/.devops/server.Dockerfile +++ b/.devops/server.Dockerfile @@ -11,7 +11,7 @@ COPY . . ENV LLAMA_CURL=1 -RUN make +RUN make -j$(nproc) FROM ubuntu:$UBUNTU_VERSION as runtime From 0541f06296753dbc59a57379eb54cec865a4c9f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Serta=C3=A7=20=C3=96zercan?= <852750+sozercan@users.noreply.github.com> Date: Thu, 30 May 2024 16:57:16 -0700 Subject: [PATCH 34/47] [no ci] docs: add aikit to readme (#7650) Signed-off-by: Sertac Ozercan --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d85a453be..60e7aaf2c 100644 --- a/README.md +++ b/README.md @@ -202,6 +202,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [KodiBot](https://github.com/firatkiral/kodibot) (GPL) - [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT) - [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT) +- [AIKit](https://github.com/sozercan/aikit) (MIT) *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* @@ -390,7 +391,7 @@ In order to build llama.cpp you have four different options. ### Homebrew -On Mac and Linux, the homebrew package manager can be used via +On Mac and Linux, the homebrew package manager can be used via ``` brew install llama.cpp ``` From 1af511fc22cba4959dd8bced5501df9e8af6ddf9 Mon Sep 17 00:00:00 2001 From: Galunid Date: Fri, 31 May 2024 10:09:20 +0200 Subject: [PATCH 35/47] Add convert.py removal to hot topics (#7662) --- README.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 60e7aaf2c..eeeb64919 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) ### Hot topics -- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021** +- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py` https://github.com/ggerganov/llama.cpp/pull/7430 +- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021 - BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920 - MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387 - Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404 From 2e32f874e675f7bc5307cb7b4470ddbe090bab8f Mon Sep 17 00:00:00 2001 From: Galunid Date: Fri, 31 May 2024 10:24:41 +0200 Subject: [PATCH 36/47] Somehow '**' got lost (#7663) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index eeeb64919..89b0fe0b0 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) ### Hot topics -- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py` https://github.com/ggerganov/llama.cpp/pull/7430 +- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430 - Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021 - BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920 - MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387 From 0c27e6f62eea80140daf152d7b6c154466614e5c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 31 May 2024 14:17:10 +0300 Subject: [PATCH 37/47] ggml : fix loongson compile warnings (#7537) * ggml : fix loongson compile warnings ggml-ci * Fix loongarch quantize test fail. Fix unexpected error introduced during rebase code. * tests : disable json test due to lack of python on the CI node ggml-ci --------- Co-authored-by: junchao-loongson --- ggml-quants.c | 26 +++++++++++++++++++++++--- ggml.c | 13 +++++++------ tests/CMakeLists.txt | 7 +++++-- 3 files changed, 35 insertions(+), 11 deletions(-) diff --git a/ggml-quants.c b/ggml-quants.c index 1128d66e2..9f864e5c4 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -6088,6 +6088,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r const uint8_t * restrict q2 = x[i].qs; const int8_t * restrict q8 = y[i].qs; + const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0); const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4); const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4); @@ -6807,6 +6808,8 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r for (int i = 0; i < nb; ++i) { const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; // Set up scales memcpy(aux, x[i].scales, 12); __m128i scales128 = lsx_set_w( @@ -6830,8 +6833,6 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r int is = 0; __m256i xvbit; - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; for (int j = 0; j < QK_K/128; ++j) { // load low 2 bits @@ -7404,6 +7405,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); #elif defined __loongarch_asx + GGML_UNUSED(kmask1); + GGML_UNUSED(kmask2); + GGML_UNUSED(kmask3); const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); @@ -7416,6 +7420,11 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; const uint8_t * restrict q4 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -7455,16 +7464,17 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r __m256 vd = __lasx_xvreplfr2vr_s(d); acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc); + } acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee)); __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0); acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1); + ft_union fi; fi.i = __lsx_vpickve2gr_w(acc_m, 0); *s = hsum_float_8(acc) + fi.f ; - #else const uint8_t * scales = (const uint8_t*)&utmp[0]; @@ -8002,6 +8012,9 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); #elif defined __loongarch_asx + GGML_UNUSED(kmask1); + GGML_UNUSED(kmask2); + GGML_UNUSED(kmask3); const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); const __m128i mzero = __lsx_vldi(0); @@ -8020,6 +8033,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0])); @@ -8069,10 +8087,12 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r p16_1 = lasx_madd_h(scale_1, p16_1); sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1)); + } __m256 vd = __lasx_xvreplfr2vr_s(d); acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc); + } *s = hsum_float_8(acc) + summs; diff --git a/ggml.c b/ggml.c index 76803639c..f479dc3e1 100644 --- a/ggml.c +++ b/ggml.c @@ -1576,11 +1576,11 @@ do { \ // F16 arithmetic is not supported by AVX, so we use F32 instead -#define GGML_F32Cx8 __m256 +#define GGML_F32Cx8 __m256 #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0) #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x)) -static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) { +static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) { float tmp[8]; for (int i = 0; i < 8; i++) { @@ -1589,13 +1589,14 @@ static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) { return (__m256)__lasx_xvld(tmp, 0); } -static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) { +static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) { float arr[8]; __lasx_xvst(y, arr, 0); - for (int i = 0; i < 8; i++) + for (int i = 0; i < 8; i++) { x[i] = GGML_FP32_TO_FP16(arr[i]); + } } #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x) #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y) @@ -1671,7 +1672,7 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) { #define GGML_F16_STEP 32 #define GGML_F16_EPR 4 -static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) { +static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) { float tmp[4]; tmp[0] = GGML_FP16_TO_FP32(x[0]); @@ -1682,7 +1683,7 @@ static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) { return __lsx_vld(tmp, 0); } -static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) { +static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) { float arr[4]; __lsx_vst(y, arr, 0); diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 766a01752..cfa707315 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -129,8 +129,11 @@ llama_target_and_test(test-rope.cpp) llama_target_and_test(test-model-load-cancel.cpp LABEL "model") llama_target_and_test(test-autorelease.cpp LABEL "model") -llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..) -target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server) +# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8 +if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64") + llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..) + target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server) +endif() # dummy executable - not installed get_filename_component(TEST_TARGET test-c.c NAME_WE) From 16926dff92d6d0efa8cbc0f44d30d63349532b38 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 31 May 2024 15:04:58 +0300 Subject: [PATCH 38/47] readme : link homebrew discussion --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 89b0fe0b0..e8bf1e246 100644 --- a/README.md +++ b/README.md @@ -396,7 +396,7 @@ On Mac and Linux, the homebrew package manager can be used via ``` brew install llama.cpp ``` -The formula is automatically updated with new `llama.cpp` releases. +The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668 ### Metal Build From 30e238b246f8002cc6eb7cb79afe242243f1f66d Mon Sep 17 00:00:00 2001 From: Daniele <57776841+daniandtheweb@users.noreply.github.com> Date: Fri, 31 May 2024 14:00:29 +0000 Subject: [PATCH 39/47] Improve HIP compatibility (#7672) --- Makefile | 1 + 1 file changed, 1 insertion(+) diff --git a/Makefile b/Makefile index 5caf31cdf..aced0e370 100644 --- a/Makefile +++ b/Makefile @@ -571,6 +571,7 @@ ifdef LLAMA_HIP_UMA MK_CPPFLAGS += -DGGML_HIP_UMA endif # LLAMA_HIP_UMA MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib + MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64 MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS)) HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X) From c8047d538f3addab40e3112be60bb92e70ce1a50 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Fri, 31 May 2024 16:26:21 +0200 Subject: [PATCH 40/47] scripts: update compare_llama_bench.py [no ci] (#7673) --- scripts/compare-llama-bench.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 0ede9e67c..6016eb2c0 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -19,22 +19,22 @@ logger = logging.getLogger("compare-llama-bench") # Properties by which to differentiate results per commit: KEY_PROPERTIES = [ - "cpu_info", "gpu_info", "n_gpu_layers", "main_gpu", "cuda", "opencl", "metal", "gpu_blas", - "blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_threads", - "type_k", "type_v", "no_kv_offload", "tensor_split", "n_prompt", "n_gen" + "cpu_info", "gpu_info", "n_gpu_layers", "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", + "blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads", + "type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen" ] # Properties that are boolean and are converted to Yes/No for the table: -BOOL_PROPERTIES = ["cuda", "opencl", "metal", "gpu_blas", "blas"] +BOOL_PROPERTIES = ["cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"] # Header names for the table: PRETTY_NAMES = { - "cuda": "CUDA", "opencl": "OpenCL", "metal": "Metal", "gpu_blas": "GPU BLAS", "blas": "BLAS", - "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model", - "model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters", - "n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type", - "n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO", - "tensor_split": "Tensor split" + "cuda": "CUDA", "opencl": "OpenCL", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC", + "gpu_blas": "GPU BLAS", "blas": "BLAS", "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model", + "model_size": "Model Size [GiB]", "model_n_params": "Num. of Par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", + "n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "split_mode": "Split mode", + "main_gpu": "Main GPU", "no_kv_offload": "NKVO", "flash_attn": "FlashAttention", "tensor_split": "Tensor split", + "use_mmap": "Use mmap", "embeddings": "Embeddings", } DEFAULT_SHOW = ["model_type"] # Always show these properties by default. From 0515ad93f48df63bbff204eddb0cac75e8585c65 Mon Sep 17 00:00:00 2001 From: Galunid Date: Fri, 31 May 2024 17:42:33 +0200 Subject: [PATCH 41/47] convert-hf : Handle NotImplementedError in convert-hf-to-gguf (#7660) --- convert-hf-to-gguf.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 9f29cda23..ad071b974 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2840,7 +2840,12 @@ def main() -> None: hparams = Model.load_hparams(dir_model) with torch.inference_mode(): - model_class = Model.from_model_architecture(hparams["architectures"][0]) + try: + model_class = Model.from_model_architecture(hparams["architectures"][0]) + except NotImplementedError: + logger.error(f"Model {hparams['architectures'][0]} is not supported") + sys.exit(1) + model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy) logger.info("Set model parameters") From a323ec60af14a33d560df98f2cc41b4112cb4f80 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 31 May 2024 22:23:04 +0300 Subject: [PATCH 42/47] server : update js (#7670) --- examples/server/public/index.js | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/server/public/index.js b/examples/server/public/index.js index 695aec256..670960939 100644 --- a/examples/server/public/index.js +++ b/examples/server/public/index.js @@ -1 +1 @@ -const t=Symbol.for("preact-signals");function n(){if(r>1){r--;return}let t,n=!1;while(void 0!==i){let _=i;i=void 0;u++;while(void 0!==_){const i=_.o;_.o=void 0;_.f&=-3;if(!(8&_.f)&&h(_))try{_.c()}catch(e){if(!n){t=e;n=!0}}_=i}}u=0;r--;if(n)throw t}function e(t){if(r>0)return t();r++;try{return t()}finally{n()}}let _,i;function o(t){const n=_;_=void 0;try{return t()}finally{_=n}}let r=0,u=0,l=0;function s(t){if(void 0===_)return;let n=t.n;if(void 0===n||n.t!==_){n={i:0,S:t,p:_.s,n:void 0,t:_,e:void 0,x:void 0,r:n};if(void 0!==_.s)_.s.n=n;_.s=n;t.n=n;if(32&_.f)t.S(n);return n}else if(-1===n.i){n.i=0;if(void 0!==n.n){n.n.p=n.p;if(void 0!==n.p)n.p.n=n.n;n.p=_.s;n.n=void 0;_.s.n=n;_.s=n}return n}}function f(t){this.v=t;this.i=0;this.n=void 0;this.t=void 0}f.prototype.brand=t;f.prototype.h=function(){return!0};f.prototype.S=function(t){if(this.t!==t&&void 0===t.e){t.x=this.t;if(void 0!==this.t)this.t.e=t;this.t=t}};f.prototype.U=function(t){if(void 0!==this.t){const n=t.e,e=t.x;if(void 0!==n){n.x=e;t.e=void 0}if(void 0!==e){e.e=n;t.x=void 0}if(t===this.t)this.t=e}};f.prototype.subscribe=function(t){return k(()=>{const n=this.value,e=_;_=void 0;try{t(n)}finally{_=e}})};f.prototype.valueOf=function(){return this.value};f.prototype.toString=function(){return this.value+""};f.prototype.toJSON=function(){return this.value};f.prototype.peek=function(){const t=_;_=void 0;try{return this.value}finally{_=t}};Object.defineProperty(f.prototype,"value",{get(){const t=s(this);if(void 0!==t)t.i=this.i;return this.v},set(t){if(t!==this.v){if(u>100)throw new Error("Cycle detected");this.v=t;this.i++;l++;r++;try{for(let t=this.t;void 0!==t;t=t.x)t.t.N()}finally{n()}}}});function c(t){return new f(t)}function h(t){for(let n=t.s;void 0!==n;n=n.n)if(n.S.i!==n.i||!n.S.h()||n.S.i!==n.i)return!0;return!1}function a(t){for(let n=t.s;void 0!==n;n=n.n){const e=n.S.n;if(void 0!==e)n.r=e;n.S.n=n;n.i=-1;if(void 0===n.n){t.s=n;break}}}function p(t){let n,e=t.s;while(void 0!==e){const t=e.p;if(-1===e.i){e.S.U(e);if(void 0!==t)t.n=e.n;if(void 0!==e.n)e.n.p=t}else n=e;e.S.n=e.r;if(void 0!==e.r)e.r=void 0;e=t}t.s=n}function d(t){f.call(this,void 0);this.x=t;this.s=void 0;this.g=l-1;this.f=4}(d.prototype=new f).h=function(){this.f&=-3;if(1&this.f)return!1;if(32==(36&this.f))return!0;this.f&=-5;if(this.g===l)return!0;this.g=l;this.f|=1;if(this.i>0&&!h(this)){this.f&=-2;return!0}const t=_;try{a(this);_=this;const t=this.x();if(16&this.f||this.v!==t||0===this.i){this.v=t;this.f&=-17;this.i++}}catch(t){this.v=t;this.f|=16;this.i++}_=t;p(this);this.f&=-2;return!0};d.prototype.S=function(t){if(void 0===this.t){this.f|=36;for(let t=this.s;void 0!==t;t=t.n)t.S.S(t)}f.prototype.S.call(this,t)};d.prototype.U=function(t){if(void 0!==this.t){f.prototype.U.call(this,t);if(void 0===this.t){this.f&=-33;for(let t=this.s;void 0!==t;t=t.n)t.S.U(t)}}};d.prototype.N=function(){if(!(2&this.f)){this.f|=6;for(let t=this.t;void 0!==t;t=t.x)t.t.N()}};Object.defineProperty(d.prototype,"value",{get(){if(1&this.f)throw new Error("Cycle detected");const t=s(this);this.h();if(void 0!==t)t.i=this.i;if(16&this.f)throw this.v;return this.v}});function v(t){return new d(t)}function y(t){const e=t.u;t.u=void 0;if("function"==typeof e){r++;const i=_;_=void 0;try{e()}catch(n){t.f&=-2;t.f|=8;m(t);throw n}finally{_=i;n()}}}function m(t){for(let n=t.s;void 0!==n;n=n.n)n.S.U(n);t.x=void 0;t.s=void 0;y(t)}function g(t){if(_!==this)throw new Error("Out-of-order effect");p(this);_=t;this.f&=-2;if(8&this.f)m(this);n()}function b(t){this.x=t;this.u=void 0;this.s=void 0;this.o=void 0;this.f=32}b.prototype.c=function(){const t=this.S();try{if(8&this.f)return;if(void 0===this.x)return;const n=this.x();if("function"==typeof n)this.u=n}finally{t()}};b.prototype.S=function(){if(1&this.f)throw new Error("Cycle detected");this.f|=1;this.f&=-9;y(this);a(this);r++;const t=_;_=this;return g.bind(this,t)};b.prototype.N=function(){if(!(2&this.f)){this.f|=2;this.o=i;i=this}};b.prototype.d=function(){this.f|=8;if(!(1&this.f))m(this)};function k(t){const n=new b(t);try{n.c()}catch(t){n.d();throw t}return n.d.bind(n)}var S,w,x,C,E,U,H,P,N,$,D,T,F={},V=[],A=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i,M=Array.isArray;function W(t,n){for(var e in n)t[e]=n[e];return t}function O(t){var n=t.parentNode;n&&n.removeChild(t)}function L(t,n,e){var _,i,o,r={};for(o in n)"key"==o?_=n[o]:"ref"==o?i=n[o]:r[o]=n[o];if(arguments.length>2&&(r.children=arguments.length>3?S.call(arguments,2):e),"function"==typeof t&&null!=t.defaultProps)for(o in t.defaultProps)void 0===r[o]&&(r[o]=t.defaultProps[o]);return R(t,r,_,i,null)}function R(t,n,e,_,i){var o={type:t,props:n,key:e,ref:_,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,constructor:void 0,__v:null==i?++x:i,__i:-1,__u:0};return null==i&&null!=w.vnode&&w.vnode(o),o}function I(){return{current:null}}function j(t){return t.children}function q(t,n){this.props=t,this.context=n}function B(t,n){if(null==n)return t.__?B(t.__,t.__i+1):null;for(var e;nn&&E.sort(P));J.__r=0}function K(t,n,e,_,i,o,r,u,l,s,f){var c,h,a,p,d,v=_&&_.__k||V,y=n.length;for(e.__d=l,Q(e,n,v),l=e.__d,c=0;c0?R(i.type,i.props,i.key,i.ref?i.ref:null,i.__v):i)?(i.__=t,i.__b=t.__b+1,u=Z(i,e,r,f),i.__i=u,o=null,-1!==u&&(f--,(o=e[u])&&(o.__u|=131072)),null==o||null===o.__v?(-1==u&&c--,"function"!=typeof i.type&&(i.__u|=65536)):u!==r&&(u===r+1?c++:u>r?f>l-r?c+=u-r:c--:u(null!=l&&0==(131072&l.__u)?1:0))for(;r>=0||u=0){if((l=n[r])&&0==(131072&l.__u)&&i==l.key&&o===l.type)return r;r--}if(u2&&(u.children=arguments.length>3?S.call(arguments,2):e),R(t.type,u,_||t.key,i||t.ref,null)}function ht(t,n){var e={__c:n="__cC"+T++,__:t,Consumer:function(t,n){return t.children(n)},Provider:function(t){var e,_;return this.getChildContext||(e=[],(_={})[n]=this,this.getChildContext=function(){return _},this.shouldComponentUpdate=function(t){this.props.value!==t.value&&e.some((function(t){t.__e=!0,z(t)}))},this.sub=function(t){e.push(t);var n=t.componentWillUnmount;t.componentWillUnmount=function(){e.splice(e.indexOf(t),1),n&&n.call(t)}}),t.children}};return e.Provider.__=e.Consumer.contextType=e}S=V.slice,w={__e:function(t,n,e,_){for(var i,o,r;n=n.__;)if((i=n.__c)&&!i.__)try{if((o=i.constructor)&&null!=o.getDerivedStateFromError&&(i.setState(o.getDerivedStateFromError(t)),r=i.__d),null!=i.componentDidCatch&&(i.componentDidCatch(t,_||{}),r=i.__d),r)return i.__E=i}catch(n){t=n}throw t}},x=0,C=function(t){return null!=t&&null==t.constructor},q.prototype.setState=function(t,n){var e;e=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=W({},this.state),"function"==typeof t&&(t=t(W({},e),this.props)),t&&W(e,t),null!=t&&this.__v&&(n&&this._sb.push(n),z(this))},q.prototype.forceUpdate=function(t){this.__v&&(this.__e=!0,t&&this.__h.push(t),z(this))},q.prototype.render=j,E=[],H="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,P=function(t,n){return t.__v.__b-n.__v.__b},J.__r=0,N=0,$=et(!1),D=et(!0),T=0;var at,pt,dt,vt,yt=0,mt=[],gt=[],bt=w,kt=bt.__b,St=bt.__r,wt=bt.diffed,xt=bt.__c,Ct=bt.unmount,Et=bt.__;function Ut(t,n){bt.__h&&bt.__h(pt,t,yt||n),yt=0;var e=pt.__H||(pt.__H={__:[],__h:[]});return t>=e.__.length&&e.__.push({__V:gt}),e.__[t]}function Ht(t){return yt=1,Pt(Gt,t)}function Pt(t,n,e){var _=Ut(at++,2);if(_.t=t,!_.__c&&(_.__=[e?e(n):Gt(void 0,n),function(t){var n=_.__N?_.__N[0]:_.__[0],e=_.t(n,t);n!==e&&(_.__N=[e,_.__[1]],_.__c.setState({}))}],_.__c=pt,!pt.u)){var i=function(t,n,e){if(!_.__c.__H)return!0;var i=_.__c.__H.__.filter((function(t){return!!t.__c}));if(i.every((function(t){return!t.__N})))return!o||o.call(this,t,n,e);var r=!1;return i.forEach((function(t){if(t.__N){var n=t.__[0];t.__=t.__N,t.__N=void 0,n!==t.__[0]&&(r=!0)}})),!(!r&&_.__c.props===t)&&(!o||o.call(this,t,n,e))};pt.u=!0;var o=pt.shouldComponentUpdate,r=pt.componentWillUpdate;pt.componentWillUpdate=function(t,n,e){if(this.__e){var _=o;o=void 0,i(t,n,e),o=_}r&&r.call(this,t,n,e)},pt.shouldComponentUpdate=i}return _.__N||_.__}function Nt(t,n){var e=Ut(at++,3);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__H.__h.push(e))}function $t(t,n){var e=Ut(at++,4);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__h.push(e))}function Dt(t){return yt=5,Ft((function(){return{current:t}}),[])}function Tt(t,n,e){yt=6,$t((function(){return"function"==typeof t?(t(n()),function(){return t(null)}):t?(t.current=n(),function(){return t.current=null}):void 0}),null==e?e:e.concat(t))}function Ft(t,n){var e=Ut(at++,7);return Bt(e.__H,n)?(e.__V=t(),e.i=n,e.__h=t,e.__V):e.__}function Vt(t,n){return yt=8,Ft((function(){return t}),n)}function At(t){var n=pt.context[t.__c],e=Ut(at++,9);return e.c=t,n?(null==e.__&&(e.__=!0,n.sub(pt)),n.props.value):t.__}function Mt(t,n){bt.useDebugValue&&bt.useDebugValue(n?n(t):t)}function Wt(t){var n=Ut(at++,10),e=Ht();return n.__=t,pt.componentDidCatch||(pt.componentDidCatch=function(t,_){n.__&&n.__(t,_),e[1](t)}),[e[0],function(){e[1](void 0)}]}function Ot(){var t=Ut(at++,11);if(!t.__){for(var n=pt.__v;null!==n&&!n.__m&&null!==n.__;)n=n.__;var e=n.__m||(n.__m=[0,0]);t.__="P"+e[0]+"-"+e[1]++}return t.__}function Lt(){for(var t;t=mt.shift();)if(t.__P&&t.__H)try{t.__H.__h.forEach(jt),t.__H.__h.forEach(qt),t.__H.__h=[]}catch(n){t.__H.__h=[],bt.__e(n,t.__v)}}bt.__b=function(t){pt=null,kt&&kt(t)},bt.__=function(t,n){t&&n.__k&&n.__k.__m&&(t.__m=n.__k.__m),Et&&Et(t,n)},bt.__r=function(t){St&&St(t),at=0;var n=(pt=t.__c).__H;n&&(dt===pt?(n.__h=[],pt.__h=[],n.__.forEach((function(t){t.__N&&(t.__=t.__N),t.__V=gt,t.__N=t.i=void 0}))):(n.__h.forEach(jt),n.__h.forEach(qt),n.__h=[],at=0)),dt=pt},bt.diffed=function(t){wt&&wt(t);var n=t.__c;n&&n.__H&&(n.__H.__h.length&&(1!==mt.push(n)&&vt===bt.requestAnimationFrame||((vt=bt.requestAnimationFrame)||It)(Lt)),n.__H.__.forEach((function(t){t.i&&(t.__H=t.i),t.__V!==gt&&(t.__=t.__V),t.i=void 0,t.__V=gt}))),dt=pt=null},bt.__c=function(t,n){n.some((function(t){try{t.__h.forEach(jt),t.__h=t.__h.filter((function(t){return!t.__||qt(t)}))}catch(r){n.some((function(t){t.__h&&(t.__h=[])})),n=[],bt.__e(r,t.__v)}})),xt&&xt(t,n)},bt.unmount=function(t){Ct&&Ct(t);var n,e=t.__c;e&&e.__H&&(e.__H.__.forEach((function(t){try{jt(t)}catch(t){n=t}})),e.__H=void 0,n&&bt.__e(n,e.__v))};var Rt="function"==typeof requestAnimationFrame;function It(t){var n,e=function(){clearTimeout(_),Rt&&cancelAnimationFrame(n),setTimeout(t)},_=setTimeout(e,100);Rt&&(n=requestAnimationFrame(e))}function jt(t){var n=pt,e=t.__c;"function"==typeof e&&(t.__c=void 0,e()),pt=n}function qt(t){var n=pt;t.__c=t.__(),pt=n}function Bt(t,n){return!t||t.length!==n.length||n.some((function(n,e){return n!==t[e]}))}function Gt(t,n){return"function"==typeof n?n(t):n}function zt(t,n){w[t]=n.bind(null,w[t]||(()=>{}))}let Jt,Kt;function Qt(t){if(Kt)Kt();Kt=t&&t.S()}function Xt({data:t}){const n=Zt(t);n.value=t;const e=Ft(()=>{let t=this.__v;while(t=t.__)if(t.__c){t.__c.__$f|=4;break}this.__$u.c=()=>{var t;if(!C(e.peek())&&3===(null==(t=this.base)?void 0:t.nodeType))this.base.data=e.peek();else{this.__$f|=1;this.setState({})}};return v(()=>{let t=n.value.value;return 0===t?0:!0===t?"":t||""})},[]);return e.value}Xt.displayName="_st";Object.defineProperties(f.prototype,{constructor:{configurable:!0,value:void 0},type:{configurable:!0,value:Xt},props:{configurable:!0,get(){return{data:this}}},__b:{configurable:!0,value:1}});zt("__b",(t,n)=>{if("string"==typeof n.type){let t,e=n.props;for(let _ in e){if("children"===_)continue;let i=e[_];if(i instanceof f){if(!t)n.__np=t={};t[_]=i;e[_]=i.peek()}}}t(n)});zt("__r",(t,n)=>{Qt();let e,_=n.__c;if(_){_.__$f&=-2;e=_.__$u;if(void 0===e)_.__$u=e=function(t){let n;k((function(){n=this}));n.c=()=>{_.__$f|=1;_.setState({})};return n}()}Jt=_;Qt(e);t(n)});zt("__e",(t,n,e,_)=>{Qt();Jt=void 0;t(n,e,_)});zt("diffed",(t,n)=>{Qt();Jt=void 0;let e;if("string"==typeof n.type&&(e=n.__e)){let t=n.__np,_=n.props;if(t){let n=e.U;if(n)for(let e in n){let _=n[e];if(void 0!==_&&!(e in t)){_.d();n[e]=void 0}}else{n={};e.U=n}for(let i in t){let o=n[i],r=t[i];if(void 0===o){o=Yt(e,i,r,_);n[i]=o}else o.o(r,_)}}}t(n)});function Yt(t,n,e,_){const i=n in t&&void 0===t.ownerSVGElement,o=c(e);return{o:(t,n)=>{o.value=t;_=n},d:k(()=>{const e=o.value.value;if(_[n]!==e){_[n]=e;if(i)t[n]=e;else if(e)t.setAttribute(n,e);else t.removeAttribute(n)}})}}zt("unmount",(t,n)=>{if("string"==typeof n.type){let t=n.__e;if(t){const n=t.U;if(n){t.U=void 0;for(let t in n){let e=n[t];if(e)e.d()}}}}else{let t=n.__c;if(t){const n=t.__$u;if(n){t.__$u=void 0;n.d()}}}t(n)});zt("__h",(t,n,e,_)=>{if(_<3||9===_)n.__$f|=2;t(n,e,_)});q.prototype.shouldComponentUpdate=function(t,n){const e=this.__$u;if(!(e&&void 0!==e.s||4&this.__$f))return!0;if(3&this.__$f)return!0;for(let _ in n)return!0;for(let _ in t)if("__source"!==_&&t[_]!==this.props[_])return!0;for(let _ in this.props)if(!(_ in t))return!0;return!1};function Zt(t){return Ft(()=>c(t),[])}function tn(t){const n=Dt(t);n.current=t;Jt.__$f|=4;return Ft(()=>v(()=>n.current()),[])}function nn(t){const n=Dt(t);n.current=t;Nt(()=>k(()=>n.current()),[])}var en=function(t,n,e,_){var i;n[0]=0;for(var o=1;o=5&&((i||!t&&5===_)&&(r.push(_,0,i,e),_=6),t&&(r.push(_,t,0,e),_=6)),i=""},l=0;l"===n?(_=1,i=""):i=n+i[0]:o?n===o?o="":i+=n:'"'===n||"'"===n?o=n:">"===n?(u(),_=1):_&&("="===n?(_=5,e=i,i=""):"/"===n&&(_<5||">"===t[l][s+1])?(u(),3===_&&(r=r[0]),_=r,(r=r[0]).push(2,0,_),_=0):" "===n||"\t"===n||"\n"===n||"\r"===n?(u(),_=2):i+=n),3===_&&"!--"===i&&(_=4,r=r[0])}return u(),r}(t)),n),arguments,[])).length>1?n:n[0]}var rn=on.bind(L);export{q as Component,j as Fragment,f as Signal,e as batch,ct as cloneElement,v as computed,ht as createContext,L as createElement,I as createRef,k as effect,L as h,rn as html,ft as hydrate,C as isValidElement,w as options,st as render,c as signal,Y as toChildArray,o as untracked,Vt as useCallback,tn as useComputed,At as useContext,Mt as useDebugValue,Nt as useEffect,Wt as useErrorBoundary,Ot as useId,Tt as useImperativeHandle,$t as useLayoutEffect,Ft as useMemo,Pt as useReducer,Dt as useRef,Zt as useSignal,nn as useSignalEffect,Ht as useState}; +const t=Symbol.for("preact-signals");function n(){if(r>1){r--;return}let t,n=!1;while(void 0!==i){let _=i;i=void 0;u++;while(void 0!==_){const i=_.o;_.o=void 0;_.f&=-3;if(!(8&_.f)&&h(_))try{_.c()}catch(e){if(!n){t=e;n=!0}}_=i}}u=0;r--;if(n)throw t}function e(t){if(r>0)return t();r++;try{return t()}finally{n()}}let _,i;function o(t){const n=_;_=void 0;try{return t()}finally{_=n}}let r=0,u=0,l=0;function s(t){if(void 0===_)return;let n=t.n;if(void 0===n||n.t!==_){n={i:0,S:t,p:_.s,n:void 0,t:_,e:void 0,x:void 0,r:n};if(void 0!==_.s)_.s.n=n;_.s=n;t.n=n;if(32&_.f)t.S(n);return n}else if(-1===n.i){n.i=0;if(void 0!==n.n){n.n.p=n.p;if(void 0!==n.p)n.p.n=n.n;n.p=_.s;n.n=void 0;_.s.n=n;_.s=n}return n}}function f(t){this.v=t;this.i=0;this.n=void 0;this.t=void 0}f.prototype.brand=t;f.prototype.h=function(){return!0};f.prototype.S=function(t){if(this.t!==t&&void 0===t.e){t.x=this.t;if(void 0!==this.t)this.t.e=t;this.t=t}};f.prototype.U=function(t){if(void 0!==this.t){const n=t.e,e=t.x;if(void 0!==n){n.x=e;t.e=void 0}if(void 0!==e){e.e=n;t.x=void 0}if(t===this.t)this.t=e}};f.prototype.subscribe=function(t){return k(()=>{const n=this.value,e=_;_=void 0;try{t(n)}finally{_=e}})};f.prototype.valueOf=function(){return this.value};f.prototype.toString=function(){return this.value+""};f.prototype.toJSON=function(){return this.value};f.prototype.peek=function(){const t=_;_=void 0;try{return this.value}finally{_=t}};Object.defineProperty(f.prototype,"value",{get(){const t=s(this);if(void 0!==t)t.i=this.i;return this.v},set(t){if(t!==this.v){if(u>100)throw new Error("Cycle detected");this.v=t;this.i++;l++;r++;try{for(let t=this.t;void 0!==t;t=t.x)t.t.N()}finally{n()}}}});function c(t){return new f(t)}function h(t){for(let n=t.s;void 0!==n;n=n.n)if(n.S.i!==n.i||!n.S.h()||n.S.i!==n.i)return!0;return!1}function a(t){for(let n=t.s;void 0!==n;n=n.n){const e=n.S.n;if(void 0!==e)n.r=e;n.S.n=n;n.i=-1;if(void 0===n.n){t.s=n;break}}}function p(t){let n,e=t.s;while(void 0!==e){const t=e.p;if(-1===e.i){e.S.U(e);if(void 0!==t)t.n=e.n;if(void 0!==e.n)e.n.p=t}else n=e;e.S.n=e.r;if(void 0!==e.r)e.r=void 0;e=t}t.s=n}function d(t){f.call(this,void 0);this.x=t;this.s=void 0;this.g=l-1;this.f=4}(d.prototype=new f).h=function(){this.f&=-3;if(1&this.f)return!1;if(32==(36&this.f))return!0;this.f&=-5;if(this.g===l)return!0;this.g=l;this.f|=1;if(this.i>0&&!h(this)){this.f&=-2;return!0}const t=_;try{a(this);_=this;const t=this.x();if(16&this.f||this.v!==t||0===this.i){this.v=t;this.f&=-17;this.i++}}catch(t){this.v=t;this.f|=16;this.i++}_=t;p(this);this.f&=-2;return!0};d.prototype.S=function(t){if(void 0===this.t){this.f|=36;for(let t=this.s;void 0!==t;t=t.n)t.S.S(t)}f.prototype.S.call(this,t)};d.prototype.U=function(t){if(void 0!==this.t){f.prototype.U.call(this,t);if(void 0===this.t){this.f&=-33;for(let t=this.s;void 0!==t;t=t.n)t.S.U(t)}}};d.prototype.N=function(){if(!(2&this.f)){this.f|=6;for(let t=this.t;void 0!==t;t=t.x)t.t.N()}};Object.defineProperty(d.prototype,"value",{get(){if(1&this.f)throw new Error("Cycle detected");const t=s(this);this.h();if(void 0!==t)t.i=this.i;if(16&this.f)throw this.v;return this.v}});function v(t){return new d(t)}function y(t){const e=t.u;t.u=void 0;if("function"==typeof e){r++;const i=_;_=void 0;try{e()}catch(n){t.f&=-2;t.f|=8;m(t);throw n}finally{_=i;n()}}}function m(t){for(let n=t.s;void 0!==n;n=n.n)n.S.U(n);t.x=void 0;t.s=void 0;y(t)}function g(t){if(_!==this)throw new Error("Out-of-order effect");p(this);_=t;this.f&=-2;if(8&this.f)m(this);n()}function b(t){this.x=t;this.u=void 0;this.s=void 0;this.o=void 0;this.f=32}b.prototype.c=function(){const t=this.S();try{if(8&this.f)return;if(void 0===this.x)return;const n=this.x();if("function"==typeof n)this.u=n}finally{t()}};b.prototype.S=function(){if(1&this.f)throw new Error("Cycle detected");this.f|=1;this.f&=-9;y(this);a(this);r++;const t=_;_=this;return g.bind(this,t)};b.prototype.N=function(){if(!(2&this.f)){this.f|=2;this.o=i;i=this}};b.prototype.d=function(){this.f|=8;if(!(1&this.f))m(this)};function k(t){const n=new b(t);try{n.c()}catch(t){n.d();throw t}return n.d.bind(n)}var w,S,x,C,U,E,H,P,N,$,D,T,M={},F=[],A=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i,V=Array.isArray;function W(t,n){for(var e in n)t[e]=n[e];return t}function L(t){var n=t.parentNode;n&&n.removeChild(t)}function O(t,n,e){var _,i,o,r={};for(o in n)"key"==o?_=n[o]:"ref"==o?i=n[o]:r[o]=n[o];if(arguments.length>2&&(r.children=arguments.length>3?w.call(arguments,2):e),"function"==typeof t&&null!=t.defaultProps)for(o in t.defaultProps)void 0===r[o]&&(r[o]=t.defaultProps[o]);return R(t,r,_,i,null)}function R(t,n,e,_,i){var o={type:t,props:n,key:e,ref:_,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,constructor:void 0,__v:null==i?++x:i,__i:-1,__u:0};return null==i&&null!=S.vnode&&S.vnode(o),o}function I(){return{current:null}}function j(t){return t.children}function q(t,n){this.props=t,this.context=n}function B(t,n){if(null==n)return t.__?B(t.__,t.__i+1):null;for(var e;nn&&U.sort(P));J.__r=0}function K(t,n,e,_,i,o,r,u,l,s,f){var c,h,a,p,d,v=_&&_.__k||F,y=n.length;for(e.__d=l,Q(e,n,v),l=e.__d,c=0;c0?R(i.type,i.props,i.key,i.ref?i.ref:null,i.__v):i)?(i.__=t,i.__b=t.__b+1,u=Z(i,e,r,f),i.__i=u,o=null,-1!==u&&(f--,(o=e[u])&&(o.__u|=131072)),null==o||null===o.__v?(-1==u&&c--,"function"!=typeof i.type&&(i.__u|=65536)):u!==r&&(u===r+1?c++:u>r?f>l-r?c+=u-r:c--:u(null!=l&&0==(131072&l.__u)?1:0))for(;r>=0||u=0){if((l=n[r])&&0==(131072&l.__u)&&i==l.key&&o===l.type)return r;r--}if(u2&&(u.children=arguments.length>3?w.call(arguments,2):e),R(t.type,u,_||t.key,i||t.ref,null)}function ht(t,n){var e={__c:n="__cC"+T++,__:t,Consumer:function(t,n){return t.children(n)},Provider:function(t){var e,_;return this.getChildContext||(e=[],(_={})[n]=this,this.getChildContext=function(){return _},this.shouldComponentUpdate=function(t){this.props.value!==t.value&&e.some((function(t){t.__e=!0,G(t)}))},this.sub=function(t){e.push(t);var n=t.componentWillUnmount;t.componentWillUnmount=function(){e.splice(e.indexOf(t),1),n&&n.call(t)}}),t.children}};return e.Provider.__=e.Consumer.contextType=e}w=F.slice,S={__e:function(t,n,e,_){for(var i,o,r;n=n.__;)if((i=n.__c)&&!i.__)try{if((o=i.constructor)&&null!=o.getDerivedStateFromError&&(i.setState(o.getDerivedStateFromError(t)),r=i.__d),null!=i.componentDidCatch&&(i.componentDidCatch(t,_||{}),r=i.__d),r)return i.__E=i}catch(n){t=n}throw t}},x=0,C=function(t){return null!=t&&null==t.constructor},q.prototype.setState=function(t,n){var e;e=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=W({},this.state),"function"==typeof t&&(t=t(W({},e),this.props)),t&&W(e,t),null!=t&&this.__v&&(n&&this._sb.push(n),G(this))},q.prototype.forceUpdate=function(t){this.__v&&(this.__e=!0,t&&this.__h.push(t),G(this))},q.prototype.render=j,U=[],H="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,P=function(t,n){return t.__v.__b-n.__v.__b},J.__r=0,N=0,$=et(!1),D=et(!0),T=0;var at,pt,dt,vt,yt=0,mt=[],gt=[],bt=S,kt=bt.__b,wt=bt.__r,St=bt.diffed,xt=bt.__c,Ct=bt.unmount,Ut=bt.__;function Et(t,n){bt.__h&&bt.__h(pt,t,yt||n),yt=0;var e=pt.__H||(pt.__H={__:[],__h:[]});return t>=e.__.length&&e.__.push({__V:gt}),e.__[t]}function Ht(t){return yt=1,Pt(zt,t)}function Pt(t,n,e){var _=Et(at++,2);if(_.t=t,!_.__c&&(_.__=[e?e(n):zt(void 0,n),function(t){var n=_.__N?_.__N[0]:_.__[0],e=_.t(n,t);n!==e&&(_.__N=[e,_.__[1]],_.__c.setState({}))}],_.__c=pt,!pt.u)){var i=function(t,n,e){if(!_.__c.__H)return!0;var i=_.__c.__H.__.filter((function(t){return!!t.__c}));if(i.every((function(t){return!t.__N})))return!o||o.call(this,t,n,e);var r=!1;return i.forEach((function(t){if(t.__N){var n=t.__[0];t.__=t.__N,t.__N=void 0,n!==t.__[0]&&(r=!0)}})),!(!r&&_.__c.props===t)&&(!o||o.call(this,t,n,e))};pt.u=!0;var o=pt.shouldComponentUpdate,r=pt.componentWillUpdate;pt.componentWillUpdate=function(t,n,e){if(this.__e){var _=o;o=void 0,i(t,n,e),o=_}r&&r.call(this,t,n,e)},pt.shouldComponentUpdate=i}return _.__N||_.__}function Nt(t,n){var e=Et(at++,3);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__H.__h.push(e))}function $t(t,n){var e=Et(at++,4);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__h.push(e))}function Dt(t){return yt=5,Mt((function(){return{current:t}}),[])}function Tt(t,n,e){yt=6,$t((function(){return"function"==typeof t?(t(n()),function(){return t(null)}):t?(t.current=n(),function(){return t.current=null}):void 0}),null==e?e:e.concat(t))}function Mt(t,n){var e=Et(at++,7);return Bt(e.__H,n)?(e.__V=t(),e.i=n,e.__h=t,e.__V):e.__}function Ft(t,n){return yt=8,Mt((function(){return t}),n)}function At(t){var n=pt.context[t.__c],e=Et(at++,9);return e.c=t,n?(null==e.__&&(e.__=!0,n.sub(pt)),n.props.value):t.__}function Vt(t,n){bt.useDebugValue&&bt.useDebugValue(n?n(t):t)}function Wt(t){var n=Et(at++,10),e=Ht();return n.__=t,pt.componentDidCatch||(pt.componentDidCatch=function(t,_){n.__&&n.__(t,_),e[1](t)}),[e[0],function(){e[1](void 0)}]}function Lt(){var t=Et(at++,11);if(!t.__){for(var n=pt.__v;null!==n&&!n.__m&&null!==n.__;)n=n.__;var e=n.__m||(n.__m=[0,0]);t.__="P"+e[0]+"-"+e[1]++}return t.__}function Ot(){for(var t;t=mt.shift();)if(t.__P&&t.__H)try{t.__H.__h.forEach(jt),t.__H.__h.forEach(qt),t.__H.__h=[]}catch(n){t.__H.__h=[],bt.__e(n,t.__v)}}bt.__b=function(t){pt=null,kt&&kt(t)},bt.__=function(t,n){t&&n.__k&&n.__k.__m&&(t.__m=n.__k.__m),Ut&&Ut(t,n)},bt.__r=function(t){wt&&wt(t),at=0;var n=(pt=t.__c).__H;n&&(dt===pt?(n.__h=[],pt.__h=[],n.__.forEach((function(t){t.__N&&(t.__=t.__N),t.__V=gt,t.__N=t.i=void 0}))):(n.__h.forEach(jt),n.__h.forEach(qt),n.__h=[],at=0)),dt=pt},bt.diffed=function(t){St&&St(t);var n=t.__c;n&&n.__H&&(n.__H.__h.length&&(1!==mt.push(n)&&vt===bt.requestAnimationFrame||((vt=bt.requestAnimationFrame)||It)(Ot)),n.__H.__.forEach((function(t){t.i&&(t.__H=t.i),t.__V!==gt&&(t.__=t.__V),t.i=void 0,t.__V=gt}))),dt=pt=null},bt.__c=function(t,n){n.some((function(t){try{t.__h.forEach(jt),t.__h=t.__h.filter((function(t){return!t.__||qt(t)}))}catch(r){n.some((function(t){t.__h&&(t.__h=[])})),n=[],bt.__e(r,t.__v)}})),xt&&xt(t,n)},bt.unmount=function(t){Ct&&Ct(t);var n,e=t.__c;e&&e.__H&&(e.__H.__.forEach((function(t){try{jt(t)}catch(t){n=t}})),e.__H=void 0,n&&bt.__e(n,e.__v))};var Rt="function"==typeof requestAnimationFrame;function It(t){var n,e=function(){clearTimeout(_),Rt&&cancelAnimationFrame(n),setTimeout(t)},_=setTimeout(e,100);Rt&&(n=requestAnimationFrame(e))}function jt(t){var n=pt,e=t.__c;"function"==typeof e&&(t.__c=void 0,e()),pt=n}function qt(t){var n=pt;t.__c=t.__(),pt=n}function Bt(t,n){return!t||t.length!==n.length||n.some((function(n,e){return n!==t[e]}))}function zt(t,n){return"function"==typeof n?n(t):n}function Gt(t,n){S[t]=n.bind(null,S[t]||(()=>{}))}let Jt,Kt;function Qt(t){if(Kt)Kt();Kt=t&&t.S()}function Xt({data:t}){const n=Zt(t);n.value=t;const e=Mt(()=>{let t=this.__v;while(t=t.__)if(t.__c){t.__c.__$f|=4;break}this.__$u.c=()=>{var t;if(!C(e.peek())&&3===(null==(t=this.base)?void 0:t.nodeType))this.base.data=e.peek();else{this.__$f|=1;this.setState({})}};return v(()=>{let t=n.value.value;return 0===t?0:!0===t?"":t||""})},[]);return e.value}Xt.displayName="_st";Object.defineProperties(f.prototype,{constructor:{configurable:!0,value:void 0},type:{configurable:!0,value:Xt},props:{configurable:!0,get(){return{data:this}}},__b:{configurable:!0,value:1}});Gt("__b",(t,n)=>{if("string"==typeof n.type){let t,e=n.props;for(let _ in e){if("children"===_)continue;let i=e[_];if(i instanceof f){if(!t)n.__np=t={};t[_]=i;e[_]=i.peek()}}}t(n)});Gt("__r",(t,n)=>{Qt();let e,_=n.__c;if(_){_.__$f&=-2;e=_.__$u;if(void 0===e)_.__$u=e=function(t){let n;k((function(){n=this}));n.c=()=>{_.__$f|=1;_.setState({})};return n}()}Jt=_;Qt(e);t(n)});Gt("__e",(t,n,e,_)=>{Qt();Jt=void 0;t(n,e,_)});Gt("diffed",(t,n)=>{Qt();Jt=void 0;let e;if("string"==typeof n.type&&(e=n.__e)){let t=n.__np,_=n.props;if(t){let n=e.U;if(n)for(let e in n){let _=n[e];if(void 0!==_&&!(e in t)){_.d();n[e]=void 0}}else{n={};e.U=n}for(let i in t){let o=n[i],r=t[i];if(void 0===o){o=Yt(e,i,r,_);n[i]=o}else o.o(r,_)}}}t(n)});function Yt(t,n,e,_){const i=n in t&&void 0===t.ownerSVGElement,o=c(e);return{o:(t,n)=>{o.value=t;_=n},d:k(()=>{const e=o.value.value;if(_[n]!==e){_[n]=e;if(i)t[n]=e;else if(e)t.setAttribute(n,e);else t.removeAttribute(n)}})}}Gt("unmount",(t,n)=>{if("string"==typeof n.type){let t=n.__e;if(t){const n=t.U;if(n){t.U=void 0;for(let t in n){let e=n[t];if(e)e.d()}}}}else{let t=n.__c;if(t){const n=t.__$u;if(n){t.__$u=void 0;n.d()}}}t(n)});Gt("__h",(t,n,e,_)=>{if(_<3||9===_)n.__$f|=2;t(n,e,_)});q.prototype.shouldComponentUpdate=function(t,n){const e=this.__$u;if(!(e&&void 0!==e.s||4&this.__$f))return!0;if(3&this.__$f)return!0;for(let _ in n)return!0;for(let _ in t)if("__source"!==_&&t[_]!==this.props[_])return!0;for(let _ in this.props)if(!(_ in t))return!0;return!1};function Zt(t){return Mt(()=>c(t),[])}function tn(t){const n=Dt(t);n.current=t;Jt.__$f|=4;return Mt(()=>v(()=>n.current()),[])}function nn(t){const n=Dt(t);n.current=t;Nt(()=>k(()=>n.current()),[])}var en=function(t,n,e,_){var i;n[0]=0;for(var o=1;o=5&&((i||!t&&5===_)&&(r.push(_,0,i,e),_=6),t&&(r.push(_,t,0,e),_=6)),i=""},l=0;l"===n?(_=1,i=""):i=n+i[0]:o?n===o?o="":i+=n:'"'===n||"'"===n?o=n:">"===n?(u(),_=1):_&&("="===n?(_=5,e=i,i=""):"/"===n&&(_<5||">"===t[l][s+1])?(u(),3===_&&(r=r[0]),_=r,(r=r[0]).push(2,0,_),_=0):" "===n||"\t"===n||"\n"===n||"\r"===n?(u(),_=2):i+=n),3===_&&"!--"===i&&(_=4,r=r[0])}return u(),r}(t)),n),arguments,[])).length>1?n:n[0]}var rn=on.bind(O);export{q as Component,j as Fragment,f as Signal,e as batch,ct as cloneElement,v as computed,ht as createContext,O as createElement,I as createRef,k as effect,O as h,rn as html,ft as hydrate,C as isValidElement,S as options,st as render,c as signal,Y as toChildArray,o as untracked,Ft as useCallback,tn as useComputed,At as useContext,Vt as useDebugValue,Nt as useEffect,Wt as useErrorBoundary,Lt as useId,Tt as useImperativeHandle,$t as useLayoutEffect,Mt as useMemo,Pt as useReducer,Dt as useRef,Zt as useSignal,nn as useSignalEffect,Ht as useState}; From 9b596417af11c9ac44fcae0fcfbc6f3665089083 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 1 Jun 2024 08:44:14 +0200 Subject: [PATCH 43/47] CUDA: quantized KV support for FA vec (#7527) * CUDA: quantized KV support for FA vec * try CI fix * fix commented-out kernel variants * add q8_0 q4_0 tests * fix nwarps > batch size * split fattn compile via extern templates * fix flake8 * fix metal tests * fix cmake * make generate_cu_files.py executable * add autogenerated .cu files * fix AMD * error if type_v != FP16 and not flash_attn * remove obsolete code --- CMakeLists.txt | 30 + Makefile | 21 +- README.md | 1 + ggml-cuda.cu | 8 +- ggml-cuda/fattn-common.cuh | 539 ++++++++++- ggml-cuda/fattn-tile-f16.cu | 3 + ggml-cuda/fattn-tile-f32.cu | 3 + ggml-cuda/fattn-vec-f16.cu | 330 ------- ggml-cuda/fattn-vec-f16.cuh | 394 +++++++- ggml-cuda/fattn-vec-f32.cu | 279 ------ ggml-cuda/fattn-vec-f32.cuh | 375 +++++++- ggml-cuda/fattn-wmma-f16.cuh | 490 ++++++++++ ggml-cuda/fattn.cu | 849 ++++++------------ ggml-cuda/mmq.cu | 4 +- .../fattn-vec-f16-instance-hs128-f16-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-f16-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-f16-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-f16-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-f16-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-f16-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_0-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q4_1-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_0-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q5_1-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-f16.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs128-q8_0-q8_0.cu | 5 + .../fattn-vec-f16-instance-hs256-f16-f16.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-f16.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-q4_0.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-q4_1.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-q5_0.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-q5_1.cu | 5 + .../fattn-vec-f16-instance-hs64-f16-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-f16-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_0-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q4_1-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_0-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q5_1-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-f16.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs128-q8_0-q8_0.cu | 5 + .../fattn-vec-f32-instance-hs256-f16-f16.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-f16.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-q4_0.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-q4_1.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-q5_0.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-q5_1.cu | 5 + .../fattn-vec-f32-instance-hs64-f16-q8_0.cu | 5 + .../fattn-wmma-f16-instance-kqfloat-cpb16.cu | 10 + .../fattn-wmma-f16-instance-kqfloat-cpb32.cu | 9 + .../fattn-wmma-f16-instance-kqhalf-cpb16.cu | 10 + .../fattn-wmma-f16-instance-kqhalf-cpb32.cu | 10 + .../fattn-wmma-f16-instance-kqhalf-cpb8.cu | 8 + .../template-instances/generate_cu_files.py | 59 ++ ggml-cuda/vecdotq.cuh | 8 +- ggml-metal.m | 6 + llama.cpp | 5 + tests/test-backend-ops.cpp | 16 +- 110 files changed, 2697 insertions(+), 1200 deletions(-) delete mode 100644 ggml-cuda/fattn-vec-f16.cu delete mode 100644 ggml-cuda/fattn-vec-f32.cu create mode 100644 ggml-cuda/fattn-wmma-f16.cuh create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu create mode 100644 ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu create mode 100644 ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu create mode 100644 ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu create mode 100644 ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu create mode 100644 ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu create mode 100644 ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu create mode 100755 ggml-cuda/template-instances/generate_cu_files.py diff --git a/CMakeLists.txt b/CMakeLists.txt index 60cf7bdc4..52b392a13 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -106,6 +106,7 @@ set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING "llama: max. batch size for using peer access") option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF) option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF) +option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for FlashAttention" OFF) option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) @@ -402,6 +403,8 @@ if (LLAMA_CUDA) file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu") list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu") + file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) add_compile_definitions(GGML_USE_CUDA) add_compile_definitions(GGML_CUDA_USE_GRAPHS) @@ -427,6 +430,18 @@ if (LLAMA_CUDA) if (LLAMA_CUDA_NO_PEER_COPY) add_compile_definitions(GGML_CUDA_NO_PEER_COPY) endif() + if (LLAMA_CUDA_FA_ALL_QUANTS) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) + add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS) + else() + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) + endif() if (LLAMA_STATIC) if (WIN32) @@ -571,6 +586,8 @@ if (LLAMA_HIPBLAS) file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu") list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu") + file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA) @@ -590,6 +607,19 @@ if (LLAMA_HIPBLAS) add_compile_definitions(GGML_CUDA_NO_PEER_COPY) endif() + if (LLAMA_CUDA_FA_ALL_QUANTS) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) + add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS) + else() + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) + endif() + add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) diff --git a/Makefile b/Makefile index aced0e370..dfb3bb2cd 100644 --- a/Makefile +++ b/Makefile @@ -421,6 +421,15 @@ ifdef LLAMA_CUBLAS LLAMA_CUDA := 1 endif +OBJS_CUDA_TEMP_INST = $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-wmma*.cu)) +ifdef LLAMA_CUDA_FA_ALL_QUANTS + OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*.cu)) +else + OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu)) + OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu)) + OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*f16-f16.cu)) +endif # LLAMA_CUDA_FA_ALL_QUANTS + ifdef LLAMA_CUDA ifneq ('', '$(wildcard /opt/cuda)') CUDA_PATH ?= /opt/cuda @@ -431,6 +440,7 @@ ifdef LLAMA_CUDA MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib OBJS += ggml-cuda.o OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu)) + OBJS += $(OBJS_CUDA_TEMP_INST) MK_NVCCFLAGS += -use_fast_math ifdef LLAMA_FATAL_WARNINGS MK_NVCCFLAGS += -Werror all-warnings @@ -493,7 +503,10 @@ ifdef LLAMA_CUDA_NO_PEER_COPY endif # LLAMA_CUDA_NO_PEER_COPY ifdef LLAMA_CUDA_CCBIN MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN) -endif +endif # LLAMA_CUDA_CCBIN +ifdef LLAMA_CUDA_FA_ALL_QUANTS + MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS +endif # LLAMA_CUDA_FA_ALL_QUANTS ifdef JETSON_EOL_MODULE_DETECT define NVCC_COMPILE @@ -505,7 +518,7 @@ define NVCC_COMPILE endef # NVCC_COMPILE endif # JETSON_EOL_MODULE_DETECT -ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh +ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh $(NVCC_COMPILE) ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh) @@ -585,11 +598,12 @@ ifdef LLAMA_CUDA_NO_PEER_COPY endif # LLAMA_CUDA_NO_PEER_COPY OBJS += ggml-cuda.o OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu)) + OBJS += $(OBJS_CUDA_TEMP_INST) ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh) $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $< -ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh +ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh $(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $< endif # LLAMA_HIPBLAS @@ -749,6 +763,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS) clean: rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) rm -vrf ggml-cuda/*.o + rm -vrf ggml-cuda/template-instances/*.o find examples pocs -type f -name "*.o" -delete # diff --git a/README.md b/README.md index e8bf1e246..4791f84af 100644 --- a/README.md +++ b/README.md @@ -501,6 +501,7 @@ Building the program with BLAS support may lead to some performance improvements | LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | | LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. | + | LLAMA_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. | - #### hipBLAS diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 1172f7b2f..daaa0cd6a 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -2905,10 +2905,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128; #else - if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) { + if (op->src[0]->ne[0] == 128) { return true; } - return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA; + if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) { + return true; + } + return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA && + op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) default: return false; diff --git a/ggml-cuda/fattn-common.cuh b/ggml-cuda/fattn-common.cuh index 1dd519bde..4bf03a49f 100644 --- a/ggml-cuda/fattn-common.cuh +++ b/ggml-cuda/fattn-common.cuh @@ -1,4 +1,7 @@ +#pragma once + #include "common.cuh" +#include "vecdotq.cuh" #include @@ -34,11 +37,523 @@ typedef void (* fattn_kernel_t)( const int nb11, const int nb12, const int nb13, + const int nb21, + const int nb22, + const int nb23, const int ne0, const int ne1, const int ne2, const int ne3); +typedef half (*vec_dot_KQ_f16_t)( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds); +typedef float (*vec_dot_KQ_f32_t)( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds); + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { +#if __CUDA_ARCH__ > MIN_CC_DP4A + + const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c; + GGML_UNUSED(Q_v); + + half sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const int ib = k_KQ / QI8_1; + const int iqs4 = k_KQ % QI4_0; + const int shift = k_KQ & (QI8_1/2); + + const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; + const int u = Q_q8[k_KQ_0/WARP_SIZE]; + + const int sumi = __dp4a(v, u, 0); + +#if FP16_AVAILABLE + if (std::is_same::value) { + const half2 * Q_ds = (const half2 *) Q_ds_v; + + const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE]; + sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */); + } else +#endif // FP16_AVAILABLE + { + const float2 * Q_ds = (const float2 *) Q_ds_v; + + sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y)); + } + } + + return sum; +#else + GGML_UNUSED(K_c); + GGML_UNUSED(Q_v); + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ > MIN_CC_DP4A +} + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { +#if __CUDA_ARCH__ > MIN_CC_DP4A + + const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c; + GGML_UNUSED(Q_v); + + T sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const int ib = k_KQ / QI8_1; + const int iqs4 = k_KQ % QI4_1; + const int shift = k_KQ & (QI8_1/2); + + const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; + const int u = Q_q8[k_KQ_0/WARP_SIZE]; + + const int sumi = __dp4a(v, u, 0); + +#if FP16_AVAILABLE + if (std::is_same::value) { + const half2 * Q_ds = (const half2 *) Q_ds_v; + + const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE]; + const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1); + sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled)); + } else +#endif // FP16_AVAILABLE + { + const float2 * Q_ds = (const float2 *) Q_ds_v; + + const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi; + const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1; + + sum += (T) (sumid4d8 + m4s8scaled); + } + } + + return sum; +#else + GGML_UNUSED(K_c); + GGML_UNUSED(Q_v); + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ > MIN_CC_DP4A +} + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { +#if __CUDA_ARCH__ > MIN_CC_DP4A + + const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c; + GGML_UNUSED(Q_v); + + T sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const int ib = k_KQ / QI8_1; + const int iqs4 = k_KQ % QI5_0; + const int iqs8 = k_KQ % QI8_1; + const int shift = k_KQ & (QI8_1/2); + + int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; + const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0); + v |= (vh << 4) & 0x00000010; // 0 -> 4 + v |= (vh << 11) & 0x00001000; // 1 -> 12 + v |= (vh << 18) & 0x00100000; // 2 -> 20 + v |= (vh << 25) & 0x10000000; // 3 -> 28 + + const int u = Q_q8[k_KQ_0/WARP_SIZE]; + + const int sumi = __dp4a(v, u, 0); + +#if FP16_AVAILABLE + if (std::is_same::value) { + const half2 * Q_ds = (const half2 *) Q_ds_v; + + const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE]; + sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */; + } else +#endif // FP16_AVAILABLE + { + const float2 * Q_ds = (const float2 *) Q_ds_v; + + sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y)); + } + } + + return sum; +#else + GGML_UNUSED(K_c); + GGML_UNUSED(Q_v); + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ > MIN_CC_DP4A +} + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { +#if __CUDA_ARCH__ > MIN_CC_DP4A + + const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c; + GGML_UNUSED(Q_v); + + T sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const int ib = k_KQ / QI8_1; + const int iqs4 = k_KQ % QI5_1; + const int iqs8 = k_KQ % QI8_1; + const int shift = k_KQ & (QI8_1/2); + + int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F; + const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1); + v |= (vh << 4) & 0x00000010; // 0 -> 4 + v |= (vh << 11) & 0x00001000; // 1 -> 12 + v |= (vh << 18) & 0x00100000; // 2 -> 20 + v |= (vh << 25) & 0x10000000; // 3 -> 28 + + const int u = Q_q8[k_KQ_0/WARP_SIZE]; + + const int sumi = __dp4a(v, u, 0); + +#if FP16_AVAILABLE + if (std::is_same::value) { + const half2 * Q_ds = (const half2 *) Q_ds_v; + + const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE]; + const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1); + sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled)); + } else +#endif // FP16_AVAILABLE + { + const float2 * Q_ds = (const float2 *) Q_ds_v; + + const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi; + const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1; + + sum += (T) (sumid5d8 + m5s8scaled); + } + } + + return sum; +#else + GGML_UNUSED(K_c); + GGML_UNUSED(Q_v); + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ > MIN_CC_DP4A +} + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { +#if __CUDA_ARCH__ > MIN_CC_DP4A + + const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c; + GGML_UNUSED(Q_v); + + T sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const int ib = k_KQ / QI8_0; + const int iqs = k_KQ % QI8_0; + + const int v = get_int_from_int8(K_q8_0[ib].qs, iqs); + + T Q_d; + if (std::is_same::value) { + const half2 * Q_ds = (const half2 *) Q_ds_v; + Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]); + } else { + const float2 * Q_ds = (const float2 *) Q_ds_v; + Q_d = Q_ds[k_KQ_0/WARP_SIZE].x; + } + + sum += vec_dot_q8_0_q8_1_impl(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d); + } + + return sum; +#else + GGML_UNUSED(K_c); + GGML_UNUSED(Q_v); + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + NO_DEVICE_CODE; +#endif // __CUDA_ARCH__ > MIN_CC_DP4A +} + +template +static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16( + const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) { + + const half2 * K_h2 = (const half2 *) K_c; + GGML_UNUSED(Q_q8); + GGML_UNUSED(Q_ds_v); + +#if FP16_AVAILABLE + if (std::is_same::value) { + const half2 * Q_h2 = (const half2 *) Q_v; + + half2 sum2 = make_half2(0.0f, 0.0f); + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const half2 K_ik = K_h2[k_KQ]; + sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE]; + } + + return __low2half(sum2) + __high2half(sum2); + } +#endif // FP16_AVAILABLE + + const float2 * Q_f2 = (const float2 *) Q_v; + + float sum = 0.0f; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + const half2 K_ik = K_h2[k_KQ]; + sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x; + sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y; + } + + return sum; +} + +template +static __device__ __forceinline__ void quantize_q8_1_to_shared( + const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) { + + float vals[sizeof(int)] = {0.0f}; +#pragma unroll + for (int l = 0; l < sizeof(int); ++l) { + vals[l] = scale * x[4*threadIdx.x + l]; + } + + float amax = fabsf(vals[0]); + float sum = vals[0]; +#pragma unroll + for (int l = 1; l < sizeof(int); ++l) { + amax = fmaxf(amax, fabsf(vals[l])); + sum += vals[l]; + } +#pragma unroll + for (int mask = QI8_1/2; mask > 0; mask >>= 1) { + amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32)); + sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32); + } + + const float d = amax / 127; + int q32 = 0; + int8_t * q8 = (int8_t *) &q32; + + if (d != 0.0f) { +#pragma unroll + for (int l = 0; l < sizeof(int); ++l) { + q8[l] = roundf(vals[l] / d); + } + } + + yq32[threadIdx.x] = q32; + if (threadIdx.x % QI8_1 == 0) { + if (std::is_same::value) { + ((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum); + } else { + ((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum); + } + } +} + +typedef half (*dequantize_1_f16_t)(const void *, const int64_t); +typedef float (*dequantize_1_f32_t)(const void *, const int64_t); + +template +static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) { + const block_q4_0 * x = (const block_q4_0 *) vx; + + const int64_t ib = i / QK4_0; + const int iqs = i % (QK4_0/2); + const int shift = (i % QK4_0) / (QK4_0/2); + + const T d = x[ib].d; + const int q0 = x[ib].qs[iqs]; + const int q = ((q0 >> (4*shift)) & 0x0F) - 8; + +#if FP16_AVAILABLE + if (std::is_same::value) { + return ((half) d)*((half) q); + } +#endif // FP16_AVAILABLE + + return ((float) d)*((float) q); +} + +template +static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) { + const block_q4_1 * x = (const block_q4_1 *) vx; + + const int64_t ib = i / QK4_1; + const int iqs = i % (QK4_1/2); + const int shift = (i % QK4_1) / (QK4_1/2); + + const half2 dm = x[ib].dm; + const int q0 = x[ib].qs[iqs]; + const int q = ((q0 >> (4*shift)) & 0x0F); + +#if FP16_AVAILABLE + if (std::is_same::value) { + return __low2half(dm)*((half) q) + __high2half(dm); + } +#endif // FP16_AVAILABLE + + return __low2float(dm)*((float) q) + __high2float(dm); +} + +template +static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) { + const block_q5_0 * x = (const block_q5_0 *) vx; + + const int64_t ib = i / QK5_0; + const int idq = i % QK5_0; + const int iqs = i % (QK5_0/2); + const int shift = (i % QK5_0) / (QK5_0/2); + + const T d = x[ib].d; + const int ql0 = x[ib].qs[iqs]; + const int qh0 = get_int_from_uint8(x[ib].qh, 0); + const int ql = ((ql0 >> (4*shift)) & 0x0F); + const int qh = ((qh0 >> idq) << 4) & 0x10; + const int q = (ql | qh) - 16; + +#if FP16_AVAILABLE + if (std::is_same::value) { + return ((half) d)*((half) q); + } +#endif // FP16_AVAILABLE + + return ((float) d)*((float) q); +} + +template +static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) { + const block_q5_1 * x = (const block_q5_1 *) vx; + + const int64_t ib = i / QK5_1; + const int idq = i % QK5_1; + const int iqs = i % (QK5_1/2); + const int shift = (i % QK5_1) / (QK5_1/2); + + const half2 dm = x[ib].dm; + const int ql0 = x[ib].qs[iqs]; + const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0); + const int ql = ((ql0 >> (4*shift)) & 0x0F); + const int qh = ((qh0 >> idq) << 4) & 0x10; + const int q = (ql | qh); + +#if FP16_AVAILABLE + if (std::is_same::value) { + return __low2half(dm)*((half) q) + __high2half(dm); + } +#endif // FP16_AVAILABLE + + return __low2float(dm)*((float) q) + __high2float(dm); +} + +template +static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) { + const block_q8_0 * x = (const block_q8_0 *) vx; + + const int64_t ib = i / QK8_0; + const int iqs = i % QK8_0; + + const T d = x[ib].d; + const int q = x[ib].qs[iqs]; + +#if FP16_AVAILABLE + if (std::is_same::value) { + return ((half) d)*((half) q); + } +#endif // FP16_AVAILABLE + + return ((float) d)*((float) q); +} + +template +static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) { + const half * x = (const half *) vx; + + return x[i]; +} + +template +constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) { + return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0 : + type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1 : + type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0 : + type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1 : + type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0 : + type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16 : + nullptr; +} + +template +constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) { + return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0 : + type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1 : + type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0 : + type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1 : + type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0 : + type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16 : + nullptr; +} + +constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) { + return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0 : + type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1 : + type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0 : + type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1 : + type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0 : + type_V == GGML_TYPE_F16 ? dequantize_1_f16 : + nullptr; +} + +constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) { + return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0 : + type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1 : + type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0 : + type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1 : + type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0 : + type_V == GGML_TYPE_F16 ? dequantize_1_f16 : + nullptr; +} + template // D == head size #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) __launch_bounds__(D, 1) @@ -83,6 +598,27 @@ static __global__ void flash_attn_combine_results( dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator; } +static void on_no_fattn_vec_case(const int D) { + if (D == 64) { + fprintf(stderr, "Unsupported KV type combination for head_size 64.\n"); + fprintf(stderr, "By default only f16 KV cache is supported.\n"); + fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n"); + GGML_ASSERT(false); + } else if (D == 128) { + fprintf(stderr, "Unsupported KV type combination for head_size 128.\n"); + fprintf(stderr, "Supported combinations:\n"); + fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n"); + fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n"); + fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n"); + fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n"); + GGML_ASSERT(false); + } else { + fprintf(stderr, "Unsupported KV type combination for head_size 256.\n"); + fprintf(stderr, "Only f16 is supported.\n"); + GGML_ASSERT(false); + } +} + template void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) { const ggml_tensor * Q = dst->src[0]; @@ -94,8 +630,6 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern ggml_tensor * KQV = dst; GGML_ASSERT(Q->type == GGML_TYPE_F32); - GGML_ASSERT(K->type == GGML_TYPE_F16); - GGML_ASSERT(V->type == GGML_TYPE_F16); GGML_ASSERT(KQV->type == GGML_TYPE_F32); GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16); @@ -143,6 +677,7 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, Q->nb[1], Q->nb[2], Q->nb[3], K->nb[1], K->nb[2], K->nb[3], + V->nb[1], V->nb[2], V->nb[3], KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] ); CUDA_CHECK(cudaGetLastError()); diff --git a/ggml-cuda/fattn-tile-f16.cu b/ggml-cuda/fattn-tile-f16.cu index cdb5eaff7..3d64a9eba 100644 --- a/ggml-cuda/fattn-tile-f16.cu +++ b/ggml-cuda/fattn-tile-f16.cu @@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f16( const int nb11, const int nb12, const int nb13, + const int nb21, + const int nb22, + const int nb23, const int ne0, const int ne1, const int ne2, diff --git a/ggml-cuda/fattn-tile-f32.cu b/ggml-cuda/fattn-tile-f32.cu index 5a3de2918..61fce0a7e 100644 --- a/ggml-cuda/fattn-tile-f32.cu +++ b/ggml-cuda/fattn-tile-f32.cu @@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f32( const int nb11, const int nb12, const int nb13, + const int nb21, + const int nb22, + const int nb23, const int ne0, const int ne1, const int ne2, diff --git a/ggml-cuda/fattn-vec-f16.cu b/ggml-cuda/fattn-vec-f16.cu deleted file mode 100644 index 808e8f362..000000000 --- a/ggml-cuda/fattn-vec-f16.cu +++ /dev/null @@ -1,330 +0,0 @@ -#include "common.cuh" -#include "fattn-common.cuh" -#include "fattn-vec-f16.cuh" - -template // D == head size -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -__launch_bounds__(D, 1) -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -static __global__ void flash_attn_vec_ext_f16( - const char * __restrict__ Q, - const char * __restrict__ K, - const char * __restrict__ V, - const char * __restrict__ mask, - float * __restrict__ dst, - float2 * __restrict__ dst_meta, - const float scale, - const float max_bias, - const float m0, - const float m1, - const uint32_t n_head_log2, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int nb31, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { -#if FP16_AVAILABLE - //In this kernel Q, K, V are matrices while i, j, k are matrix indices. - - const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. - const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. - - const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. - const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); - const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); - const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape - const half * maskh = (const half *) mask + ne11*ic0; - - const int stride_KV = nb11 / sizeof(half); - const int stride_KV2 = nb11 / sizeof(half2); - - const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); - const half slopeh = __float2half(slopef); - - static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); - constexpr int nwarps = D / WARP_SIZE; - const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; - __builtin_assume(tid < D); - - __shared__ half KQ[ncols*D]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - KQ[j*D + tid] = -HALF_MAX_HALF; - } - half2 * KQ2 = (half2 *) KQ; - - half kqmax[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax[j] = -HALF_MAX_HALF; - } - half kqsum[ncols] = {0.0f}; - - __shared__ half kqmax_shared[ncols][WARP_SIZE]; - __shared__ half kqsum_shared[ncols][WARP_SIZE]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - if (threadIdx.y == 0) { - kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF; - kqsum_shared[j][threadIdx.x] = 0.0f; - } - } - __syncthreads(); - - // Convert Q to half2 and store in registers: - half2 Q_h2[ncols][D/(2*WARP_SIZE)]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { -#pragma unroll - for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - - const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); - Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); - } - } - - half2 VKQ[ncols] = {{0.0f, 0.0f}}; - - const int k_start = parallel_blocks == 1 ? 0 : ip*D; - for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { - // Calculate KQ tile and keep track of new maximum KQ values: - - // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, - // see https://github.com/ggerganov/llama.cpp/pull/7061 . - // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable). - half kqmax_new = kqmax[0]; - half kqmax_new_arr[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax_new_arr[j] = kqmax[j]; - } - -#pragma unroll - for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { - const int i_KQ = i_KQ_0 + threadIdx.y; - - if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { - break; - } - - half2 sum2[ncols] = {{0.0f, 0.0f}}; -#pragma unroll - for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { - const int k_KQ = k_KQ_0 + threadIdx.x; - - const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE]; - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum2[j] = warp_reduce_sum(sum2[j]); - half sum = __low2half(sum2[j]) + __high2half(sum2[j]); - sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); - - if (ncols == 1) { - kqmax_new = ggml_cuda_hmax(kqmax_new, sum); - } else { - kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum); - } - - if (threadIdx.x == 0) { - KQ[j*D + i_KQ] = sum; - } - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j]; - - kqmax_new_j = warp_reduce_max(kqmax_new_j); - if (threadIdx.x == 0) { - kqmax_shared[j][threadIdx.y] = kqmax_new_j; - } - } - - __syncthreads(); - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - half kqmax_new_j = kqmax_shared[j][threadIdx.x]; - kqmax_new_j = warp_reduce_max(kqmax_new_j); - - const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j); - kqmax[j] = kqmax_new_j; - - const half val = hexp(KQ[j*D + tid] - kqmax[j]); - kqsum[j] = kqsum[j]*KQ_max_scale + val; - KQ[j*D + tid] = val; - - VKQ[j] *= __half2half2(KQ_max_scale); - } - - __syncthreads(); - -#pragma unroll - for (int k0 = 0; k0 < D; k0 += 2) { - if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { - break; - } - - half2 V_k; - reinterpret_cast(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid]; - reinterpret_cast(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; - } - } - - __syncthreads(); - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqsum[j] = warp_reduce_sum(kqsum[j]); - if (threadIdx.x == 0) { - kqsum_shared[j][threadIdx.y] = kqsum[j]; - } - } - - __syncthreads(); - -#pragma unroll - for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { - if (ncols > 2 && ic0 + j_VKQ >= ne01) { - break; - } - - kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; - kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); - - half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); - if (parallel_blocks == 1) { - dst_val /= kqsum[j_VKQ]; - } - const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; - dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; - } - - if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { - dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); - } -#else - NO_DEVICE_CODE; -#endif // FP16_AVAILABLE -} - -void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_tensor * KQV = dst; - ggml_tensor * Q = dst->src[0]; - - const int32_t precision = KQV->op_params[2]; - GGML_ASSERT(precision == GGML_PREC_DEFAULT); - - constexpr int cols_per_block = 1; - constexpr int parallel_blocks = 4; - switch (Q->ne[0]) { - case 64: { - constexpr int D = 64; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - case 128: { - constexpr int D = 128; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - case 256: { - constexpr int D = 256; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - default: - GGML_ASSERT(false); - break; - } -} - -template -void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * Q = dst->src[0]; - switch (Q->ne[0]) { - case 64: { - constexpr int D = 64; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - case 128: { - constexpr int D = 128; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - default: { - GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); - } break; - } -} - -void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * KQV = dst; - const ggml_tensor * Q = dst->src[0]; - - const int32_t precision = KQV->op_params[2]; - GGML_ASSERT(precision == GGML_PREC_DEFAULT); - - if (Q->ne[1] == 1) { - ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); - return; - } - - if (Q->ne[1] == 2) { - constexpr int cols_per_block = 2; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f16_64_128(ctx, dst); - return; - } - - if (Q->ne[1] <= 4) { - constexpr int cols_per_block = 4; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f16_64_128(ctx, dst); - return; - } - - if (Q->ne[1] <= 8) { - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f16_64_128(ctx, dst); - return; - } - - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 1; - launch_fattn_vec_f16_64_128(ctx, dst); -} diff --git a/ggml-cuda/fattn-vec-f16.cuh b/ggml-cuda/fattn-vec-f16.cuh index c7023610a..ea4fcc972 100644 --- a/ggml-cuda/fattn-vec-f16.cuh +++ b/ggml-cuda/fattn-vec-f16.cuh @@ -1,5 +1,395 @@ #include "common.cuh" +#include "fattn-common.cuh" -void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_vec_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int nb21, + const int nb22, + const int nb23, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. -void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst); + constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16(type_K); + constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16; + constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V); + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + Q += nb02* blockIdx.y + nb01*ic0; + K += nb12*(blockIdx.y / gqa_ratio); + V += nb22*(blockIdx.y / gqa_ratio); + + const half * maskh = (const half *) mask + ne11*ic0; + + const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); + const half slopeh = __float2half(slopef); + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + constexpr int nwarps = D / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < D); + + __shared__ half KQ[ncols*D]; + half2 * KQ2 = (half2 *) KQ; + + half kqmax[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax[j] = -HALF_MAX_HALF; + } + half kqsum[ncols] = {0.0f}; + + __shared__ half kqmax_shared[ncols][WARP_SIZE]; + __shared__ half kqsum_shared[ncols][WARP_SIZE]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + if (threadIdx.y == 0) { + kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF; + kqsum_shared[j][threadIdx.x] = 0.0f; + } + } + __syncthreads(); + + // Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers: + half2 Q_h2[ncols][D/(2*WARP_SIZE)]; + int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)]; + half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1]; + if (Q_q8_1) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + if (j0 + nwarps > ncols && j >= ncols) { + break; + } + + // Reuse KQ as temporary storage for converting Q to q8_1: + int * tmp_q_i32 = (int *) &KQ[j*D]; + half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int)); + + // Set memory to zero if out of bounds: + if (ncols > 2 && ic0 + j >= ne01) { +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + tmp_q_i32[i] = 0; + } + if (threadIdx.x < D/QK8_1) { + tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f); + } + continue; + } + + const float * Q_f = (const float *) (Q + j*nb01); +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + quantize_q8_1_to_shared(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds); + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + int * tmp_q_i32 = (int *) &KQ[j*D]; + half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int)); + +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i]; + Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1]; + } + } + + __syncthreads(); + } else { +#pragma unroll + for (int j = 0; j < ncols; ++j) { + const float2 * Q_f2_j = (const float2 *) (Q + j*nb01); + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f); + Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); + } + } + } + + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + KQ[j*D + tid] = -HALF_MAX_HALF; + } + + half2 VKQ[ncols] = {{0.0f, 0.0f}}; + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + + // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, + // see https://github.com/ggerganov/llama.cpp/pull/7061 . + // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable). + half kqmax_new = kqmax[0]; + half kqmax_new_arr[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax_new_arr[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); + sum = warp_reduce_sum(sum); + sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); + + if (ncols == 1) { + kqmax_new = ggml_cuda_hmax(kqmax_new, sum); + } else { + kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum); + } + + if (threadIdx.x == 0) { + KQ[j*D + i_KQ] = sum; + } + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j]; + + kqmax_new_j = warp_reduce_max(kqmax_new_j); + if (threadIdx.x == 0) { + kqmax_shared[j][threadIdx.y] = kqmax_new_j; + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + half kqmax_new_j = kqmax_shared[j][threadIdx.x]; + kqmax_new_j = warp_reduce_max(kqmax_new_j); + + const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j); + kqmax[j] = kqmax_new_j; + + const half val = hexp(KQ[j*D + tid] - kqmax[j]); + kqsum[j] = kqsum[j]*KQ_max_scale + val; + KQ[j*D + tid] = val; + + VKQ[j] *= __half2half2(KQ_max_scale); + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < D; k0 += 2) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { + break; + } + + half2 V_k; + reinterpret_cast(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid); + reinterpret_cast(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid); +#pragma unroll + for (int j = 0; j < ncols; ++j) { + VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqsum[j] = warp_reduce_sum(kqsum[j]); + if (threadIdx.x == 0) { + kqsum_shared[j][threadIdx.y] = kqsum[j]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + if (ncols > 2 && ic0 + j_VKQ >= ne01) { + break; + } + + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; + kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + + half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); + if (parallel_blocks == 1) { + dst_val /= kqsum[j_VKQ]; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; + } + + if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { + dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); + } +#else + NO_DEVICE_CODE; +#endif // FP16_AVAILABLE +} + +template +void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + constexpr int nwarps = D/WARP_SIZE; + fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); +} + +template +void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_tensor * KQV = dst; + ggml_tensor * Q = dst->src[0]; + ggml_tensor * K = dst->src[1]; + ggml_tensor * V = dst->src[2]; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + + GGML_ASSERT(K->type == type_K); + GGML_ASSERT(V->type == type_V); + + if (Q->ne[1] == 1) { + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] == 2) { + constexpr int cols_per_block = 2; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] <= 4) { + constexpr int cols_per_block = 4; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] <= 8) { + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); + return; + } + + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 1; + ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); +} + +#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \ + template void ggml_cuda_flash_attn_ext_vec_f16_case \ + (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ + +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0); + +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16); + +extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/fattn-vec-f32.cu b/ggml-cuda/fattn-vec-f32.cu deleted file mode 100644 index b4652301b..000000000 --- a/ggml-cuda/fattn-vec-f32.cu +++ /dev/null @@ -1,279 +0,0 @@ -#include "common.cuh" -#include "fattn-common.cuh" -#include "fattn-vec-f32.cuh" - -template // D == head size -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -__launch_bounds__(D, 1) -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -static __global__ void flash_attn_vec_ext_f32( - const char * __restrict__ Q, - const char * __restrict__ K, - const char * __restrict__ V, - const char * __restrict__ mask, - float * __restrict__ dst, - float2 * __restrict__ dst_meta, - const float scale, - const float max_bias, - const float m0, - const float m1, - const uint32_t n_head_log2, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int nb31, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { - //In this kernel Q, K, V are matrices while i, j, k are matrix indices. - - const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. - const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. - - const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. - const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); - const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); - const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape - const half * maskh = (const half *) mask + ne11*ic0; - - const int stride_KV = nb11 / sizeof(half); - const int stride_KV2 = nb11 / sizeof(half2); - - const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); - - static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); - constexpr int nwarps = D / WARP_SIZE; - const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; - __builtin_assume(tid < D); - - __shared__ float KQ[ncols*D]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - KQ[j*D + tid] = -FLT_MAX/2.0f; - } - - float kqmax[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax[j] = -FLT_MAX/2.0f; - } - float kqsum[ncols] = {0.0f}; - - __shared__ float kqmax_shared[ncols][WARP_SIZE]; - __shared__ float kqsum_shared[ncols][WARP_SIZE]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - if (threadIdx.y == 0) { - kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f; - kqsum_shared[j][threadIdx.x] = 0.0f; - } - } - __syncthreads(); - - // Convert Q to half2 and store in registers: - float2 Q_h2[ncols][D/(2*WARP_SIZE)]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { -#pragma unroll - for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - - Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f); - Q_h2[j][i0/WARP_SIZE].x *= scale; - Q_h2[j][i0/WARP_SIZE].y *= scale; - } - } - - float VKQ[ncols] = {0.0f}; - - const int k_start = parallel_blocks == 1 ? 0 : ip*D; - for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { - // Calculate KQ tile and keep track of new maximum KQ values: - - float kqmax_new_arr[ncols]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqmax_new_arr[j] = kqmax[j]; - } - -#pragma unroll - for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { - const int i_KQ = i_KQ_0 + threadIdx.y; - - if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { - break; - } - - float sum[ncols] = {0.0f}; -#pragma unroll - for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { - const int k_KQ = k_KQ_0 + threadIdx.x; - - const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x; - sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y; - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - sum[j] = warp_reduce_sum(sum[j]); - sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; - - kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]); - - if (threadIdx.x == 0) { - KQ[j*D + i_KQ] = sum[j]; - } - } - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - float kqmax_new_j = kqmax_new_arr[j]; - - kqmax_new_j = warp_reduce_max(kqmax_new_j); - if (threadIdx.x == 0) { - kqmax_shared[j][threadIdx.y] = kqmax_new_j; - } - } - - __syncthreads(); - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - float kqmax_new_j = kqmax_shared[j][threadIdx.x]; - kqmax_new_j = warp_reduce_max(kqmax_new_j); - - const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j); - kqmax[j] = kqmax_new_j; - - const float val = expf(KQ[j*D + tid] - kqmax[j]); - kqsum[j] = kqsum[j]*KQ_max_scale + val; - KQ[j*D + tid] = val; - - VKQ[j] *= KQ_max_scale; - } - - __syncthreads(); - -#pragma unroll - for (int k = 0; k < D; ++k) { - if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) { - break; - } - - const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]); -#pragma unroll - for (int j = 0; j < ncols; ++j) { - VKQ[j] += V_ki*KQ[j*D + k]; - } - } - - __syncthreads(); - } - -#pragma unroll - for (int j = 0; j < ncols; ++j) { - kqsum[j] = warp_reduce_sum(kqsum[j]); - if (threadIdx.x == 0) { - kqsum_shared[j][threadIdx.y] = kqsum[j]; - } - } - - __syncthreads(); - -#pragma unroll - for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { - if (ncols > 2 && ic0 + j_VKQ >= ne01) { - break; - } - - kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; - kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); - - float dst_val = VKQ[j_VKQ]; - if (parallel_blocks == 1) { - dst_val /= kqsum[j_VKQ]; - } - const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; - dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; - } - - if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { - dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); - } -} - -template -void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * Q = dst->src[0]; - switch (Q->ne[0]) { - case 64: { - constexpr int D = 64; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - case 128: { - constexpr int D = 128; - constexpr int nwarps = D/WARP_SIZE; - fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - } break; - default: { - GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); - } break; - } -} - -void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * Q = dst->src[0]; - - if (Q->ne[1] == 1) { - constexpr int cols_per_block = 1; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f32_64_128(ctx, dst); - return; - } - - if (Q->ne[1] == 2) { - constexpr int cols_per_block = 2; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f32_64_128(ctx, dst); - return; - } - - if (Q->ne[1] <= 4) { - constexpr int cols_per_block = 4; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f32_64_128(ctx, dst); - return; - } - - if (Q->ne[1] <= 8) { - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 4; - launch_fattn_vec_f32_64_128(ctx, dst); - return; - } - - constexpr int cols_per_block = 8; - constexpr int parallel_blocks = 1; - launch_fattn_vec_f32_64_128(ctx, dst); -} diff --git a/ggml-cuda/fattn-vec-f32.cuh b/ggml-cuda/fattn-vec-f32.cuh index 614d54ae3..3009f0f43 100644 --- a/ggml-cuda/fattn-vec-f32.cuh +++ b/ggml-cuda/fattn-vec-f32.cuh @@ -1,3 +1,376 @@ #include "common.cuh" +#include "fattn-common.cuh" -void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst); +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(D, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_vec_ext_f32( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int nb21, + const int nb22, + const int nb23, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32(type_K); + constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16; + constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V); + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + Q += nb02* blockIdx.y + nb01*ic0; + K += nb12*(blockIdx.y / gqa_ratio); + V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + constexpr int nwarps = D / WARP_SIZE; + const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; + __builtin_assume(tid < D); + + __shared__ float KQ[ncols*D]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + KQ[j*D + tid] = -FLT_MAX/2.0f; + } + + float kqmax[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax[j] = -FLT_MAX/2.0f; + } + float kqsum[ncols] = {0.0f}; + + __shared__ float kqmax_shared[ncols][WARP_SIZE]; + __shared__ float kqsum_shared[ncols][WARP_SIZE]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + if (threadIdx.y == 0) { + kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f; + kqsum_shared[j][threadIdx.x] = 0.0f; + } + } + __syncthreads(); + + // Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers: + float2 Q_f2[ncols][D/(2*WARP_SIZE)]; + int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)]; + float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1]; + if (Q_q8_1) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + if (j0 + nwarps > ncols && j >= ncols) { + break; + } + + // Reuse KQ as temporary storage for converting Q to q8_1: + int * tmp_q_i32 = (int *) &KQ[j*D]; + float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int)); + + // Set memory to zero if out of bounds: + if (ncols > 2 && ic0 + j >= ne01) { +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + tmp_q_i32[i] = 0; + } + if (threadIdx.x < D/QK8_1) { + tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f); + } + continue; + } + + const float * Q_f = (const float *) (Q + j*nb01); +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + quantize_q8_1_to_shared(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds); + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + int * tmp_q_i32 = (int *) &KQ[j*D]; + float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int)); + +#pragma unroll + for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i]; + Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1]; + } + } + + __syncthreads(); + } else { +#pragma unroll + for (int j = 0; j < ncols; ++j) { + const float2 * Q_f2_j = (const float2 *) (Q + j*nb01); +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f); + Q_f2[j][i0/WARP_SIZE].x *= scale; + Q_f2[j][i0/WARP_SIZE].y *= scale; + } + } + } + + float VKQ[ncols] = {0.0f}; + + const int k_start = parallel_blocks == 1 ? 0 : ip*D; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { + // Calculate KQ tile and keep track of new maximum KQ values: + + float kqmax_new_arr[ncols]; +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqmax_new_arr[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + + if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { + break; + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]); + sum = warp_reduce_sum(sum); + sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; + + kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum); + + if (threadIdx.x == 0) { + KQ[j*D + i_KQ] = sum; + } + } + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_new_arr[j]; + + kqmax_new_j = warp_reduce_max(kqmax_new_j); + if (threadIdx.x == 0) { + kqmax_shared[j][threadIdx.y] = kqmax_new_j; + } + } + + __syncthreads(); + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + float kqmax_new_j = kqmax_shared[j][threadIdx.x]; + kqmax_new_j = warp_reduce_max(kqmax_new_j); + + const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j); + kqmax[j] = kqmax_new_j; + + const float val = expf(KQ[j*D + tid] - kqmax[j]); + kqsum[j] = kqsum[j]*KQ_max_scale + val; + KQ[j*D + tid] = val; + + VKQ[j] *= KQ_max_scale; + } + + __syncthreads(); + +#pragma unroll + for (int k = 0; k < D; ++k) { + if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) { + break; + } + + const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid); +#pragma unroll + for (int j = 0; j < ncols; ++j) { + VKQ[j] += V_ki*KQ[j*D + k]; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j = 0; j < ncols; ++j) { + kqsum[j] = warp_reduce_sum(kqsum[j]); + if (threadIdx.x == 0) { + kqsum_shared[j][threadIdx.y] = kqsum[j]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { + if (ncols > 2 && ic0 + j_VKQ >= ne01) { + break; + } + + kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; + kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + + float dst_val = VKQ[j_VKQ]; + if (parallel_blocks == 1) { + dst_val /= kqsum[j_VKQ]; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; + } + + if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { + dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); + } +} + +template +void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + constexpr int nwarps = D/WARP_SIZE; + fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); +} + +template +void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_tensor * KQV = dst; + ggml_tensor * Q = dst->src[0]; + ggml_tensor * K = dst->src[1]; + ggml_tensor * V = dst->src[2]; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + + GGML_ASSERT(K->type == type_K); + GGML_ASSERT(V->type == type_V); + + if (Q->ne[1] == 1) { + constexpr int cols_per_block = 1; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] == 2) { + constexpr int cols_per_block = 2; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] <= 4) { + constexpr int cols_per_block = 4; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst); + return; + } + + if (Q->ne[1] <= 8) { + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 4; + ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst); + return; + } + + constexpr int cols_per_block = 8; + constexpr int parallel_blocks = 1; + ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst); +} + +#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \ + template void ggml_cuda_flash_attn_ext_vec_f32_case \ + (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ + +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0); + +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16); +extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16); + +extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/fattn-wmma-f16.cuh b/ggml-cuda/fattn-wmma-f16.cuh new file mode 100644 index 000000000..65ed31852 --- /dev/null +++ b/ggml-cuda/fattn-wmma-f16.cuh @@ -0,0 +1,490 @@ +#include "common.cuh" +#include "fattn-common.cuh" + +#if FP16_MMA_AVAILABLE +#include +#endif + +// D == head size, VKQ_stride == num VKQ rows calculated in parallel: +template +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(nwarps*WARP_SIZE, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int nb21, + const int nb22, + const int nb23, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_MMA_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE."); + static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16."); + constexpr int frag_m = ncols == 8 ? 32 : 16; + constexpr int frag_n = ncols == 8 ? 8 : 16; + static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0."); + typedef nvcuda::wmma::fragment frag_a_K; + typedef nvcuda::wmma::fragment frag_a_V; + typedef nvcuda::wmma::fragment frag_b; + typedef nvcuda::wmma::fragment frag_c_KQ; + typedef nvcuda::wmma::fragment frag_c_VKQ; + + constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel. + constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy. + static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps."); + + // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts: + constexpr int D_padded = D + 8; + constexpr int kqs_padded = FATTN_KQ_STRIDE + 8; + constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half); + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0); + const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0; + const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2); + + const int stride_Q = nb01 / sizeof(float); + const int stride_KV = nb11 / sizeof(half); + + const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); + const half slopeh = __float2half(slopef); + const half2 slope2 = make_half2(slopef, slopef); + + frag_b Q_b[D/16][ncols/frag_n]; + + // A single buffer for temporarily holding tiles of KQ and VKQ parts: + constexpr int mem_KQ = ncols*kqs_padded*kqar; + constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded; + __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts]; + float * KQ_f = (float *) KQ; + half2 * KQ2 = (half2 *) KQ; + + float KQ_rowsum_f[ncols/nwarps] = {0.0f}; + float KQ_max_f[ncols/nwarps]; + float KQ_max_scale_f[ncols/nwarps] = {0.0f}; + +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + KQ_max_f[j] = -FLT_MAX/2.0f; + } + + half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}}; + half2 KQ_max_h2[ncols/nwarps]; + half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}}; + +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF); + } + + __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice. + half2 * VKQ2 = (half2 *) VKQ; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D/2 && i >= D/2) { + break; + } + VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f); + } + } + + // Convert Q to half and apply scale, temporarily store in KQ: +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; +#pragma unroll + for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D && i >= D) { + break; + } + KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f; + } + } + + __syncthreads(); + + // Load Q into tensor core fragments/registers since it will be used frequently: +#pragma unroll + for (int i0 = 0; i0 < D; i0 += 16) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded); + } + } + + __syncthreads(); + + // Iterate over ne11 == previous tokens: + for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) { + // Calculate tile of KQ: +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) { + frag_c_KQ KQ_c[ncols/frag_n]; +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f); + } +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) { + frag_a_K K_a; + nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV); +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]); + } + } +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major); + } + } + + __syncthreads(); + + // Calculate softmax for each KQ column using the current max. value. + // The divisor is stored in KQ_rowsum and will be applied at the end. +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + if (std::is_same::value) { + float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k]; + } + + float KQ_max_new = KQ_max_f[j0/nwarps]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f; + KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]); + } + KQ_max_new = warp_reduce_max(KQ_max_new); + + const float diff = KQ_max_f[j0/nwarps] - KQ_max_new; + KQ_max_scale_f[j0/nwarps] = expf(diff); + if (diff <= SOFTMAX_FTZ_THRESHOLD) { + KQ_max_scale_f[j0/nwarps] = 0.0f; + } + KQ_max_f[j0/nwarps] = KQ_max_new; + + float KQ_rowsum_add = 0.0f; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps]; + KQ_f_tmp[k0/WARP_SIZE] = expf(diff); + if (diff <= SOFTMAX_FTZ_THRESHOLD) { + KQ_f_tmp[k0/WARP_SIZE] = 0.0f; + } + KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE]; + KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE]; + } + KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); + + // Scale previous KQ_rowsum to account for a potential increase in KQ_max: + KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add; + } else { + half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k]; + } + + half2 KQ_max_new = KQ_max_h2[j0/nwarps]; +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f); + KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]); + } + KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new)))); + const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new; + KQ_max_scale_h2[j0/nwarps] = h2exp(diff); + const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); + *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask; + KQ_max_h2[j0/nwarps] = KQ_max_new; + + half2 KQ_rowsum_add = make_half2(0.0f, 0.0f); +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { + const int k = k0 + threadIdx.x; + + const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps]; + KQ2_tmp[k0/WARP_SIZE] = h2exp(diff); + const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); + *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask; + KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE]; + KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE]; + } + KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); + + // Scale previous KQ_rowsum to account for a potential increase in KQ_max: + KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add; + } + } + + __syncthreads(); + + frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { + const int k = k0 + (threadIdx.y % VKQ_ratio)*16; + nvcuda::wmma::load_matrix_sync( + KQ_b[k0/(VKQ_ratio*16)][j0/frag_n], + KQ + j0*(kqar*kqs_padded) + k, + kqar*kqs_padded); + } + } + + frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n]; +#pragma unroll + for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) { +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f); + } + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { + const int k = k0 + (threadIdx.y % VKQ_ratio)*16; + + frag_a_V v_a; + nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV); +#pragma unroll + for (int j = 0; j < ncols/frag_n; ++j) { + nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]); + } + } + } + + __syncthreads(); + + const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded); +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += frag_n) { + nvcuda::wmma::store_matrix_sync( + KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio), + VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n], + D_padded, nvcuda::wmma::mem_col_major); + } + } + + __syncthreads(); + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + half2 VKQ_scale; + if (std::is_same::value) { + VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]); + } else { + VKQ_scale = KQ_max_scale_h2[j0/nwarps]; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D/2 && i >= D/2) { + break; + } + + half2 VKQ_add = make_half2(0.0f, 0.0f); +#pragma unroll + for (int l = 0; l < VKQ_ratio; ++l) { + VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i]; + } + VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add; + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j_VKQ = j0 + threadIdx.y; + if (ic0 + j_VKQ >= ne01) { + return; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + + float KQ_rowsum_j; + if (std::is_same::value) { + KQ_rowsum_j = KQ_rowsum_f[j0/nwarps]; + } else { + KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]); + } + +#pragma unroll + for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + if (i0 + WARP_SIZE > D && i >= D) { + break; + } + float dst_val = VKQ[j_VKQ*D_padded + i]; + if (parallel_blocks == 1) { + dst_val /= KQ_rowsum_j; + } + dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val; + } + + if (parallel_blocks == 1 || threadIdx.x != 0) { + continue; + } + + float2 dst_meta_val; + if (std::is_same::value) { + dst_meta_val.x = KQ_max_f[j0/nwarps]; + } else { + dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]); + } + dst_meta_val.y = KQ_rowsum_j; + dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val; + } +#else + NO_DEVICE_CODE; +#endif // FP16_MMA_AVAILABLE +} + +constexpr int get_max_power_of_2(int x) { + return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1; +} + +static_assert(get_max_power_of_2(1) == 1, "Test failed."); +static_assert(get_max_power_of_2(2) == 2, "Test failed."); +static_assert(get_max_power_of_2(4) == 4, "Test failed."); +static_assert(get_max_power_of_2(6) == 2, "Test failed."); + +// Number of VKQ rows calculated in parallel: +constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) { + return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m; +} + +static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed."); +static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed."); +static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed."); +static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed."); +static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed."); +static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed."); +static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed."); + +template +void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + + constexpr int nwarps = 4; + + constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16; + const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3]; + const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; + + if (4*blocks_num_pb1 < 2*nsm) { + constexpr int parallel_blocks = 4; + fattn_kernel_t fattn_kernel = flash_attn_ext_f16; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + return; + } + if (2*blocks_num_pb1 < 2*nsm) { + constexpr int parallel_blocks = 2; + fattn_kernel_t fattn_kernel = flash_attn_ext_f16; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + return; + } + constexpr int parallel_blocks = 1; + fattn_kernel_t fattn_kernel = flash_attn_ext_f16; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); +} + +#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \ + template void ggml_cuda_flash_attn_ext_wmma_f16_case \ + (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ + +extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float); +extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float); +extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float); +extern DECL_FATTN_WMMA_F16_CASE(112, 16, float); +extern DECL_FATTN_WMMA_F16_CASE(128, 16, float); +extern DECL_FATTN_WMMA_F16_CASE(256, 16, float); + +extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float); +extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float); +extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float); +extern DECL_FATTN_WMMA_F16_CASE(112, 32, float); +extern DECL_FATTN_WMMA_F16_CASE(128, 32, float); +// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float); + +extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half); +extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half); +extern DECL_FATTN_WMMA_F16_CASE(128, 8, half); +extern DECL_FATTN_WMMA_F16_CASE(256, 8, half); + +extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half); +extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half); +extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half); +extern DECL_FATTN_WMMA_F16_CASE(112, 16, half); +extern DECL_FATTN_WMMA_F16_CASE(128, 16, half); +extern DECL_FATTN_WMMA_F16_CASE(256, 16, half); + +extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half); +extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half); +extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half); +extern DECL_FATTN_WMMA_F16_CASE(112, 32, half); +extern DECL_FATTN_WMMA_F16_CASE(128, 32, half); +extern DECL_FATTN_WMMA_F16_CASE(256, 16, half); diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu index af7c95232..b35ab67a8 100644 --- a/ggml-cuda/fattn.cu +++ b/ggml-cuda/fattn.cu @@ -4,468 +4,313 @@ #include "fattn-tile-f32.cuh" #include "fattn-vec-f16.cuh" #include "fattn-vec-f32.cuh" +#include "fattn-wmma-f16.cuh" #include "fattn.cuh" #include -#if FP16_MMA_AVAILABLE -#include -#endif +static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * KQV = dst; + const ggml_tensor * Q = dst->src[0]; -// D == head size, VKQ_stride == num VKQ rows calculated in parallel: -template -#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -__launch_bounds__(nwarps*WARP_SIZE, 1) -#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) -static __global__ void flash_attn_ext_f16( - const char * __restrict__ Q, - const char * __restrict__ K, - const char * __restrict__ V, - const char * __restrict__ mask, - float * __restrict__ dst, - float2 * __restrict__ dst_meta, - const float scale, - const float max_bias, - const float m0, - const float m1, - const uint32_t n_head_log2, - const int ne00, - const int ne01, - const int ne02, - const int ne03, - const int ne10, - const int ne11, - const int ne12, - const int ne13, - const int ne31, - const int nb31, - const int nb01, - const int nb02, - const int nb03, - const int nb11, - const int nb12, - const int nb13, - const int ne0, - const int ne1, - const int ne2, - const int ne3) { -#if FP16_MMA_AVAILABLE - //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + const int32_t precision = KQV->op_params[2]; - const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on. - const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. - - static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE."); - static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16."); - constexpr int frag_m = ncols == 8 ? 32 : 16; - constexpr int frag_n = ncols == 8 ? 8 : 16; - static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0."); - typedef nvcuda::wmma::fragment frag_a_K; - typedef nvcuda::wmma::fragment frag_a_V; - typedef nvcuda::wmma::fragment frag_b; - typedef nvcuda::wmma::fragment frag_c_KQ; - typedef nvcuda::wmma::fragment frag_c_VKQ; - - constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel. - constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy. - static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps."); - - // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts: - constexpr int D_padded = D + 8; - constexpr int kqs_padded = FATTN_KQ_STRIDE + 8; - constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half); - - const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. - const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0); - const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio)); - const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape - const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0; - const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2); - - const int stride_Q = nb01 / sizeof(float); - const int stride_KV = nb11 / sizeof(half); - - const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); - const half slopeh = __float2half(slopef); - const half2 slope2 = make_half2(slopef, slopef); - - frag_b Q_b[D/16][ncols/frag_n]; - - // A single buffer for temporarily holding tiles of KQ and VKQ parts: - constexpr int mem_KQ = ncols*kqs_padded*kqar; - constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded; - __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts]; - float * KQ_f = (float *) KQ; - half2 * KQ2 = (half2 *) KQ; - - float KQ_rowsum_f[ncols/nwarps] = {0.0f}; - float KQ_max_f[ncols/nwarps]; - float KQ_max_scale_f[ncols/nwarps] = {0.0f}; - -#pragma unroll - for (int j = 0; j < ncols/nwarps; ++j) { - KQ_max_f[j] = -FLT_MAX/2.0f; - } - - half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}}; - half2 KQ_max_h2[ncols/nwarps]; - half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}}; - -#pragma unroll - for (int j = 0; j < ncols/nwarps; ++j) { - KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF); - } - - __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice. - half2 * VKQ2 = (half2 *) VKQ; -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += nwarps) { - const int j = j0 + threadIdx.y; -#pragma unroll - for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - if (i0 + WARP_SIZE > D/2 && i >= D/2) { - break; - } - VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f); - } - } - - // Convert Q to half and apply scale, temporarily store in KQ: -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += nwarps) { - const int j = j0 + threadIdx.y; -#pragma unroll - for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - if (i0 + WARP_SIZE > D && i >= D) { - break; - } - KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f; - } - } - - __syncthreads(); - - // Load Q into tensor core fragments/registers since it will be used frequently: -#pragma unroll - for (int i0 = 0; i0 < D; i0 += 16) { -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += frag_n) { - nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded); - } - } - - __syncthreads(); - - // Iterate over ne11 == previous tokens: - for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) { - // Calculate tile of KQ: -#pragma unroll - for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) { - frag_c_KQ KQ_c[ncols/frag_n]; -#pragma unroll - for (int j = 0; j < ncols/frag_n; ++j) { - nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f); - } -#pragma unroll - for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) { - frag_a_K K_a; - nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV); -#pragma unroll - for (int j = 0; j < ncols/frag_n; ++j) { - nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]); - } - } -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += frag_n) { - nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major); - } - } - - __syncthreads(); - - // Calculate softmax for each KQ column using the current max. value. - // The divisor is stored in KQ_rowsum and will be applied at the end. -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += nwarps) { - const int j = j0 + threadIdx.y; - - if (std::is_same::value) { - float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE]; -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k]; - } - - float KQ_max_new = KQ_max_f[j0/nwarps]; -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f; - KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]); - } - KQ_max_new = warp_reduce_max(KQ_max_new); - - const float diff = KQ_max_f[j0/nwarps] - KQ_max_new; - KQ_max_scale_f[j0/nwarps] = expf(diff); - if (diff <= SOFTMAX_FTZ_THRESHOLD) { - KQ_max_scale_f[j0/nwarps] = 0.0f; - } - KQ_max_f[j0/nwarps] = KQ_max_new; - - float KQ_rowsum_add = 0.0f; -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps]; - KQ_f_tmp[k0/WARP_SIZE] = expf(diff); - if (diff <= SOFTMAX_FTZ_THRESHOLD) { - KQ_f_tmp[k0/WARP_SIZE] = 0.0f; - } - KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE]; - KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE]; - } - KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); - - // Scale previous KQ_rowsum to account for a potential increase in KQ_max: - KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add; - } else { - half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)]; -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k]; - } - - half2 KQ_max_new = KQ_max_h2[j0/nwarps]; -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f); - KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]); - } - KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new)))); - const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new; - KQ_max_scale_h2[j0/nwarps] = h2exp(diff); - const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); - *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask; - KQ_max_h2[j0/nwarps] = KQ_max_new; - - half2 KQ_rowsum_add = make_half2(0.0f, 0.0f); -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) { - const int k = k0 + threadIdx.x; - - const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps]; - KQ2_tmp[k0/WARP_SIZE] = h2exp(diff); - const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD)); - *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask; - KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE]; - KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE]; - } - KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add); - - // Scale previous KQ_rowsum to account for a potential increase in KQ_max: - KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add; - } - } - - __syncthreads(); - - frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n]; -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += frag_n) { -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { - const int k = k0 + (threadIdx.y % VKQ_ratio)*16; - nvcuda::wmma::load_matrix_sync( - KQ_b[k0/(VKQ_ratio*16)][j0/frag_n], - KQ + j0*(kqar*kqs_padded) + k, - kqar*kqs_padded); - } - } - - frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n]; -#pragma unroll - for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) { -#pragma unroll - for (int j = 0; j < ncols/frag_n; ++j) { - nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f); - } - -#pragma unroll - for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) { - const int k = k0 + (threadIdx.y % VKQ_ratio)*16; - - frag_a_V v_a; - nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV); -#pragma unroll - for (int j = 0; j < ncols/frag_n; ++j) { - nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]); - } - } - } - - __syncthreads(); - - const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded); -#pragma unroll - for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) { -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += frag_n) { - nvcuda::wmma::store_matrix_sync( - KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio), - VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n], - D_padded, nvcuda::wmma::mem_col_major); - } - } - - __syncthreads(); - -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += nwarps) { - const int j = j0 + threadIdx.y; - - half2 VKQ_scale; - if (std::is_same::value) { - VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]); - } else { - VKQ_scale = KQ_max_scale_h2[j0/nwarps]; - } - -#pragma unroll - for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - if (i0 + WARP_SIZE > D/2 && i >= D/2) { + if (precision != GGML_PREC_DEFAULT) { + if (Q->ne[1] <= 32 || Q->ne[0] > 128) { + constexpr int cols_per_block = 16; + switch (Q->ne[0]) { + case 64: + ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst); + break; + case 80: + ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst); + break; + case 96: + ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst); + break; + case 112: + ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst); + break; + case 128: + ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst); + break; + case 256: + ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst); + break; + default: + GGML_ASSERT(false); + break; + } + } else { + constexpr int cols_per_block = 32; + switch (Q->ne[0]) { + case 64: + ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst); + break; + case 80: + ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst); + break; + case 96: + ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst); + break; + case 112: + ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst); + break; + case 128: + ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst); + break; + // case 256: + // ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst); + // break; + default: + GGML_ASSERT(false); break; - } - - half2 VKQ_add = make_half2(0.0f, 0.0f); -#pragma unroll - for (int l = 0; l < VKQ_ratio; ++l) { - VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i]; - } - VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add; } } - - __syncthreads(); + return; } -#pragma unroll - for (int j0 = 0; j0 < ncols; j0 += nwarps) { - const int j_VKQ = j0 + threadIdx.y; - if (ic0 + j_VKQ >= ne01) { - return; - } - const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; - - float KQ_rowsum_j; - if (std::is_same::value) { - KQ_rowsum_j = KQ_rowsum_f[j0/nwarps]; - } else { - KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]); - } - -#pragma unroll - for (int i0 = 0; i0 < D; i0 += WARP_SIZE) { - const int i = i0 + threadIdx.x; - if (i0 + WARP_SIZE > D && i >= D) { + if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) { + constexpr int cols_per_block = 8; + switch (Q->ne[0]) { + case 64: + ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst); + break; + case 96: + ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst); + break; + case 128: + ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst); + break; + case 256: + ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); + break; + default: + GGML_ASSERT(false); break; - } - float dst_val = VKQ[j_VKQ*D_padded + i]; - if (parallel_blocks == 1) { - dst_val /= KQ_rowsum_j; - } - dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val; } - - if (parallel_blocks == 1 || threadIdx.x != 0) { - continue; - } - - float2 dst_meta_val; - if (std::is_same::value) { - dst_meta_val.x = KQ_max_f[j0/nwarps]; - } else { - dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]); - } - dst_meta_val.y = KQ_rowsum_j; - dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val; + return; } + + if (Q->ne[1] <= 32) { + constexpr int cols_per_block = 16; + switch (Q->ne[0]) { + case 64: + ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst); + break; + case 80: + ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst); + break; + case 96: + ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst); + break; + case 112: + ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst); + break; + case 128: + ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst); + break; + case 256: + ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 32; + switch (Q->ne[0]) { + case 64: + ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst); + break; + case 80: + ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst); + break; + case 96: + ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst); + break; + case 112: + ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst); + break; + case 128: + ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst); + break; + case 256: + ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst); + break; + default: + GGML_ASSERT(false); + break; + } +} +#define FATTN_VEC_F16_CASE(D, type_K, type_V) \ + if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \ + ggml_cuda_flash_attn_ext_vec_f16_case(ctx, dst); \ + return; \ + } \ + +static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_tensor * Q = dst->src[1]; + ggml_tensor * K = dst->src[1]; + ggml_tensor * V = dst->src[2]; + +#ifdef GGML_CUDA_FA_ALL_QUANTS + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 ) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16) + + FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16) #else - NO_DEVICE_CODE; -#endif // FP16_MMA_AVAILABLE + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0) + + FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0) + + FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16) + FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16) +#endif // GGML_CUDA_FA_ALL_QUANTS + + on_no_fattn_vec_case(Q->ne[0]); } -constexpr int get_max_power_of_2(int x) { - return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1; -} +#define FATTN_VEC_F32_CASE(D, type_K, type_V) \ + if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \ + ggml_cuda_flash_attn_ext_vec_f32_case(ctx, dst); \ + return; \ + } \ -static_assert(get_max_power_of_2(1) == 1, "Test failed."); -static_assert(get_max_power_of_2(2) == 2, "Test failed."); -static_assert(get_max_power_of_2(4) == 4, "Test failed."); -static_assert(get_max_power_of_2(6) == 2, "Test failed."); +static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + ggml_tensor * Q = dst->src[1]; + ggml_tensor * K = dst->src[1]; + ggml_tensor * V = dst->src[2]; -// Number of VKQ rows calculated in parallel: -constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) { - return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m; -} +#ifdef GGML_CUDA_FA_ALL_QUANTS + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16) -static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed."); -static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed."); -static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed."); -static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed."); -static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed."); -static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed."); -static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed."); -static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed."); -static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed."); + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0) -template -void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - const ggml_tensor * Q = dst->src[0]; + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1) - constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16; - const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3]; - const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0) - if (4*blocks_num_pb1 < 2*nsm) { - constexpr int parallel_blocks = 4; - fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - return; - } - if (2*blocks_num_pb1 < 2*nsm) { - constexpr int parallel_blocks = 2; - fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); - return; - } - constexpr int parallel_blocks = 1; - fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1) + + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0) + + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16) + + FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16) +#else + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0) + + FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0) + + FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16) + FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16) +#endif // GGML_CUDA_FA_ALL_QUANTS + + on_no_fattn_vec_case(Q->ne[0]); } void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * KQV = dst; const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; ggml_cuda_set_device(ctx.device); const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const int32_t precision = KQV->op_params[2]; + const bool quantized_KV = ggml_is_quantized(K->type) || ggml_is_quantized(V->type); + // On AMD the tile kernels perform poorly, use the vec kernel instead: - if (cc >= CC_OFFSET_AMD) { - if (precision == GGML_PREC_DEFAULT) { - ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); + if (cc >= CC_OFFSET_AMD || quantized_KV) { + if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) { + ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); } else { ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); } @@ -483,156 +328,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst if (!fp16_mma_available(cc)) { if (Q->ne[1] <= 8) { - ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); + ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); } else { ggml_cuda_flash_attn_ext_tile_f16(ctx, dst); } return; } - if (precision != GGML_PREC_DEFAULT) { - if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) { + if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) { + if (precision == GGML_PREC_DEFAULT) { + ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); + return; + } else if(Q->ne[0] <= 128) { ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); return; } - - if (Q->ne[1] <= 32 || Q->ne[0] > 128) { - constexpr int cols_per_block = 16; - constexpr int nwarps = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst); - break; - case 80: - launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst); - break; - case 96: - launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst); - break; - case 112: - launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst); - break; - case 128: - launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst); - break; - case 256: - launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst); - break; - default: - GGML_ASSERT(false); - break; - } - } else { - constexpr int cols_per_block = 32; - constexpr int nwarps = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst); - break; - case 80: - launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst); - break; - case 96: - launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst); - break; - case 112: - launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst); - break; - case 128: - launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst); - break; - // case 256: - // launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst); - // break; - default: - GGML_ASSERT(false); - break; - } - } - return; } - if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) { - ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); - return; - } - - if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) { - constexpr int cols_per_block = 8; - constexpr int nwarps = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst); - break; - case 96: - launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst); - break; - case 128: - launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst); - break; - case 256: - launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - if (Q->ne[1] <= 32) { - constexpr int cols_per_block = 16; - constexpr int nwarps = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst); - break; - case 80: - launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst); - break; - case 96: - launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst); - break; - case 112: - launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst); - break; - case 128: - launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst); - break; - case 256: - launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst); - break; - default: - GGML_ASSERT(false); - break; - } - return; - } - - constexpr int cols_per_block = 32; - constexpr int nwarps = 4; - switch (Q->ne[0]) { - case 64: - launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst); - break; - case 80: - launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst); - break; - case 96: - launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst); - break; - case 112: - launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst); - break; - case 128: - launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst); - break; - case 256: - launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst); - break; - default: - GGML_ASSERT(false); - break; - } - return; + ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst); } diff --git a/ggml-cuda/mmq.cu b/ggml-cuda/mmq.cu index c0a66d9b6..ebe1dc5c8 100644 --- a/ggml-cuda/mmq.cu +++ b/ggml-cuda/mmq.cu @@ -386,7 +386,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE]; } - return vec_dot_q8_0_q8_1_impl + return vec_dot_q8_0_q8_1_impl (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]); } @@ -547,7 +547,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( const float * x_dmf = (const float *) x_dm; const float * y_df = (const float *) y_ds; - return vec_dot_q8_0_q8_1_impl + return vec_dot_q8_0_q8_1_impl (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0], y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]); } diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu new file mode 100644 index 000000000..d7f103475 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu new file mode 100644 index 000000000..f3d8d2eda --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu new file mode 100644 index 000000000..9beb05ca2 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu new file mode 100644 index 000000000..0c163dcba --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu new file mode 100644 index 000000000..3980167b3 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu new file mode 100644 index 000000000..fe099921d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu new file mode 100644 index 000000000..d4d5e7999 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu new file mode 100644 index 000000000..f08b10c4d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu new file mode 100644 index 000000000..e8c3f8adc --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu new file mode 100644 index 000000000..c01416a13 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu new file mode 100644 index 000000000..46615f281 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu new file mode 100644 index 000000000..72dcc1a2f --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu new file mode 100644 index 000000000..9fa8a377d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu new file mode 100644 index 000000000..20ea86c6d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu new file mode 100644 index 000000000..ed815957c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu new file mode 100644 index 000000000..bbe9e6a1c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu new file mode 100644 index 000000000..d12a61699 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu new file mode 100644 index 000000000..1e901afcb --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu new file mode 100644 index 000000000..a3f98ce37 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu new file mode 100644 index 000000000..1bae97243 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu new file mode 100644 index 000000000..7258e9775 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu new file mode 100644 index 000000000..08435c005 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu new file mode 100644 index 000000000..17864e8e9 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu new file mode 100644 index 000000000..9239138c9 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu new file mode 100644 index 000000000..e387d9c1d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu new file mode 100644 index 000000000..d69d3bbd6 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu new file mode 100644 index 000000000..61a478816 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu new file mode 100644 index 000000000..89995080a --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu new file mode 100644 index 000000000..9e6a58dff --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu new file mode 100644 index 000000000..153cbfd86 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu new file mode 100644 index 000000000..09d576558 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu new file mode 100644 index 000000000..3e3c91e68 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu new file mode 100644 index 000000000..7b973058f --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu new file mode 100644 index 000000000..a43a475d4 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu new file mode 100644 index 000000000..5b570c0a3 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu new file mode 100644 index 000000000..bf2cc684e --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu new file mode 100644 index 000000000..7428e45ea --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu new file mode 100644 index 000000000..4aee830de --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu new file mode 100644 index 000000000..36acb6319 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu new file mode 100644 index 000000000..a4090c390 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu new file mode 100644 index 000000000..17b6b2d11 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu new file mode 100644 index 000000000..549e1cea1 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu new file mode 100644 index 000000000..66bcd820f --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f16.cuh" + +DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu new file mode 100644 index 000000000..15933a299 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu new file mode 100644 index 000000000..8aa785583 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu new file mode 100644 index 000000000..bde3924fd --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu new file mode 100644 index 000000000..1708181c1 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu new file mode 100644 index 000000000..30fa6fa4c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu new file mode 100644 index 000000000..69673d50f --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu new file mode 100644 index 000000000..d8b2b2e18 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu new file mode 100644 index 000000000..01cce7ab5 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu new file mode 100644 index 000000000..fd5563b39 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu new file mode 100644 index 000000000..b13cc4a0c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu new file mode 100644 index 000000000..86f1fc637 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu new file mode 100644 index 000000000..26e7df4be --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu new file mode 100644 index 000000000..e4fda8952 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu new file mode 100644 index 000000000..bd15117b4 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu new file mode 100644 index 000000000..cb6c6a760 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu new file mode 100644 index 000000000..201b6641d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu new file mode 100644 index 000000000..6da57a44a --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu new file mode 100644 index 000000000..47623c9bf --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu new file mode 100644 index 000000000..82c6861d2 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu new file mode 100644 index 000000000..24a80c2b0 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu new file mode 100644 index 000000000..b95eaf7e1 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu new file mode 100644 index 000000000..275f2efcc --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu new file mode 100644 index 000000000..3673f7fd5 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu new file mode 100644 index 000000000..2c4d59947 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu new file mode 100644 index 000000000..2457cdf3f --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu new file mode 100644 index 000000000..b3b411ed3 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu new file mode 100644 index 000000000..b7f308a4d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu new file mode 100644 index 000000000..739686697 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu new file mode 100644 index 000000000..708d03113 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu new file mode 100644 index 000000000..df891be60 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu new file mode 100644 index 000000000..f49b6d1f9 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu new file mode 100644 index 000000000..1de92148b --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu new file mode 100644 index 000000000..7a1ba7f8d --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu new file mode 100644 index 000000000..25493e4ba --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu new file mode 100644 index 000000000..3cd650c7b --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu new file mode 100644 index 000000000..88ffa43d6 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu new file mode 100644 index 000000000..8c7bac6c2 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu new file mode 100644 index 000000000..a28f62e7b --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu new file mode 100644 index 000000000..d39838b96 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu new file mode 100644 index 000000000..834d40f6c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu new file mode 100644 index 000000000..f7d54668b --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu new file mode 100644 index 000000000..59e00ad83 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1); diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu new file mode 100644 index 000000000..6e63893de --- /dev/null +++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu @@ -0,0 +1,5 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-vec-f32.cuh" + +DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0); diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu new file mode 100644 index 000000000..ca356ad6c --- /dev/null +++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu @@ -0,0 +1,10 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +DECL_FATTN_WMMA_F16_CASE(64, 16, float); +DECL_FATTN_WMMA_F16_CASE(80, 16, float); +DECL_FATTN_WMMA_F16_CASE(96, 16, float); +DECL_FATTN_WMMA_F16_CASE(112, 16, float); +DECL_FATTN_WMMA_F16_CASE(128, 16, float); +DECL_FATTN_WMMA_F16_CASE(256, 16, float); diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu new file mode 100644 index 000000000..430ee64eb --- /dev/null +++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu @@ -0,0 +1,9 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +DECL_FATTN_WMMA_F16_CASE(64, 32, float); +DECL_FATTN_WMMA_F16_CASE(80, 32, float); +DECL_FATTN_WMMA_F16_CASE(96, 32, float); +DECL_FATTN_WMMA_F16_CASE(112, 32, float); +DECL_FATTN_WMMA_F16_CASE(128, 32, float); diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu new file mode 100644 index 000000000..d421d17cc --- /dev/null +++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu @@ -0,0 +1,10 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +DECL_FATTN_WMMA_F16_CASE(64, 16, half); +DECL_FATTN_WMMA_F16_CASE(80, 16, half); +DECL_FATTN_WMMA_F16_CASE(96, 16, half); +DECL_FATTN_WMMA_F16_CASE(112, 16, half); +DECL_FATTN_WMMA_F16_CASE(128, 16, half); +DECL_FATTN_WMMA_F16_CASE(256, 16, half); diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu new file mode 100644 index 000000000..deacd5f58 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu @@ -0,0 +1,10 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +DECL_FATTN_WMMA_F16_CASE(64, 32, half); +DECL_FATTN_WMMA_F16_CASE(80, 32, half); +DECL_FATTN_WMMA_F16_CASE(96, 32, half); +DECL_FATTN_WMMA_F16_CASE(112, 32, half); +DECL_FATTN_WMMA_F16_CASE(128, 32, half); +DECL_FATTN_WMMA_F16_CASE(256, 32, half); diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu new file mode 100644 index 000000000..282896733 --- /dev/null +++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu @@ -0,0 +1,8 @@ +// This file has been autogenerated by generate-variants.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +DECL_FATTN_WMMA_F16_CASE(64, 8, half); +DECL_FATTN_WMMA_F16_CASE(96, 8, half); +DECL_FATTN_WMMA_F16_CASE(128, 8, half); +DECL_FATTN_WMMA_F16_CASE(256, 8, half); diff --git a/ggml-cuda/template-instances/generate_cu_files.py b/ggml-cuda/template-instances/generate_cu_files.py new file mode 100755 index 000000000..ee5b460e0 --- /dev/null +++ b/ggml-cuda/template-instances/generate_cu_files.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python3 + +from glob import glob +import os + +TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"] + +SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually. + +#include "../fattn-vec-f{vkq_size}.cuh" + +DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v}); +""" + +SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually. + +#include "../fattn-wmma-f16.cuh" + +""" + +SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n" + + +def get_short_name(long_quant_name): + return long_quant_name.replace("GGML_TYPE_", "").lower() + + +def get_head_sizes(type_k, type_v): + if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16": + return [64, 128, 256] + if type_k == "GGML_TYPE_F16": + return [64, 128] + return [128] + + +for filename in glob("*.cu"): + os.remove(filename) + +for vkq_size in [16, 32]: + for type_k in TYPES_KV: + for type_v in TYPES_KV: + for head_size in get_head_sizes(type_k, type_v): + with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f: + f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v)) + +for kq_acc_t in ["half", "float"]: + for cols_per_block in [8, 16, 32]: + if kq_acc_t == "float" and cols_per_block == 8: + continue + + with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f: + f.write(SOURCE_FATTN_WMMA_START) + + for head_size in [64, 80, 96, 112, 128, 256]: + if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32 + continue + if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance + continue + f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size)) diff --git a/ggml-cuda/vecdotq.cuh b/ggml-cuda/vecdotq.cuh index 5ebdddcc7..df9752390 100644 --- a/ggml-cuda/vecdotq.cuh +++ b/ggml-cuda/vecdotq.cuh @@ -180,8 +180,8 @@ template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp #define VDR_Q8_0_Q8_1_MMVQ 2 #define VDR_Q8_0_Q8_1_MMQ 8 -template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( - const int * v, const int * u, const float & d8_0, const float & d8_1) { +template static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl( + const int * v, const int * u, const T & d8_0, const T & d8_1) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics int sumi = 0; @@ -192,7 +192,7 @@ template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_imp sumi = __dp4a(v[i], u[i], sumi); } - return d8_0*d8_1 * sumi; + return d8_0*d8_1 * ((T) sumi); #else NO_DEVICE_CODE; #endif // __CUDA_ARCH__ >= MIN_CC_DP4A @@ -656,7 +656,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1( u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); } - return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); + return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); } static __device__ __forceinline__ float vec_dot_q2_K_q8_1( diff --git a/ggml-metal.m b/ggml-metal.m index 079912952..fddc44f78 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -779,6 +779,12 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const case GGML_OP_LEAKY_RELU: return true; case GGML_OP_FLASH_ATTN_EXT: + if (op->src[1]->type != GGML_TYPE_F16) { + return false; + } + if (op->src[2]->type != GGML_TYPE_F16) { + return false; + } if (op->src[0]->ne[0] == 256) { return false; } diff --git a/llama.cpp b/llama.cpp index 40d2ec2c9..841be1de7 100644 --- a/llama.cpp +++ b/llama.cpp @@ -16221,6 +16221,11 @@ struct llama_context * llama_new_context_with_model( params.flash_attn = false; } + if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) { + LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__); + return nullptr; + } + llama_context * ctx = new llama_context(*model); const auto & hparams = model->hparams; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 72edc64a7..777230127 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1570,21 +1570,23 @@ struct test_flash_attn_ext : public test_case { const float max_bias; // ALiBi + const ggml_type type_KV; + std::string vars() override { - return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias); + return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV); } double max_nmse_err() override { return 5e-4; } - test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f) - : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {} + test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16) + : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {} ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1); - ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); - ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1); + ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1); + ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1); ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr; ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias); return out; @@ -2290,7 +2292,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op for (int nh : { 32, }) { for (int kv : { 512, 1024, }) { for (int nb : { 1, 2, 4, 8, }) { - test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias)); + for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { + test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV)); + } } } } From 750f60c03e4d3f53fa51910551ce87a3d508d2d7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 1 Jun 2024 15:47:04 +0200 Subject: [PATCH 44/47] CUDA: fix Pascal FA, deq. KV to FP16 for batch > 8 (#7681) --- ggml-cuda/fattn-common.cuh | 74 ++++++++++++++++++++++++++++-------- ggml-cuda/fattn-tile-f16.cu | 4 +- ggml-cuda/fattn-tile-f32.cu | 4 +- ggml-cuda/fattn-vec-f16.cuh | 4 +- ggml-cuda/fattn-vec-f32.cuh | 4 +- ggml-cuda/fattn-wmma-f16.cuh | 6 +-- ggml-cuda/fattn.cu | 6 +-- 7 files changed, 73 insertions(+), 29 deletions(-) diff --git a/ggml-cuda/fattn-common.cuh b/ggml-cuda/fattn-common.cuh index 4bf03a49f..c00f8606a 100644 --- a/ggml-cuda/fattn-common.cuh +++ b/ggml-cuda/fattn-common.cuh @@ -1,6 +1,7 @@ #pragma once #include "common.cuh" +#include "convert.cuh" #include "vecdotq.cuh" #include @@ -53,7 +54,7 @@ typedef float (*vec_dot_KQ_f32_t)( template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ > MIN_CC_DP4A +#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c; GGML_UNUSED(Q_v); @@ -95,13 +96,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0( GGML_UNUSED(Q_q8); GGML_UNUSED(Q_ds_v); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ > MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ > MIN_CC_DP4A +#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c; GGML_UNUSED(Q_v); @@ -147,13 +148,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1( GGML_UNUSED(Q_q8); GGML_UNUSED(Q_ds_v); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ > MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ > MIN_CC_DP4A +#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c; GGML_UNUSED(Q_v); @@ -202,13 +203,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0( GGML_UNUSED(Q_q8); GGML_UNUSED(Q_ds_v); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ > MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ > MIN_CC_DP4A +#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c; GGML_UNUSED(Q_v); @@ -261,13 +262,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1( GGML_UNUSED(Q_q8); GGML_UNUSED(Q_ds_v); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ > MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) { -#if __CUDA_ARCH__ > MIN_CC_DP4A +#if __CUDA_ARCH__ >= MIN_CC_DP4A const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c; GGML_UNUSED(Q_v); @@ -302,7 +303,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0( GGML_UNUSED(Q_q8); GGML_UNUSED(Q_ds_v); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ > MIN_CC_DP4A +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } template @@ -620,7 +621,10 @@ static void on_no_fattn_vec_case(const int D) { } template -void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) { +void launch_fattn( + ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, + const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V +) { const ggml_tensor * Q = dst->src[0]; const ggml_tensor * K = dst->src[1]; const ggml_tensor * V = dst->src[2]; @@ -641,9 +645,49 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern ggml_cuda_pool & pool = ctx.pool(); cudaStream_t main_stream = ctx.stream(); + ggml_cuda_pool_alloc K_f16(pool); + ggml_cuda_pool_alloc V_f16(pool); ggml_cuda_pool_alloc dst_tmp(pool); ggml_cuda_pool_alloc dst_tmp_meta(pool); + char * K_data = (char *) K->data; + size_t nb11 = K->nb[1]; + size_t nb12 = K->nb[2]; + size_t nb13 = K->nb[3]; + + char * V_data = (char *) V->data; + size_t nb21 = V->nb[1]; + size_t nb22 = V->nb[2]; + size_t nb23 = V->nb[3]; + + if (need_f16_K && K->type != GGML_TYPE_F16) { + K_f16.alloc(ggml_nelements(K)); + to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type); + to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream); + K_data = (char *) K_f16.ptr; + + const size_t bs = ggml_blck_size(K->type); + const size_t ts = ggml_type_size(K->type); + + nb11 = nb11*bs*sizeof(half)/ts; + nb12 = nb12*bs*sizeof(half)/ts; + nb13 = nb13*bs*sizeof(half)/ts; + } + + if (need_f16_V && V->type != GGML_TYPE_F16) { + V_f16.alloc(ggml_nelements(V)); + to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type); + to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream); + V_data = (char *) V_f16.ptr; + + const size_t bs = ggml_blck_size(V->type); + const size_t ts = ggml_type_size(V->type); + + nb21 = nb21*bs*sizeof(half)/ts; + nb22 = nb22*bs*sizeof(half)/ts; + nb23 = nb23*bs*sizeof(half)/ts; + } + if (parallel_blocks > 1) { dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); @@ -667,8 +711,8 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern fattn_kernel<<>>( (const char *) Q->data, - (const char *) K->data, - (const char *) V->data, + K_data, + V_data, mask ? ((const char *) mask->data) : nullptr, (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, scale, max_bias, m0, m1, n_head_log2, @@ -676,8 +720,8 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern K->ne[0], K->ne[1], K->ne[2], K->ne[3], mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, Q->nb[1], Q->nb[2], Q->nb[3], - K->nb[1], K->nb[2], K->nb[3], - V->nb[1], V->nb[2], V->nb[3], + nb11, nb12, nb13, + nb21, nb22, nb23, KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] ); CUDA_CHECK(cudaGetLastError()); diff --git a/ggml-cuda/fattn-tile-f16.cu b/ggml-cuda/fattn-tile-f16.cu index 3d64a9eba..cb11d7212 100644 --- a/ggml-cuda/fattn-tile-f16.cu +++ b/ggml-cuda/fattn-tile-f16.cu @@ -278,13 +278,13 @@ void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int D = 64; constexpr int nwarps = 8; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); } break; case 128: { constexpr int D = 128; constexpr int nwarps = 8; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); } break; default: { GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); diff --git a/ggml-cuda/fattn-tile-f32.cu b/ggml-cuda/fattn-tile-f32.cu index 61fce0a7e..15e22f495 100644 --- a/ggml-cuda/fattn-tile-f32.cu +++ b/ggml-cuda/fattn-tile-f32.cu @@ -275,13 +275,13 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * constexpr int D = 64; constexpr int nwarps = 8; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); } break; case 128: { constexpr int D = 128; constexpr int nwarps = 8; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); } break; default: { GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128."); diff --git a/ggml-cuda/fattn-vec-f16.cuh b/ggml-cuda/fattn-vec-f16.cuh index ea4fcc972..9e1aa2c6b 100644 --- a/ggml-cuda/fattn-vec-f16.cuh +++ b/ggml-cuda/fattn-vec-f16.cuh @@ -290,7 +290,9 @@ template ; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + constexpr bool need_f16_K = D != 128; + constexpr bool need_f16_V = D != 128 && D != 64; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V); } template diff --git a/ggml-cuda/fattn-vec-f32.cuh b/ggml-cuda/fattn-vec-f32.cuh index 3009f0f43..ce23a4ebd 100644 --- a/ggml-cuda/fattn-vec-f32.cuh +++ b/ggml-cuda/fattn-vec-f32.cuh @@ -271,7 +271,9 @@ template ; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + constexpr bool need_f16_K = D != 128; + constexpr bool need_f16_V = D != 128 && D != 64; + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V); } template diff --git a/ggml-cuda/fattn-wmma-f16.cuh b/ggml-cuda/fattn-wmma-f16.cuh index 65ed31852..59cd30d78 100644 --- a/ggml-cuda/fattn-wmma-f16.cuh +++ b/ggml-cuda/fattn-wmma-f16.cuh @@ -438,18 +438,18 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm if (4*blocks_num_pb1 < 2*nsm) { constexpr int parallel_blocks = 4; fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); return; } if (2*blocks_num_pb1 < 2*nsm) { constexpr int parallel_blocks = 2; fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); return; } constexpr int parallel_blocks = 1; fattn_kernel_t fattn_kernel = flash_attn_ext_f16; - launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block); + launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); } #define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \ diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu index b35ab67a8..38d30b210 100644 --- a/ggml-cuda/fattn.cu +++ b/ggml-cuda/fattn.cu @@ -298,17 +298,13 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * KQV = dst; const ggml_tensor * Q = dst->src[0]; - const ggml_tensor * K = dst->src[1]; - const ggml_tensor * V = dst->src[2]; ggml_cuda_set_device(ctx.device); const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const int32_t precision = KQV->op_params[2]; - const bool quantized_KV = ggml_is_quantized(K->type) || ggml_is_quantized(V->type); - // On AMD the tile kernels perform poorly, use the vec kernel instead: - if (cc >= CC_OFFSET_AMD || quantized_KV) { + if (cc >= CC_OFFSET_AMD) { if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) { ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); } else { From 2ac95c9d5678d05e253691fb1f26471675bff5ad Mon Sep 17 00:00:00 2001 From: HanishKVC Date: Sat, 1 Jun 2024 21:50:18 +0530 Subject: [PATCH 45/47] SimpleChat: Simple histogram/repeatMatching driven garbageTrimming, Settings UI, Streaming mode, OpenAi Compat (Model, Authorization Bearer), Save/Restore session, Auto Settings UI (#7548) * SimpleChat:DU:BringIn local helper js modules using importmap Use it to bring in a simple trim garbage at end logic, which is used to trim received response. Also given that importmap assumes esm / standard js modules, so also global variables arent implicitly available outside the modules. So add it has a member of document for now * SimpleChat:DU: Add trim garbage at end in loop helper * SimpleChat:DU:TrimGarbage if unable try skip char and retry * SimpleChat:DU: Try trim using histogram based info TODO: May have to add max number of uniq chars in histogram at end of learning phase. * SimpleChat:DU: Switch trim garbage hist based to maxUniq simple Instead of blindly building histogram for specified substring length, and then checking if any new char within specified min garbage length limit, NOW exit learn state when specified maxUniq chars are found. Inturn there should be no new chars with in the specified min garbage length required limit. TODO: Need to track char classes like alphabets, numerals and special/other chars. * SimpleChat:DU: Bring in maxType to the mix along with maxUniq Allow for more uniq chars, but then ensure that a given type of char ie numerals or alphabets or other types dont cross the specified maxType limit. This allows intermixed text garbage to be identified and trimmed. * SimpleChat:DU: Cleanup debug log messages * SimpleChat:UI: Move html ui base helpers into its own module * SimpleChat:DU:Avoid setting frequence/Presence penalty Some models like llama3 found to try to be over intelligent by repeating garbage still, but by tweaking the garbage a bit so that it is not exactly same. So avoid setting these penalties and let the model's default behaviour work out, as is. Also the simple minded histogram based garbage trimming from end, works to an extent, when the garbage is more predictable and repeatative. * SimpleChat:UI: Add and use a para-create-append helper Also update the config params dump to indicate that now one needs to use document to get hold of gMe global object, this is bcas of moving to module type js. Also add ui.mjs to importmap * SimpleChat:UI: Helper to create bool button and use it wrt settings * SimpleChat:UI: Add Select helper and use it wrt ChatHistoryInCtxt * SimpleChat:UI:Select: dict-name-value, value wrt default, change Take a dict/object of name-value pairs instead of just names. Inturn specify the actual value wrt default, rather than the string representing that value. Trap the needed change event rather than click wrt select. * SimpleChat:UI: Add Div wrapped label+element helpers Move settings related elements to use the new div wrapped ones. * SimpleChat:UI:Add settings button and bring in settings ui * SimpleChat:UI:Settings make boolean button text show meaning * SimpleChat: Update a bit wrt readme and notes in du * SimpleChat: GarbageTrim enable/disable, show trimmed part ifany * SimpleChat: highlight trim, garbage trimming bitmore aggressive Make it easy for end user to identified the trimmed text. Make garbage trimming logic, consider a longer repeat garbage substring. * SimpleChat: Cleanup a bit wrt Api end point related flow Consolidate many of the Api end point related basic meta data into ApiEP class. Remove the hardcoded ApiEP/Mode settings from html+js, instead use the generic select helper logic, inturn in the settings block. Move helper to generate the appropriate request json string based on ApiEP into SimpleChat class itself. * SimpleChat:Move extracting assistant response to SimpleChat class so also the trimming of garbage. * SimpleChat:DU: Bring in both trim garbage logics to try trim * SimpleChat: Cleanup readme a bit, add one more chathistory length * SimpleChat:Stream:Initial handshake skeleton Parse the got stream responses and try extract the data from it. It allows for a part read to get a single data line or multiple data line. Inturn extract the json body and inturn the delta content/message in it. * SimpleChat: Move handling oneshot mode server response Move handling of the oneshot mode server response into SimpleChat. Also add plumbing for moving multipart server response into same. * SimpleChat: Move multi part server response handling in * SimpleChat: Add MultiPart Response handling, common trimming Add logic to call into multipart/stream server response handling. Move trimming of garbage at the end into the common handle_response helper. Add new global flag to control between oneshot and multipart/stream mode of fetching response. Allow same to be controlled by user. If in multipart/stream mode, send the stream flag to the server. * SimpleChat: show streamed generative text as it becomes available Now that the extracting of streamed generated text is implemented, add logic to show the same on the screen. * SimpleChat:DU: Add NewLines helper class To work with an array of new lines. Allow adding, appending, shifting, ... * SimpleChat:DU: Make NewLines shift more robust and flexible * SimpleChat:HandleResponseMultiPart using NewLines helper Make handle_response_multipart logic better and cleaner. Now it allows for working with the situation, where the delta data line got from server in stream mode, could be split up when recving, but still the logic will handle it appropriately. ALERT: Rather except (for now) for last data line wrt a request's response. * SimpleChat: Disable console debug by default by making it dummy Parallely save a reference to the original func. * SimpleChat:MultiPart/Stream flow cleanup Dont try utf8-decode and newlines-add_append if no data to work on. If there is no more data to get (ie done is set), then let NewLines instance return line without newline at end, So that we dont miss out on any last-data-line without newline kind of scenario. Pass stream flag wrt utf-8 decode, so that if any multi-byte char is only partly present in the passed buffer, it can be accounted for along with subsequent buffer. At sametime, bcas of utf-8's characteristics there shouldnt be any unaccounted bytes at end, for valid block of utf8 data split across chunks, so not bothering calling with stream set to false at end. LATER: Look at TextDecoder's implementation, for any over intelligence, it may be doing.. If needed, one can use done flag to account wrt both cases. * SimpleChat: Move baseUrl to Me and inturn gMe This should allow easy updating of the base url at runtime by the end user. * SimpleChat:UI: Add input element helper * SimpleChat: Add support for changing the base url This ensures that if the user is running the server with a different port or wants to try connect to server on a different machine, then this can be used. * SimpleChat: Move request headers into Me and gMe Inturn allow Authorization to be sent, if not empty. * SimpleChat: Rather need to use append to insert headers * SimpleChat: Allow Authorization header to be set by end user * SimpleChat:UI+: Return div and element wrt creatediv helpers use it to set placeholder wrt Authorization header. Also fix copy-paste oversight. * SimpleChat: readme wrt authorization, maybe minimal openai testing * SimpleChat: model request field for openai/equivalent compat May help testing with openai/equivalent web services, if they require this field. * SimpleChat: readme stream-utf-8 trim-english deps, exception2error * Readme: Add a entry for simplechat in the http server section * SimpleChat:WIP:Collate internally, Stream mode Trap exceptions This can help ensure that data fetched till that point, can be made use of, rather than losing it. On some platforms, the time taken wrt generating a long response, may lead to the network connection being broken when it enters some user-no-interaction related power saving mode. * SimpleChat:theResp-origMsg: Undo a prev change to fix non trim When the response handling was moved into SimpleChat, I had changed a flow bit unnecessarily and carelessly, which resulted in the non trim flow, missing out on retaining the ai assistant response. This has been fixed now. * SimpleChat: Save message internally in handle_response itself This ensures that throwing the caught exception again for higher up logic, doesnt lose the response collated till that time. Go through theResp.assistant in catch block, just to keep simple consistency wrt backtracing just in case. Update the readme file. * SimpleChat:Cleanup: Add spacing wrt shown req-options * SimpleChat:UI: CreateDiv Divs map to GridX2 class This allows the settings ui to be cleaner structured. * SimpleChat: Show Non SettingsUI config field by default * SimpleChat: Allow for multiline system prompt Convert SystemPrompt into a textarea with 2 rows. Reduce user-input-textarea to 2 rows from 3, so that overall vertical space usage remains same. Shorten usage messages a bit, cleanup to sync with settings ui. * SimpleChat: Add basic skeleton for saving and loading chat Inturn when ever a chat message (system/user/model) is added, the chat will be saved into browser's localStorage. * SimpleChat:ODS: Add a prefix to chatid wrt ondiskstorage key * SimpleChat:ODS:WIP:TMP: Add UI to load previously saved chat This is a temporary flow * SimpleChat:ODS:Move restore/load saved chat btn setup to Me This also allows being able to set the common system prompt ui element to loaded chat's system prompt. * SimpleChat:Readme updated wrt save and restore chat session info * SimpleChat:Show chat session restore button, only if saved session * SimpleChat: AutoCreate ChatRequestOptions settings to an extent * SimpleChat: Update main README wrt usage with server --- README.md | 2 + .../server/public_simplechat/datautils.mjs | 266 +++++++++ examples/server/public_simplechat/index.html | 24 +- examples/server/public_simplechat/readme.md | 132 ++++- .../server/public_simplechat/simplechat.css | 11 + .../server/public_simplechat/simplechat.js | 558 +++++++++++++----- examples/server/public_simplechat/ui.mjs | 211 +++++++ 7 files changed, 1029 insertions(+), 175 deletions(-) create mode 100644 examples/server/public_simplechat/datautils.mjs create mode 100644 examples/server/public_simplechat/ui.mjs diff --git a/README.md b/README.md index 4791f84af..8680460aa 100644 --- a/README.md +++ b/README.md @@ -150,6 +150,8 @@ Typically finetunes of the base models below are supported as well. [llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients. +[simplechat](./examples/server/public_simplechat) is a simple chat client, which can be used to chat with the model exposed using above web server (use --path to point to simplechat), from a local web browser. + **Bindings:** - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) diff --git a/examples/server/public_simplechat/datautils.mjs b/examples/server/public_simplechat/datautils.mjs new file mode 100644 index 000000000..75159d6b1 --- /dev/null +++ b/examples/server/public_simplechat/datautils.mjs @@ -0,0 +1,266 @@ +//@ts-check +// Helpers to work with different data types +// by Humans for All +// + +/** + * Given the limited context size of local LLMs and , many a times when context gets filled + * between the prompt and the response, it can lead to repeating text garbage generation. + * And many a times setting penalty wrt repeatation leads to over-intelligent garbage + * repeatation with slight variations. These garbage inturn can lead to overloading of the + * available model context, leading to less valuable response for subsequent prompts/queries, + * if chat history is sent to ai model. + * + * So two simple minded garbage trimming logics are experimented below. + * * one based on progressively-larger-substring-based-repeat-matching-with-partial-skip and + * * another based on char-histogram-driven garbage trimming. + * * in future characteristic of histogram over varying lengths could be used to allow for + * a more aggressive and adaptive trimming logic. + */ + + +/** + * Simple minded logic to help remove repeating garbage at end of the string. + * The repeatation needs to be perfectly matching. + * + * The logic progressively goes on probing for longer and longer substring based + * repeatation, till there is no longer repeatation. Inturn picks the one with + * the longest chain. + * + * @param {string} sIn + * @param {number} maxSubL + * @param {number} maxMatchLenThreshold + */ +export function trim_repeat_garbage_at_end(sIn, maxSubL=10, maxMatchLenThreshold=40) { + let rCnt = [0]; + let maxMatchLen = maxSubL; + let iMML = -1; + for(let subL=1; subL < maxSubL; subL++) { + rCnt.push(0); + let i; + let refS = sIn.substring(sIn.length-subL, sIn.length); + for(i=sIn.length; i > 0; i -= subL) { + let curS = sIn.substring(i-subL, i); + if (refS != curS) { + let curMatchLen = rCnt[subL]*subL; + if (maxMatchLen < curMatchLen) { + maxMatchLen = curMatchLen; + iMML = subL; + } + break; + } + rCnt[subL] += 1; + } + } + console.debug("DBUG:DU:TrimRepeatGarbage:", rCnt); + if ((iMML == -1) || (maxMatchLen < maxMatchLenThreshold)) { + return {trimmed: false, data: sIn}; + } + console.debug("DBUG:TrimRepeatGarbage:TrimmedCharLen:", maxMatchLen); + let iEnd = sIn.length - maxMatchLen; + return { trimmed: true, data: sIn.substring(0, iEnd) }; +} + + +/** + * Simple minded logic to help remove repeating garbage at end of the string, till it cant. + * If its not able to trim, then it will try to skip a char at end and then trim, a few times. + * This ensures that even if there are multiple runs of garbage with different patterns, the + * logic still tries to munch through them. + * + * @param {string} sIn + * @param {number} maxSubL + * @param {number | undefined} [maxMatchLenThreshold] + */ +export function trim_repeat_garbage_at_end_loop(sIn, maxSubL, maxMatchLenThreshold, skipMax=16) { + let sCur = sIn; + let sSaved = ""; + let iTry = 0; + while(true) { + let got = trim_repeat_garbage_at_end(sCur, maxSubL, maxMatchLenThreshold); + if (got.trimmed != true) { + if (iTry == 0) { + sSaved = got.data; + } + iTry += 1; + if (iTry >= skipMax) { + return sSaved; + } + got.data = got.data.substring(0,got.data.length-1); + } else { + iTry = 0; + } + sCur = got.data; + } +} + + +/** + * A simple minded try trim garbage at end using histogram driven characteristics. + * There can be variation in the repeatations, as long as no new char props up. + * + * This tracks the chars and their frequency in a specified length of substring at the end + * and inturn checks if moving further into the generated text from the end remains within + * the same char subset or goes beyond it and based on that either trims the string at the + * end or not. This allows to filter garbage at the end, including even if there are certain + * kind of small variations in the repeated text wrt position of seen chars. + * + * Allow the garbage to contain upto maxUniq chars, but at the same time ensure that + * a given type of char ie numerals or alphabets or other types dont cross the specified + * maxType limit. This allows intermixed text garbage to be identified and trimmed. + * + * ALERT: This is not perfect and only provides a rough garbage identification logic. + * Also it currently only differentiates between character classes wrt english. + * + * @param {string} sIn + * @param {number} maxType + * @param {number} maxUniq + * @param {number} maxMatchLenThreshold + */ +export function trim_hist_garbage_at_end(sIn, maxType, maxUniq, maxMatchLenThreshold) { + if (sIn.length < maxMatchLenThreshold) { + return { trimmed: false, data: sIn }; + } + let iAlp = 0; + let iNum = 0; + let iOth = 0; + // Learn + let hist = {}; + let iUniq = 0; + for(let i=0; i= maxUniq) { + break; + } + hist[c] = 1; + } + } + console.debug("DBUG:TrimHistGarbage:", hist); + if ((iAlp > maxType) || (iNum > maxType) || (iOth > maxType)) { + return { trimmed: false, data: sIn }; + } + // Catch and Trim + for(let i=0; i < sIn.length; i++) { + let c = sIn[sIn.length-1-i]; + if (!(c in hist)) { + if (i < maxMatchLenThreshold) { + return { trimmed: false, data: sIn }; + } + console.debug("DBUG:TrimHistGarbage:TrimmedCharLen:", i); + return { trimmed: true, data: sIn.substring(0, sIn.length-i+1) }; + } + } + console.debug("DBUG:TrimHistGarbage:Trimmed fully"); + return { trimmed: true, data: "" }; +} + +/** + * Keep trimming repeatedly using hist_garbage logic, till you no longer can. + * This ensures that even if there are multiple runs of garbage with different patterns, + * the logic still tries to munch through them. + * + * @param {any} sIn + * @param {number} maxType + * @param {number} maxUniq + * @param {number} maxMatchLenThreshold + */ +export function trim_hist_garbage_at_end_loop(sIn, maxType, maxUniq, maxMatchLenThreshold) { + let sCur = sIn; + while (true) { + let got = trim_hist_garbage_at_end(sCur, maxType, maxUniq, maxMatchLenThreshold); + if (!got.trimmed) { + return got.data; + } + sCur = got.data; + } +} + +/** + * Try trim garbage at the end by using both the hist-driven-garbage-trimming as well as + * skip-a-bit-if-reqd-then-repeat-pattern-based-garbage-trimming, with blind retrying. + * @param {string} sIn + */ +export function trim_garbage_at_end(sIn) { + let sCur = sIn; + for(let i=0; i<2; i++) { + sCur = trim_hist_garbage_at_end_loop(sCur, 8, 24, 72); + sCur = trim_repeat_garbage_at_end_loop(sCur, 32, 72, 12); + } + return sCur; +} + + +/** + * NewLines array helper. + * Allow for maintaining a list of lines. + * Allow for a line to be builtup/appended part by part. + */ +export class NewLines { + + constructor() { + /** @type {string[]} */ + this.lines = []; + } + + /** + * Extracts lines from the passed string and inturn either + * append to a previous partial line or add a new line. + * @param {string} sLines + */ + add_append(sLines) { + let aLines = sLines.split("\n"); + let lCnt = 0; + for(let line of aLines) { + lCnt += 1; + // Add back newline removed if any during split + if (lCnt < aLines.length) { + line += "\n"; + } else { + if (sLines.endsWith("\n")) { + line += "\n"; + } + } + // Append if required + if (lCnt == 1) { + let lastLine = this.lines[this.lines.length-1]; + if (lastLine != undefined) { + if (!lastLine.endsWith("\n")) { + this.lines[this.lines.length-1] += line; + continue; + } + } + } + // Add new line + this.lines.push(line); + } + } + + /** + * Shift the oldest/earliest/0th line in the array. [Old-New|Earliest-Latest] + * Optionally control whether only full lines (ie those with newline at end) will be returned + * or will a partial line without a newline at end (can only be the last line) be returned. + * @param {boolean} bFullWithNewLineOnly + */ + shift(bFullWithNewLineOnly=true) { + let line = this.lines[0]; + if (line == undefined) { + return undefined; + } + if ((line[line.length-1] != "\n") && bFullWithNewLineOnly){ + return undefined; + } + return this.lines.shift(); + } + +} diff --git a/examples/server/public_simplechat/index.html b/examples/server/public_simplechat/index.html index 1a1a34208..f6413016f 100644 --- a/examples/server/public_simplechat/index.html +++ b/examples/server/public_simplechat/index.html @@ -8,21 +8,23 @@ - + +
-
+

SimpleChat

-
- - -
+
@@ -30,7 +32,7 @@
- +

@@ -40,7 +42,7 @@
- +
diff --git a/examples/server/public_simplechat/readme.md b/examples/server/public_simplechat/readme.md index de0dfc99d..36a46885d 100644 --- a/examples/server/public_simplechat/readme.md +++ b/examples/server/public_simplechat/readme.md @@ -11,18 +11,29 @@ in a simple way with minimal code from a common code base. Inturn additionally i multiple independent back and forth chatting to an extent, with the ai llm model at a basic level, with their own system prompts. +This allows seeing the generated text / ai-model response in oneshot at the end, after it is fully generated, +or potentially as it is being generated, in a streamed manner from the server/ai-model. + +Auto saves the chat session locally as and when the chat is progressing and inturn at a later time when you +open SimpleChat, option is provided to restore the old chat session, if a matching one exists. + The UI follows a responsive web design so that the layout can adapt to available display space in a usable enough manner, in general. Allows developer/end-user to control some of the behaviour by updating gMe members from browser's devel-tool -console. +console. Parallely some of the directly useful to end-user settings can also be changed using the provided +settings ui. -NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and -culling of old messages from the chat by default. However by enabling the sliding window chat logic, a crude -form of old messages culling can be achieved. +NOTE: Current web service api doesnt expose the model context length directly, so client logic doesnt provide +any adaptive culling of old messages nor of replacing them with summary of their content etal. However there +is a optional sliding window based chat logic, which provides a simple minded culling of old messages from +the chat history before sending to the ai model. -NOTE: It doesnt set any parameters other than temperature and max_tokens for now. However if someone wants -they can update the js file or equivalent member in gMe as needed. +NOTE: Wrt options sent with the request, it mainly sets temperature, max_tokens and optionaly stream for now. +However if someone wants they can update the js file or equivalent member in gMe as needed. + +NOTE: One may be able to use this to chat with openai api web-service /chat/completions endpoint, in a very +limited / minimal way. One will need to set model, openai url and authorization bearer key in settings ui. ## usage @@ -52,9 +63,15 @@ Open this simple web front end from your local browser Once inside -* Select between chat and completion mode. By default it is set to chat mode. +* If you want to, you can change many of the default global settings + * the base url (ie ip addr / domain name, port) + * chat (default) vs completion mode + * try trim garbage in response or not + * amount of chat history in the context sent to server/ai-model + * oneshot or streamed mode. * In completion mode + * one normally doesnt use a system prompt in completion mode. * logic by default doesnt insert any role specific "ROLE: " prefix wrt each role's message. If the model requires any prefix wrt user role messages, then the end user has to explicitly add the needed prefix, when they enter their chat message. @@ -88,12 +105,16 @@ Once inside * Wait for the logic to communicate with the server and get the response. * the user is not allowed to enter any fresh query during this time. * the user input box will be disabled and a working message will be shown in it. + * if trim garbage is enabled, the logic will try to trim repeating text kind of garbage to some extent. * just refresh the page, to reset wrt the chat history and or system prompt and start afresh. * Using NewChat one can start independent chat sessions. * two independent chat sessions are setup by default. +* When you want to print, switching ChatHistoryInCtxt to Full and clicking on the chat session button of + interest, will display the full chat history till then wrt same, if you want full history for printing. + ## Devel note @@ -104,14 +125,31 @@ by developers who may not be from web frontend background (so inturn may not be end-use-specific-language-extensions driven flows) so that they can use it to explore/experiment things. And given that the idea is also to help explore/experiment for developers, some flexibility is provided -to change behaviour easily using the devel-tools/console, for now. And skeletal logic has been implemented -to explore some of the end points and ideas/implications around them. +to change behaviour easily using the devel-tools/console or provided minimal settings ui (wrt few aspects). +Skeletal logic has been implemented to explore some of the end points and ideas/implications around them. ### General Me/gMe consolidates the settings which control the behaviour into one object. One can see the current settings, as well as change/update them using browsers devel-tool/console. +It is attached to the document object. Some of these can also be updated using the Settings UI. + + baseURL - the domain-name/ip-address and inturn the port to send the request. + + bStream - control between oneshot-at-end and live-stream-as-its-generated collating and showing + of the generated response. + + the logic assumes that the text sent from the server follows utf-8 encoding. + + in streaming mode - if there is any exception, the logic traps the same and tries to ensure + that text generated till then is not lost. + + if a very long text is being generated, which leads to no user interaction for sometime and + inturn the machine goes into power saving mode or so, the platform may stop network connection, + leading to exception. + + apiEP - select between /completions and /chat/completions endpoint provided by the server/ai-model. bCompletionFreshChatAlways - whether Completion mode collates complete/sliding-window history when communicating with the server or only sends the latest user query/message. @@ -119,6 +157,19 @@ One can see the current settings, as well as change/update them using browsers d bCompletionInsertStandardRolePrefix - whether Completion mode inserts role related prefix wrt the messages that get inserted into prompt field wrt /Completion endpoint. + bTrimGarbage - whether garbage repeatation at the end of the generated ai response, should be + trimmed or left as is. If enabled, it will be trimmed so that it wont be sent back as part of + subsequent chat history. At the same time the actual trimmed text is shown to the user, once + when it was generated, so user can check if any useful info/data was there in the response. + + One may be able to request the ai-model to continue (wrt the last response) (if chat-history + is enabled as part of the chat-history-in-context setting), and chances are the ai-model will + continue starting from the trimmed part, thus allows long response to be recovered/continued + indirectly, in many cases. + + The histogram/freq based trimming logic is currently tuned for english language wrt its + is-it-a-alpabetic|numeral-char regex match logic. + chatRequestOptions - maintains the list of options/fields to send along with chat request, irrespective of whether /chat/completions or /completions endpoint. @@ -126,6 +177,14 @@ One can see the current settings, as well as change/update them using browsers d modify the existing options value or remove them, for now you can update this global var using browser's development-tools/console. + For string and numeric fields in chatRequestOptions, including even those added by a user + at runtime by directly modifying gMe.chatRequestOptions, setting ui entries will be auto + created. + + headers - maintains the list of http headers sent when request is made to the server. By default + Content-Type is set to application/json. Additionally Authorization entry is provided, which can + be set if needed using the settings ui. + iRecentUserMsgCnt - a simple minded SlidingWindow to limit context window load at Ai Model end. This is disabled by default. However if enabled, then in addition to latest system message, only the last/latest iRecentUserMsgCnt user messages after the latest system prompt and its responses @@ -140,7 +199,8 @@ One can see the current settings, as well as change/update them using browsers d By using gMe's iRecentUserMsgCnt and chatRequestOptions.max_tokens one can try to control the implications of loading of the ai-model's context window by chat history, wrt chat response to -some extent in a simple crude way. +some extent in a simple crude way. You may also want to control the context size enabled when +the server loads ai-model, on the server end. Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js @@ -149,28 +209,15 @@ matter clearing site data, dont directly override site caching in all cases. Wor have to change port. Or in dev tools of browser, you may be able to disable caching fully. -Concept of multiple chat sessions with different servers, as well as saving and restoring of -those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and -its instances relatively easily, however given the current goal of keeping this simple, it has -not been added, for now. +Currently the server to communicate with is maintained globally and not as part of a specific +chat session. So if one changes the server ip/url in setting, then all chat sessions will auto +switch to this new server, when you try using those sessions. By switching between chat.add_system_begin/anytime, one can control whether one can change the system prompt, anytime during the conversation or only at the beginning. -read_json_early, is to experiment with reading json response data early on, if available, -so that user can be shown generated data, as and when it is being generated, rather than -at the end when full data is available. - - the server flow doesnt seem to be sending back data early, atleast for request (inc options) - that is currently sent. - - if able to read json data early on in future, as and when ai model is generating data, then - this helper needs to indirectly update the chat div with the recieved data, without waiting - for the overall data to be available. - - ### Default setup By default things are setup to try and make the user experience a bit better, if possible. @@ -179,7 +226,8 @@ However a developer when testing the server of ai-model may want to change these Using iRecentUserMsgCnt reduce chat history context sent to the server/ai-model to be just the system-prompt, prev-user-request-and-ai-response and cur-user-request, instead of full chat history. This way if there is any response with garbage/repeatation, it doesnt -mess with things beyond the next question/request/query, in some ways. +mess with things beyond the next question/request/query, in some ways. The trim garbage +option also tries to help avoid issues with garbage in the context to an extent. Set max_tokens to 1024, so that a relatively large previous reponse doesnt eat up the space available wrt next query-response. However dont forget that the server when started should @@ -189,11 +237,33 @@ also be started with a model context size of 1k or more, to be on safe side. internal n_predict, for now add the same here on the client side, maybe later add max_tokens to /completions endpoint handling code on server side. -Frequency and presence penalty fields are set to 1.2 in the set of fields sent to server -along with the user query. So that the model is partly set to try avoid repeating text in -its response. +NOTE: One may want to experiment with frequency/presence penalty fields in chatRequestOptions +wrt the set of fields sent to server along with the user query. To check how the model behaves +wrt repeatations in general in the generated text response. -A end-user can change these behaviour by editing gMe from browser's devel-tool/console. +A end-user can change these behaviour by editing gMe from browser's devel-tool/console or by +using the providing settings ui. + + +### OpenAi / Equivalent API WebService + +One may be abe to handshake with OpenAI/Equivalent api web service's /chat/completions endpoint +for a minimal chatting experimentation by setting the below. + +* the baseUrl in settings ui + * https://api.openai.com/v1 or similar + +* Wrt request body - gMe.chatRequestOptions + * model (settings ui) + * any additional fields if required in future + +* Wrt request headers - gMe.headers + * Authorization (available through settings ui) + * Bearer THE_OPENAI_API_KEY + * any additional optional header entries like "OpenAI-Organization", "OpenAI-Project" or so + +NOTE: Not tested, as there is no free tier api testing available. However logically this might +work. ## At the end diff --git a/examples/server/public_simplechat/simplechat.css b/examples/server/public_simplechat/simplechat.css index 20c738b12..13bfb80b4 100644 --- a/examples/server/public_simplechat/simplechat.css +++ b/examples/server/public_simplechat/simplechat.css @@ -21,6 +21,17 @@ .role-user { background-color: lightgray; } +.role-trim { + background-color: lightpink; +} + +.gridx2 { + display: grid; + grid-template-columns: repeat(2, 1fr); + border-bottom-style: dotted; + border-bottom-width: thin; + border-bottom-color: lightblue; +} .flex-grow { flex-grow: 1; diff --git a/examples/server/public_simplechat/simplechat.js b/examples/server/public_simplechat/simplechat.js index 0c48da879..25afb2564 100644 --- a/examples/server/public_simplechat/simplechat.js +++ b/examples/server/public_simplechat/simplechat.js @@ -2,6 +2,9 @@ // A simple completions and chat/completions test related web front end logic // by Humans for All +import * as du from "./datautils.mjs"; +import * as ui from "./ui.mjs" + class Roles { static System = "system"; static User = "user"; @@ -9,40 +12,65 @@ class Roles { } class ApiEP { - static Chat = "chat"; - static Completion = "completion"; + static Type = { + Chat: "chat", + Completion: "completion", + } + static UrlSuffix = { + 'chat': `/chat/completions`, + 'completion': `/completions`, + } + + /** + * Build the url from given baseUrl and apiEp id. + * @param {string} baseUrl + * @param {string} apiEP + */ + static Url(baseUrl, apiEP) { + if (baseUrl.endsWith("/")) { + baseUrl = baseUrl.substring(0, baseUrl.length-1); + } + return `${baseUrl}${this.UrlSuffix[apiEP]}`; + } + } + let gUsageMsg = `

Usage

    -
  • Set system prompt above, to try control ai response charactersitic, if model supports same.
  • +
  • System prompt above, to try control ai response characteristics.
    • -
    • Completion mode normally wont have a system prompt.
    • +
    • Completion mode - no system prompt normally.
    +
  • Use shift+enter for inserting enter/newline.
  • Enter your query to ai assistant below.
  • -
      -
    • Completion mode doesnt insert user/role: prefix implicitly.
    • -
    • Use shift+enter for inserting enter/newline.
    • -
  • Default ContextWindow = [System, Last Query+Resp, Cur Query].
    • -
    • experiment iRecentUserMsgCnt, max_tokens, model ctxt window to expand
    • +
    • ChatHistInCtxt, MaxTokens, ModelCtxt window to expand
`; + /** @typedef {{role: string, content: string}[]} ChatMessages */ +/** @typedef {{iLastSys: number, xchat: ChatMessages}} SimpleChatODS */ + class SimpleChat { - constructor() { + /** + * @param {string} chatId + */ + constructor(chatId) { + this.chatId = chatId; /** * Maintain in a form suitable for common LLM web service chat/completions' messages entry * @type {ChatMessages} */ this.xchat = []; this.iLastSys = -1; + this.latestResponse = ""; } clear() { @@ -50,6 +78,27 @@ class SimpleChat { this.iLastSys = -1; } + ods_key() { + return `SimpleChat-${this.chatId}` + } + + save() { + /** @type {SimpleChatODS} */ + let ods = {iLastSys: this.iLastSys, xchat: this.xchat}; + localStorage.setItem(this.ods_key(), JSON.stringify(ods)); + } + + load() { + let sods = localStorage.getItem(this.ods_key()); + if (sods == null) { + return; + } + /** @type {SimpleChatODS} */ + let ods = JSON.parse(sods); + this.iLastSys = ods.iLastSys; + this.xchat = ods.xchat; + } + /** * Recent chat messages. * If iRecentUserMsgCnt < 0 @@ -94,6 +143,15 @@ class SimpleChat { return rchat; } + /** + * Collate the latest response from the server/ai-model, as it is becoming available. + * This is mainly useful for the stream mode. + * @param {string} content + */ + append_response(content) { + this.latestResponse += content; + } + /** * Add an entry into xchat * @param {string} role @@ -107,6 +165,7 @@ class SimpleChat { if (role == Roles.System) { this.iLastSys = this.xchat.length - 1; } + this.save(); return true; } @@ -121,10 +180,8 @@ class SimpleChat { } let last = undefined; for(const x of this.recent_chat(gMe.iRecentUserMsgCnt)) { - let entry = document.createElement("p"); + let entry = ui.el_create_append_p(`${x.role}: ${x.content}`, div); entry.className = `role-${x.role}`; - entry.innerText = `${x.role}: ${x.content}`; - div.appendChild(entry); last = entry; } if (last !== undefined) { @@ -132,21 +189,45 @@ class SimpleChat { } else { if (bClear) { div.innerHTML = gUsageMsg; + gMe.setup_load(div, this); gMe.show_info(div); } } + return last; + } + + /** + * Setup the fetch headers. + * It picks the headers from gMe.headers. + * It inserts Authorization only if its non-empty. + * @param {string} apiEP + */ + fetch_headers(apiEP) { + let headers = new Headers(); + for(let k in gMe.headers) { + let v = gMe.headers[k]; + if ((k == "Authorization") && (v.trim() == "")) { + continue; + } + headers.append(k, v); + } + return headers; } /** * Add needed fields wrt json object to be sent wrt LLM web services completions endpoint. * The needed fields/options are picked from a global object. + * Add optional stream flag, if required. * Convert the json into string. * @param {Object} obj */ - request_jsonstr(obj) { + request_jsonstr_extend(obj) { for(let k in gMe.chatRequestOptions) { obj[k] = gMe.chatRequestOptions[k]; } + if (gMe.bStream) { + obj["stream"] = true; + } return JSON.stringify(obj); } @@ -157,7 +238,7 @@ class SimpleChat { let req = { messages: this.recent_chat(gMe.iRecentUserMsgCnt), } - return this.request_jsonstr(req); + return this.request_jsonstr_extend(req); } /** @@ -180,7 +261,60 @@ class SimpleChat { let req = { prompt: prompt, } - return this.request_jsonstr(req); + return this.request_jsonstr_extend(req); + } + + /** + * Return a string form of json object suitable for specified api endpoint. + * @param {string} apiEP + */ + request_jsonstr(apiEP) { + if (apiEP == ApiEP.Type.Chat) { + return this.request_messages_jsonstr(); + } else { + return this.request_prompt_jsonstr(gMe.bCompletionInsertStandardRolePrefix); + } + } + + /** + * Extract the ai-model/assistant's response from the http response got. + * Optionally trim the message wrt any garbage at the end. + * @param {any} respBody + * @param {string} apiEP + */ + response_extract(respBody, apiEP) { + let assistant = ""; + if (apiEP == ApiEP.Type.Chat) { + assistant = respBody["choices"][0]["message"]["content"]; + } else { + try { + assistant = respBody["choices"][0]["text"]; + } catch { + assistant = respBody["content"]; + } + } + return assistant; + } + + /** + * Extract the ai-model/assistant's response from the http response got in streaming mode. + * @param {any} respBody + * @param {string} apiEP + */ + response_extract_stream(respBody, apiEP) { + let assistant = ""; + if (apiEP == ApiEP.Type.Chat) { + if (respBody["choices"][0]["finish_reason"] !== "stop") { + assistant = respBody["choices"][0]["delta"]["content"]; + } + } else { + try { + assistant = respBody["choices"][0]["text"]; + } catch { + assistant = respBody["content"]; + } + } + return assistant; } /** @@ -239,53 +373,99 @@ class SimpleChat { return sysPrompt; } -} - -let gBaseURL = "http://127.0.0.1:8080"; -let gChatURL = { - 'chat': `${gBaseURL}/chat/completions`, - 'completion': `${gBaseURL}/completions`, -} - - -/** - * Set the class of the children, based on whether it is the idSelected or not. - * @param {HTMLDivElement} elBase - * @param {string} idSelected - * @param {string} classSelected - * @param {string} classUnSelected - */ -function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") { - for(let child of elBase.children) { - if (child.id == idSelected) { - child.className = classSelected; - } else { - child.className = classUnSelected; + /** + * Handle the multipart response from server/ai-model + * @param {Response} resp + * @param {string} apiEP + * @param {HTMLDivElement} elDiv + */ + async handle_response_multipart(resp, apiEP, elDiv) { + let elP = ui.el_create_append_p("", elDiv); + if (!resp.body) { + throw Error("ERRR:SimpleChat:SC:HandleResponseMultiPart:No body..."); } + let tdUtf8 = new TextDecoder("utf-8"); + let rr = resp.body.getReader(); + this.latestResponse = ""; + let xLines = new du.NewLines(); + while(true) { + let { value: cur, done: done } = await rr.read(); + if (cur) { + let curBody = tdUtf8.decode(cur, {stream: true}); + console.debug("DBUG:SC:PART:Str:", curBody); + xLines.add_append(curBody); + } + while(true) { + let curLine = xLines.shift(!done); + if (curLine == undefined) { + break; + } + if (curLine.trim() == "") { + continue; + } + if (curLine.startsWith("data:")) { + curLine = curLine.substring(5); + } + let curJson = JSON.parse(curLine); + console.debug("DBUG:SC:PART:Json:", curJson); + this.append_response(this.response_extract_stream(curJson, apiEP)); + } + elP.innerText = this.latestResponse; + elP.scrollIntoView(false); + if (done) { + break; + } + } + console.debug("DBUG:SC:PART:Full:", this.latestResponse); + return this.latestResponse; } -} -/** - * Create button and set it up. - * @param {string} id - * @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback - * @param {string | undefined} name - * @param {string | undefined} innerText - */ -function el_create_button(id, callback, name=undefined, innerText=undefined) { - if (!name) { - name = id; + /** + * Handle the oneshot response from server/ai-model + * @param {Response} resp + * @param {string} apiEP + */ + async handle_response_oneshot(resp, apiEP) { + let respBody = await resp.json(); + console.debug(`DBUG:SimpleChat:SC:${this.chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`); + return this.response_extract(respBody, apiEP); } - if (!innerText) { - innerText = id; + + /** + * Handle the response from the server be it in oneshot or multipart/stream mode. + * Also take care of the optional garbage trimming. + * @param {Response} resp + * @param {string} apiEP + * @param {HTMLDivElement} elDiv + */ + async handle_response(resp, apiEP, elDiv) { + let theResp = { + assistant: "", + trimmed: "", + } + if (gMe.bStream) { + try { + theResp.assistant = await this.handle_response_multipart(resp, apiEP, elDiv); + this.latestResponse = ""; + } catch (error) { + theResp.assistant = this.latestResponse; + this.add(Roles.Assistant, theResp.assistant); + this.latestResponse = ""; + throw error; + } + } else { + theResp.assistant = await this.handle_response_oneshot(resp, apiEP); + } + if (gMe.bTrimGarbage) { + let origMsg = theResp.assistant; + theResp.assistant = du.trim_garbage_at_end(origMsg); + theResp.trimmed = origMsg.substring(theResp.assistant.length); + } + this.add(Roles.Assistant, theResp.assistant); + return theResp; } - let btn = document.createElement("button"); - btn.id = id; - btn.name = name; - btn.innerText = innerText; - btn.addEventListener("click", callback); - return btn; + } @@ -302,14 +482,16 @@ class MultiChatUI { this.elDivChat = /** @type{HTMLDivElement} */(document.getElementById("chat-div")); this.elBtnUser = /** @type{HTMLButtonElement} */(document.getElementById("user-btn")); this.elInUser = /** @type{HTMLInputElement} */(document.getElementById("user-in")); - this.elSelectApiEP = /** @type{HTMLSelectElement} */(document.getElementById("api-ep")); + this.elDivHeading = /** @type{HTMLSelectElement} */(document.getElementById("heading")); this.elDivSessions = /** @type{HTMLDivElement} */(document.getElementById("sessions-div")); + this.elBtnSettings = /** @type{HTMLButtonElement} */(document.getElementById("settings")); this.validate_element(this.elInSystem, "system-in"); this.validate_element(this.elDivChat, "chat-div"); this.validate_element(this.elInUser, "user-in"); - this.validate_element(this.elSelectApiEP, "api-ep"); + this.validate_element(this.elDivHeading, "heading"); this.validate_element(this.elDivChat, "sessions-div"); + this.validate_element(this.elBtnSettings, "settings"); } /** @@ -350,13 +532,18 @@ class MultiChatUI { this.handle_session_switch(this.curChatId); } + this.elBtnSettings.addEventListener("click", (ev)=>{ + this.elDivChat.replaceChildren(); + gMe.show_settings(this.elDivChat); + }); + this.elBtnUser.addEventListener("click", (ev)=>{ if (this.elInUser.disabled) { return; } - this.handle_user_submit(this.curChatId, this.elSelectApiEP.value).catch((/** @type{Error} */reason)=>{ + this.handle_user_submit(this.curChatId, gMe.apiEP).catch((/** @type{Error} */reason)=>{ let msg = `ERRR:SimpleChat\nMCUI:HandleUserSubmit:${this.curChatId}\n${reason.name}:${reason.message}`; - console.debug(msg.replace("\n", ":")); + console.error(msg.replace("\n", ":")); alert(msg); this.ui_reset_userinput(); }); @@ -377,6 +564,8 @@ class MultiChatUI { // allow user to insert enter into the system prompt using shift+enter. // while just pressing enter key will lead to setting the system prompt. if ((ev.key === "Enter") && (!ev.shiftKey)) { + let value = this.elInSystem.value; + this.elInSystem.value = value.substring(0,value.length-1); let chat = this.simpleChats[this.curChatId]; chat.add_system_anytime(this.elInSystem.value, this.curChatId); chat.show(this.elDivChat); @@ -392,34 +581,12 @@ class MultiChatUI { * @param {boolean} bSwitchSession */ new_chat_session(chatId, bSwitchSession=false) { - this.simpleChats[chatId] = new SimpleChat(); + this.simpleChats[chatId] = new SimpleChat(chatId); if (bSwitchSession) { this.handle_session_switch(chatId); } } - /** - * Try read json response early, if available. - * @param {Response} resp - */ - async read_json_early(resp) { - if (!resp.body) { - throw Error("ERRR:SimpleChat:MCUI:ReadJsonEarly:No body..."); - } - let tdUtf8 = new TextDecoder("utf-8"); - let rr = resp.body.getReader(); - let gotBody = ""; - while(true) { - let { value: cur, done: done} = await rr.read(); - let curBody = tdUtf8.decode(cur); - console.debug("DBUG:SC:PART:", curBody); - gotBody += curBody; - if (done) { - break; - } - } - return JSON.parse(gotBody); - } /** * Handle user query submit request, wrt specified chat session. @@ -434,7 +601,7 @@ class MultiChatUI { // So if user wants to simulate a multi-chat based completion query, // they will have to enter the full thing, as a suitable multiline // user input/query. - if ((apiEP == ApiEP.Completion) && (gMe.bCompletionFreshChatAlways)) { + if ((apiEP == ApiEP.Type.Completion) && (gMe.bCompletionFreshChatAlways)) { chat.clear(); } @@ -447,41 +614,26 @@ class MultiChatUI { } chat.show(this.elDivChat); - let theBody; - let theUrl = gChatURL[apiEP] - if (apiEP == ApiEP.Chat) { - theBody = chat.request_messages_jsonstr(); - } else { - theBody = chat.request_prompt_jsonstr(gMe.bCompletionInsertStandardRolePrefix); - } + let theUrl = ApiEP.Url(gMe.baseURL, apiEP); + let theBody = chat.request_jsonstr(apiEP); this.elInUser.value = "working..."; this.elInUser.disabled = true; console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:${theUrl}:ReqBody:${theBody}`); + let theHeaders = chat.fetch_headers(apiEP); let resp = await fetch(theUrl, { method: "POST", - headers: { - "Content-Type": "application/json", - }, + headers: theHeaders, body: theBody, }); - let respBody = await resp.json(); - //let respBody = await this.read_json_early(resp); - console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`); - let assistantMsg; - if (apiEP == ApiEP.Chat) { - assistantMsg = respBody["choices"][0]["message"]["content"]; - } else { - try { - assistantMsg = respBody["choices"][0]["text"]; - } catch { - assistantMsg = respBody["content"]; - } - } - chat.add(Roles.Assistant, assistantMsg); + let theResp = await chat.handle_response(resp, apiEP, this.elDivChat); if (chatId == this.curChatId) { chat.show(this.elDivChat); + if (theResp.trimmed.length > 0) { + let p = ui.el_create_append_p(`TRIMMED:${theResp.trimmed}`, this.elDivChat); + p.className="role-trim"; + } } else { console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`); } @@ -500,7 +652,7 @@ class MultiChatUI { } elDiv.replaceChildren(); // Btn for creating new chat session - let btnNew = el_create_button("New CHAT", (ev)=> { + let btnNew = ui.el_create_button("New CHAT", (ev)=> { if (this.elInUser.disabled) { console.error(`ERRR:SimpleChat:MCUI:NewChat:Current session [${this.curChatId}] awaiting response, ignoring request...`); alert("ERRR:SimpleChat\nMCUI:NewChat\nWait for response to pending query, before starting new chat session"); @@ -514,7 +666,7 @@ class MultiChatUI { } this.new_chat_session(chatIdGot, true); this.create_session_btn(elDiv, chatIdGot); - el_children_config_class(elDiv, chatIdGot, "session-selected", ""); + ui.el_children_config_class(elDiv, chatIdGot, "session-selected", ""); }); elDiv.appendChild(btnNew); // Btns for existing chat sessions @@ -528,7 +680,7 @@ class MultiChatUI { } create_session_btn(elDiv, cid) { - let btn = el_create_button(cid, (ev)=>{ + let btn = ui.el_create_button(cid, (ev)=>{ let target = /** @type{HTMLButtonElement} */(ev.target); console.debug(`DBUG:SimpleChat:MCUI:SessionClick:${target.id}`); if (this.elInUser.disabled) { @@ -537,7 +689,7 @@ class MultiChatUI { return; } this.handle_session_switch(target.id); - el_children_config_class(elDiv, target.id, "session-selected", ""); + ui.el_children_config_class(elDiv, target.id, "session-selected", ""); }); elDiv.appendChild(btn); return btn; @@ -567,46 +719,183 @@ class MultiChatUI { class Me { constructor() { + this.baseURL = "http://127.0.0.1:8080"; this.defaultChatIds = [ "Default", "Other" ]; this.multiChat = new MultiChatUI(); + this.bStream = true; this.bCompletionFreshChatAlways = true; this.bCompletionInsertStandardRolePrefix = false; + this.bTrimGarbage = true; this.iRecentUserMsgCnt = 2; + this.sRecentUserMsgCnt = { + "Full": -1, + "Last0": 1, + "Last1": 2, + "Last2": 3, + "Last4": 5, + }; + this.apiEP = ApiEP.Type.Chat; + this.headers = { + "Content-Type": "application/json", + "Authorization": "", // Authorization: Bearer OPENAI_API_KEY + } // Add needed fields wrt json object to be sent wrt LLM web services completions endpoint. this.chatRequestOptions = { + "model": "gpt-3.5-turbo", "temperature": 0.7, "max_tokens": 1024, - "frequency_penalty": 1.2, - "presence_penalty": 1.2, - "n_predict": 1024 + "n_predict": 1024, + //"frequency_penalty": 1.2, + //"presence_penalty": 1.2, }; } /** + * Disable console.debug by mapping it to a empty function. + */ + debug_disable() { + this.console_debug = console.debug; + console.debug = () => { + + }; + } + + /** + * Setup the load saved chat ui. + * @param {HTMLDivElement} div + * @param {SimpleChat} chat + */ + setup_load(div, chat) { + if (!(chat.ods_key() in localStorage)) { + return; + } + div.innerHTML += `

Restore

+

Load previously saved chat session, if available

`; + let btn = ui.el_create_button(chat.ods_key(), (ev)=>{ + console.log("DBUG:SimpleChat:SC:Load", chat); + chat.load(); + queueMicrotask(()=>{ + chat.show(div); + this.multiChat.elInSystem.value = chat.get_system_latest(); + }); + }); + div.appendChild(btn); + } + + /** + * Show the configurable parameters info in the passed Div element. + * @param {HTMLDivElement} elDiv + * @param {boolean} bAll + */ + show_info(elDiv, bAll=false) { + + let p = ui.el_create_append_p("Settings (devel-tools-console document[gMe])", elDiv); + p.className = "role-system"; + + if (bAll) { + + ui.el_create_append_p(`baseURL:${this.baseURL}`, elDiv); + + ui.el_create_append_p(`Authorization:${this.headers["Authorization"]}`, elDiv); + + ui.el_create_append_p(`bStream:${this.bStream}`, elDiv); + + ui.el_create_append_p(`bCompletionFreshChatAlways:${this.bCompletionFreshChatAlways}`, elDiv); + + ui.el_create_append_p(`bCompletionInsertStandardRolePrefix:${this.bCompletionInsertStandardRolePrefix}`, elDiv); + + ui.el_create_append_p(`bTrimGarbage:${this.bTrimGarbage}`, elDiv); + + ui.el_create_append_p(`iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`, elDiv); + + ui.el_create_append_p(`ApiEndPoint:${this.apiEP}`, elDiv); + + } + + ui.el_create_append_p(`chatRequestOptions:${JSON.stringify(this.chatRequestOptions, null, " - ")}`, elDiv); + ui.el_create_append_p(`headers:${JSON.stringify(this.headers, null, " - ")}`, elDiv); + + } + + /** + * Auto create ui input elements for fields in ChatRequestOptions + * Currently supports text and number field types. * @param {HTMLDivElement} elDiv */ - show_info(elDiv) { + show_settings_chatrequestoptions(elDiv) { + let typeDict = { + "string": "text", + "number": "number", + }; + let fs = document.createElement("fieldset"); + let legend = document.createElement("legend"); + legend.innerText = "ChatRequestOptions"; + fs.appendChild(legend); + elDiv.appendChild(fs); + for(const k in this.chatRequestOptions) { + let val = this.chatRequestOptions[k]; + let type = typeof(val); + if (!((type == "string") || (type == "number"))) { + continue; + } + let inp = ui.el_creatediv_input(`Set${k}`, k, typeDict[type], this.chatRequestOptions[k], (val)=>{ + if (type == "number") { + val = Number(val); + } + this.chatRequestOptions[k] = val; + }); + fs.appendChild(inp.div); + } + } - var p = document.createElement("p"); - p.innerText = "Settings (devel-tools-console gMe)"; - p.className = "role-system"; - elDiv.appendChild(p); + /** + * Show settings ui for configurable parameters, in the passed Div element. + * @param {HTMLDivElement} elDiv + */ + show_settings(elDiv) { - var p = document.createElement("p"); - p.innerText = `bCompletionFreshChatAlways:${this.bCompletionFreshChatAlways}`; - elDiv.appendChild(p); + let inp = ui.el_creatediv_input("SetBaseURL", "BaseURL", "text", this.baseURL, (val)=>{ + this.baseURL = val; + }); + elDiv.appendChild(inp.div); - p = document.createElement("p"); - p.innerText = `bCompletionInsertStandardRolePrefix:${this.bCompletionInsertStandardRolePrefix}`; - elDiv.appendChild(p); + inp = ui.el_creatediv_input("SetAuthorization", "Authorization", "text", this.headers["Authorization"], (val)=>{ + this.headers["Authorization"] = val; + }); + inp.el.placeholder = "Bearer OPENAI_API_KEY"; + elDiv.appendChild(inp.div); - p = document.createElement("p"); - p.innerText = `iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`; - elDiv.appendChild(p); + let bb = ui.el_creatediv_boolbutton("SetStream", "Stream", {true: "[+] yes stream", false: "[-] do oneshot"}, this.bStream, (val)=>{ + this.bStream = val; + }); + elDiv.appendChild(bb.div); - p = document.createElement("p"); - p.innerText = `chatRequestOptions:${JSON.stringify(this.chatRequestOptions)}`; - elDiv.appendChild(p); + bb = ui.el_creatediv_boolbutton("SetCompletionFreshChatAlways", "CompletionFreshChatAlways", {true: "[+] yes fresh", false: "[-] no, with history"}, this.bCompletionFreshChatAlways, (val)=>{ + this.bCompletionFreshChatAlways = val; + }); + elDiv.appendChild(bb.div); + + bb = ui.el_creatediv_boolbutton("SetCompletionInsertStandardRolePrefix", "CompletionInsertStandardRolePrefix", {true: "[+] yes insert", false: "[-] dont insert"}, this.bCompletionInsertStandardRolePrefix, (val)=>{ + this.bCompletionInsertStandardRolePrefix = val; + }); + elDiv.appendChild(bb.div); + + bb = ui.el_creatediv_boolbutton("SetTrimGarbage", "TrimGarbage", {true: "[+] yes trim", false: "[-] dont trim"}, this.bTrimGarbage, (val)=>{ + this.bTrimGarbage = val; + }); + elDiv.appendChild(bb.div); + + let sel = ui.el_creatediv_select("SetChatHistoryInCtxt", "ChatHistoryInCtxt", this.sRecentUserMsgCnt, this.iRecentUserMsgCnt, (val)=>{ + this.iRecentUserMsgCnt = this.sRecentUserMsgCnt[val]; + }); + elDiv.appendChild(sel.div); + + sel = ui.el_creatediv_select("SetApiEP", "ApiEndPoint", ApiEP.Type, this.apiEP, (val)=>{ + this.apiEP = ApiEP.Type[val]; + }); + elDiv.appendChild(sel.div); + + this.show_settings_chatrequestoptions(elDiv); } @@ -619,6 +908,9 @@ let gMe; function startme() { console.log("INFO:SimpleChat:StartMe:Starting..."); gMe = new Me(); + gMe.debug_disable(); + document["gMe"] = gMe; + document["du"] = du; for (let cid of gMe.defaultChatIds) { gMe.multiChat.new_chat_session(cid); } diff --git a/examples/server/public_simplechat/ui.mjs b/examples/server/public_simplechat/ui.mjs new file mode 100644 index 000000000..b2d5b9aea --- /dev/null +++ b/examples/server/public_simplechat/ui.mjs @@ -0,0 +1,211 @@ +//@ts-check +// Helpers to work with html elements +// by Humans for All +// + + +/** + * Set the class of the children, based on whether it is the idSelected or not. + * @param {HTMLDivElement} elBase + * @param {string} idSelected + * @param {string} classSelected + * @param {string} classUnSelected + */ +export function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") { + for(let child of elBase.children) { + if (child.id == idSelected) { + child.className = classSelected; + } else { + child.className = classUnSelected; + } + } +} + +/** + * Create button and set it up. + * @param {string} id + * @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback + * @param {string | undefined} name + * @param {string | undefined} innerText + */ +export function el_create_button(id, callback, name=undefined, innerText=undefined) { + if (!name) { + name = id; + } + if (!innerText) { + innerText = id; + } + let btn = document.createElement("button"); + btn.id = id; + btn.name = name; + btn.innerText = innerText; + btn.addEventListener("click", callback); + return btn; +} + +/** + * Create a para and set it up. Optionaly append it to a passed parent. + * @param {string} text + * @param {HTMLElement | undefined} elParent + * @param {string | undefined} id + */ +export function el_create_append_p(text, elParent=undefined, id=undefined) { + let para = document.createElement("p"); + para.innerText = text; + if (id) { + para.id = id; + } + if (elParent) { + elParent.appendChild(para); + } + return para; +} + +/** + * Create a button which represents bool value using specified text wrt true and false. + * When ever user clicks the button, it will toggle the value and update the shown text. + * + * @param {string} id + * @param {{true: string, false: string}} texts + * @param {boolean} defaultValue + * @param {function(boolean):void} cb + */ +export function el_create_boolbutton(id, texts, defaultValue, cb) { + let el = document.createElement("button"); + el["xbool"] = defaultValue; + el["xtexts"] = structuredClone(texts); + el.innerText = el["xtexts"][String(defaultValue)]; + if (id) { + el.id = id; + } + el.addEventListener('click', (ev)=>{ + el["xbool"] = !el["xbool"]; + el.innerText = el["xtexts"][String(el["xbool"])]; + cb(el["xbool"]); + }) + return el; +} + +/** + * Create a div wrapped button which represents bool value using specified text wrt true and false. + * @param {string} id + * @param {string} label + * @param {{ true: string; false: string; }} texts + * @param {boolean} defaultValue + * @param {(arg0: boolean) => void} cb + * @param {string} className + */ +export function el_creatediv_boolbutton(id, label, texts, defaultValue, cb, className="gridx2") { + let div = document.createElement("div"); + div.className = className; + let lbl = document.createElement("label"); + lbl.setAttribute("for", id); + lbl.innerText = label; + div.appendChild(lbl); + let btn = el_create_boolbutton(id, texts, defaultValue, cb); + div.appendChild(btn); + return { div: div, el: btn }; +} + + +/** + * Create a select ui element, with a set of options to select from. + * * options: an object which contains name-value pairs + * * defaultOption: the value whose name should be choosen, by default. + * * cb : the call back returns the name string of the option selected. + * + * @param {string} id + * @param {Object} options + * @param {*} defaultOption + * @param {function(string):void} cb + */ +export function el_create_select(id, options, defaultOption, cb) { + let el = document.createElement("select"); + el["xselected"] = defaultOption; + el["xoptions"] = structuredClone(options); + for(let cur of Object.keys(options)) { + let op = document.createElement("option"); + op.value = cur; + op.innerText = cur; + if (options[cur] == defaultOption) { + op.selected = true; + } + el.appendChild(op); + } + if (id) { + el.id = id; + el.name = id; + } + el.addEventListener('change', (ev)=>{ + let target = /** @type{HTMLSelectElement} */(ev.target); + console.log("DBUG:UI:Select:", id, ":", target.value); + cb(target.value); + }) + return el; +} + +/** + * Create a div wrapped select ui element, with a set of options to select from. + * + * @param {string} id + * @param {any} label + * @param {{ [x: string]: any; }} options + * @param {any} defaultOption + * @param {(arg0: string) => void} cb + * @param {string} className + */ +export function el_creatediv_select(id, label, options, defaultOption, cb, className="gridx2") { + let div = document.createElement("div"); + div.className = className; + let lbl = document.createElement("label"); + lbl.setAttribute("for", id); + lbl.innerText = label; + div.appendChild(lbl); + let sel = el_create_select(id, options,defaultOption, cb); + div.appendChild(sel); + return { div: div, el: sel }; +} + + +/** + * Create a input ui element. + * + * @param {string} id + * @param {string} type + * @param {any} defaultValue + * @param {function(any):void} cb + */ +export function el_create_input(id, type, defaultValue, cb) { + let el = document.createElement("input"); + el.type = type; + el.value = defaultValue; + if (id) { + el.id = id; + } + el.addEventListener('change', (ev)=>{ + cb(el.value); + }) + return el; +} + +/** + * Create a div wrapped input. + * + * @param {string} id + * @param {string} label + * @param {string} type + * @param {any} defaultValue + * @param {function(any):void} cb + * @param {string} className + */ +export function el_creatediv_input(id, label, type, defaultValue, cb, className="gridx2") { + let div = document.createElement("div"); + div.className = className; + let lbl = document.createElement("label"); + lbl.setAttribute("for", id); + lbl.innerText = label; + div.appendChild(lbl); + let el = el_create_input(id, type, defaultValue, cb); + div.appendChild(el); + return { div: div, el: el }; +} From 2e666832e6ac78194edf030bd1c295e21bdb022c Mon Sep 17 00:00:00 2001 From: Yazan Agha-Schrader Date: Sat, 1 Jun 2024 21:31:48 +0200 Subject: [PATCH 46/47] server : new UI (#7633) * ic * migrate my eary work * add the belonging stuff: css,favicon etc * de prompts * chore: Update HTML meta tags in index.html file * add api-key css classes * some necessary fixes * Add API key CSS classes and update styling in style.css * clean the code * move API to the top, rearrange param sliders. update css * add tooltips to the parameters with comprehensible explanations * fix FloatField and BoolField tooltips * fix grammar field width * use template literales for promptFormats.js * update const ModelGenerationInfo * remove ms per token, since not relevant for most webui users and use cases * add phi-3 prompt template * add phi3 to dropdown * add css class * update forgotten css theme * add user message suffix * fix chatml & add llama3 format * fix llama3 prompt template * more prompt format fixes * add more comon stop tokens * add missing char * do not separate with new line or comma * move prompt style * add hacky llama2 prompt solution, reduce redundancy in promptFormats.js * fix toggle state localstorage * add cmd-r prompt et reduce redundancy * set default prompt to empty * move files, clean code * fix css path * add a button to the new ui * move new ui to "/public" due to otherwise problematic CORS behaviour * include new ui in cpp * fix wrong link to old ui * renaming to ensure consistency * fix typos "prompt-format" -> "prompt-formats" * use correct indent * add new ui files to makefile * fix typo --- Makefile | 2 +- examples/server/CMakeLists.txt | 11 + examples/server/public/colorthemes.css | 402 ++++++ examples/server/public/index-new.html | 1178 ++++++++++++++++++ examples/server/public/index.html | 79 +- examples/server/public/prompt-formats.js | 331 +++++ examples/server/public/style.css | 954 ++++++++++++++ examples/server/public/system-prompts.js | 68 + examples/server/public/theme-beeninorder.css | 228 ++++ examples/server/public/theme-ketivah.css | 201 +++ examples/server/public/theme-mangotango.css | 216 ++++ examples/server/public/theme-playground.css | 221 ++++ examples/server/public/theme-polarnight.css | 253 ++++ examples/server/public/theme-snowstorm.css | 251 ++++ examples/server/server.cpp | 27 +- 15 files changed, 4418 insertions(+), 4 deletions(-) create mode 100755 examples/server/public/colorthemes.css create mode 100644 examples/server/public/index-new.html create mode 100644 examples/server/public/prompt-formats.js create mode 100755 examples/server/public/style.css create mode 100644 examples/server/public/system-prompts.js create mode 100755 examples/server/public/theme-beeninorder.css create mode 100755 examples/server/public/theme-ketivah.css create mode 100755 examples/server/public/theme-mangotango.css create mode 100755 examples/server/public/theme-playground.css create mode 100755 examples/server/public/theme-polarnight.css create mode 100755 examples/server/public/theme-snowstorm.css diff --git a/Makefile b/Makefile index dfb3bb2cd..c643fe0cc 100644 --- a/Makefile +++ b/Makefile @@ -832,7 +832,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) +server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/colorthemes.css.hpp examples/server/style.css.hpp examples/server/theme-beeninorder.css.hpp examples/server/theme-ketivah.css.hpp examples/server/theme-mangotango.css.hpp examples/server/theme-playground.css.hpp examples/server/theme-polarnight.css.hpp examples/server/theme-snowstorm.css.hpp examples/server/index.html.hpp examples/server/index-new.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/system-prompts.js.hpp examples/server/prompt-formats.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2) diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index 4b89c5302..dab709619 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -8,9 +8,20 @@ set(TARGET_SRCS httplib.h ) set(PUBLIC_ASSETS + colorthemes.css + style.css + theme-beeninorder.css + theme-ketivah.css + theme-mangotango.css + theme-playground.css + theme-polarnight.css + theme-snowstorm.css index.html + index-new.html index.js completion.js + system-prompts.js + prompt-formats.js json-schema-to-grammar.mjs ) foreach(asset ${PUBLIC_ASSETS}) diff --git a/examples/server/public/colorthemes.css b/examples/server/public/colorthemes.css new file mode 100755 index 000000000..b1e2b8b70 --- /dev/null +++ b/examples/server/public/colorthemes.css @@ -0,0 +1,402 @@ +@import url("theme-snowstorm.css"); +@import url("theme-polarnight.css"); +@import url("theme-ketivah.css"); +@import url("theme-mangotango.css"); +@import url("theme-playground.css"); +@import url("theme-beeninorder.css"); + +:root { +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(217.5, 26.7%, 94.1%); + --primary-color-1-hue: 217.5; + --primary-color-1-saturation: 26.7%; + --primary-color-1-lightness: 94.1%; + +--primary-color-2: hsl(218.2, 26.8%, 92.0%); + --primary-color-2-hue: 218.2; + --primary-color-2-saturation: 26.8%; + --primary-color-2-lightness: 92.0%; + +--primary-color-3: hsl(218.8, 27.9%, 88.0%); + --primary-color-3-hue: 218.8; + --primary-color-3-saturation: 27.9%; + --primary-color-3-lightness: 88.0%; + +--primary-color-4: hsl(218.8, 18.3%, 81.8%); + --primary-color-4-hue: 218.8; + --primary-color-4-saturation: 18.3%; + --primary-color-4-lightness: 81.8%; + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(220.0, 16.4%, 21.6%); + --secondary-color-1-hue: 220.0; + --secondary-color-1-saturation: 16.4%; + --secondary-color-1-lightness: 21.6%; + +--secondary-color-2: hsl(221.7, 16.3%, 27.6%); + --secondary-color-2-hue: 221.7; + --secondary-color-2-saturation: 16.3%; + --secondary-color-2-lightness: 27.6%; + +--secondary-color-3: hsl(220.0, 16.8%, 31.6%); + --secondary-color-3-hue: 220.0; + --secondary-color-3-saturation: 16.8%; + --secondary-color-3-lightness: 31.6%; + +--secondary-color-4: hsl(220.0, 16.5%, 35.7%); + --secondary-color-4-hue: 220.0; + --secondary-color-4-saturation: 16.5%; + --secondary-color-4-lightness: 35.7%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(178.7, 25.1%, 64.9%); + --theme-nuance-color-1-hue: 178.7; + --theme-nuance-color-1-saturation: 25.1%; + --theme-nuance-color-1-lightness: 64.9%; + +--theme-nuance-color-2: hsl(193.3, 43.4%, 67.5%); + --theme-nuance-color-2-hue: 193.3; + --theme-nuance-color-2-saturation: 43.4%; + --theme-nuance-color-2-lightness: 67.5%; + +--theme-nuance-color-3: hsl(210.0, 34.0%, 63.1%); + --theme-nuance-color-3-hue: 210.0; + --theme-nuance-color-3-saturation: 34.0%; + --theme-nuance-color-3-lightness: 63.1%; + +--theme-nuance-color-4: hsl(213.1, 32.0%, 52.2%); + --theme-nuance-color-4-hue: 213.1; + --theme-nuance-color-4-saturation: 32.0%; + --theme-nuance-color-4-lightness: 52.2%; + + + +/* ----------- ROYGP COLORS ------------------ */ +--theme-red-color: hsl(32.5, 80%, 50%); +--theme-orange-color: hsl(32.5, 70%, 45%); +--theme-yellow-color: hsl(40.0, 0.6%, 73.3%); +--theme-green-color: hsl(92.4, 27.8%, 64.7%); +--theme-purple-color: hsl(311.1, 20.2%, 63.1%); + + + +/* ------------------------------------------- */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--theme-nuance-color-3); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--primary-color-1); +--button-alert-color-hover: var(--theme-orange-color); +--button-alert-border-hover: var(--theme-orange-color); + +--button-alert-text-active: var(--primary-color-1); +--button-alert-color-active: var(--theme-red-color); +--button-alert-border-active: var(--theme-red-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: var(--secondary-color-1); +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(217.5, + calc(var(--secondary-color-1-saturation) + 35%), + calc(var(--secondary-color-1-lightness) - 30%)); + +--button-primary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 35%)); + +--button-primary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + +--button-primary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 50%)); + +--button-secondary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + +--button-secondary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + +--button-secondary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + + +/* ---------active--------- */ +--button-secondary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) + 40%), + calc(var(--theme-nuance-color-3-lightness) - 55%)); + +--button-secondary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-secondary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +/* ---------hover---------- */ +--button-tertiary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); +} + +/* + +.theme-template { + + + If light theme: should go from bright to darker + If dark theme: should go from dark to brighter + ideally this should not be anything but steps of + gray or slightly variants from it + + --primary-color-1: #2E3440; + --primary-color-2: #3B4252; + --primary-color-3: #434C5E; + --primary-color-4: #4C566A; + + + + If light theme: should go from dark to brighter + If dark theme: should go from bright to darker + ideally this should not be anything but steps of + gray or slightly variants from it + + --secondary-color-1: #ECEFF4; + --secondary-color-2: #E5E9F0; + --secondary-color-3: #D8DEE9; + --secondary-color-4: #C8CED9; + + + + Choose wisely nuance colors. It is not easy to find + 4 harmonizing nuance colors. But keep in mind, that + only one accent color could work too. + + --theme-nuance-color-1: #8FBCBB; + --theme-nuance-color-2: #88C0D0; + --theme-nuance-color-3: #81A1C1; + --theme-nuance-color-4: #5E81AC; + + + + adapt the color red, orange, yellow, green, + purple to the 'mood' of your overall design + e.g is it low-contrast? vibrant? dynamic? etc + + --theme-red-color: #BF616A; + --theme-orange-color: #D08770; + --theme-yellow-color: #EBCB8B; + --theme-green-color: #A3BE8C; + --theme-purple-color: #B48EAD; + + + +NOTE: comment all those line `--- ...` out +------------------------------------------------ +--background-color-1: +--background-color-2: +--background-color-3: +--background-color-4: + +--border-color-1: +--border-color-2: +--border-color-3: + +--border-focus-color: +--border-focus-shadow: + +--text-color-plain: +--text-color-subtile-1: +--text-color-subtile-2: + +--code-background-color: +--code-text-color: + +--ui-range-thumb-color: +--ui-range-thumb-border: + +--textarea-border-color: + + + +------------------------------------------- +--button-alert-text-hover: +--button-alert-color-hover: +--button-alert-border-hover: + +--button-alert-text-active: +--button-alert-color-active: +--button-alert-border-active: + + + +----------- PRIMARY ----------------------- +--button should immediately catch the eye-- + +--button-primary-text: +--button-primary-color: +--button-primary-border: + + +---------hover---------- +--button-primary-text-hover: +--button-primary-color-hover: +--button-primary-border-hover: + + +---------active--------- +--button-primary-text-active: +--button-primary-color-active: +--button-primary-border-active: + + + +------------ SECONDARY ------------------------ +--button should NOT immediately catch the eye-- + +--button-secondary-text: +--button-secondary-color: +--button-secondary-border: + + +---------hover---------- +--button-secondary-text-hover: +--button-secondary-color-hover: +--button-secondary-border-hover: + + +---------active--------- +--button-secondary-text-active: +--button-secondary-color-active: +--button-secondary-border-active: + + + +---------- TERTIARY ----------------------- +---------- disabled buttons --------------- +--button-tertiary-text: +--button-tertiary-color: +--button-tertiary-border: + + +---------hover---------- +--button-tertiary-text: +--button-tertiary-color: +--button-tertiary-border: + +} + +*/ diff --git a/examples/server/public/index-new.html b/examples/server/public/index-new.html new file mode 100644 index 000000000..d571c2779 --- /dev/null +++ b/examples/server/public/index-new.html @@ -0,0 +1,1178 @@ + + + + + + + + + llama.cpp - chat + + + + + + + + + +
+ +
+
+ + + diff --git a/examples/server/public/index.html b/examples/server/public/index.html index 4c5a34d90..2f60a76e8 100644 --- a/examples/server/public/index.html +++ b/examples/server/public/index.html @@ -12,6 +12,18 @@ font-size: 90%; } + .grid-container { + display: grid; + grid-template-columns: auto auto auto; + padding: 10px; + } + + .grid-item { + padding: 5px; + /* font-size: 30px; */ + text-align: center; + } + #container { margin: 0em auto; display: flex; @@ -35,6 +47,67 @@ padding: 0.5em; } + h1 { + text-align: center; + } + + .customlink:link { + color: white; + background-color: #007aff; + font-weight: 600; + text-decoration: none; + float: right; + margin-top: 30px; + display: flex; + flex-direction: row; + gap: 0.5em; + justify-content: flex-end; + border-radius: 4px; + padding: 8px; + } + + .customlink:visited { + color: white; + background-color: #007aff; + font-weight: 600; + text-decoration: none; + float: right; + margin-top: 30px; + display: flex; + flex-direction: row; + gap: 0.5em; + justify-content: flex-end; + padding: 8px; + } + + .customlink:hover { + color: white; + background-color: #0070ee; + font-weight: 600; + text-decoration: none; + float: right; + margin-top: 30px; + display: flex; + flex-direction: row; + gap: 0.5em; + justify-content: flex-end; + padding: 8px; + } + + .customlink:active { + color: #0070ee; + background-color: #80b3ef; + font-weight: 600; + text-decoration: none; + float: right; + margin-top: 30px; + display: flex; + flex-direction: row; + gap: 0.5em; + justify-content: flex-end; + padding: 8px; + } + body { max-width: 600px; min-width: 300px; @@ -1035,7 +1108,11 @@ return html`
-

llama.cpp

+
+
+

llama.cpp

+ +
diff --git a/examples/server/public/prompt-formats.js b/examples/server/public/prompt-formats.js new file mode 100644 index 000000000..73ddb7187 --- /dev/null +++ b/examples/server/public/prompt-formats.js @@ -0,0 +1,331 @@ +// extended list +export const promptFormats = { + "alpaca": { + template: `{{prompt}}\n\n{{history}}\n\n{{char}}:`, + + historyTemplate: `### {{name}}:\n{{message}}`, + + char: "Response", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "Instruction", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "chatml": { + template: `<|im_start|>system\n{{prompt}}<|im_end|>\n{{history}}{{char}}`, + + historyTemplate: `<|im_start|>{{name}}\n{{message}}`, + + char: "assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "user", + userMsgPrefix: "", + userMsgSuffix: "<|im_end|>\n", + + stops: "" + }, + + // ---------------------------- + + "commandr": { + template: `<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{prompt}}\n<|END_OF_TURN_TOKEN|>{{history}}{{char}}`, + + historyTemplate: `<|START_OF_TURN_TOKEN|><|{{name}}|> {{message}}`, + + char: "CHATBOT_TOKEN", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "USER_TOKEN", + userMsgPrefix: "", + userMsgSuffix: "<|END_OF_TURN_TOKEN|>", + + stops: "" + }, + // ref: https://docs.cohere.com/docs/prompting-command-r + + // ---------------------------- + + "llama2": { + template: `[INST] <>\n{{prompt}}\n<>\n\nTest Message [/INST] Test Successfull {{history}}{{char}}`, + + historyTemplate: `{{name}}: {{message}}`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "User", + userMsgPrefix: "[INST] ", + userMsgSuffix: " [/INST]", + + stops: "" + }, + // ref: https://huggingface.co/blog/llama2#how-to-prompt-llama-2 + + // ---------------------------- + + "llama3": { + template: `<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{{prompt}}{{history}}{{char}}`, + + historyTemplate: `<|start_header_id|>{{name}}<|end_header_id|>\n\n{{message}}<|eot_id|>`, + + char: "assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "user", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "<|eot_id|>" + }, + // ref: https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3/#special-tokens-used-with-meta-llama-3 + + // ---------------------------- + + "openchat": { + template: `{{history}}{{char}}`, + + historyTemplate: `GPT4 Correct {{name}}: {{message}}<|end_of_turn|>`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "User", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "phi3": { + template: `{{history}}{{char}}`, + + historyTemplate: `<|{{name}}|>\n{{message}}<|end|>\n`, + + char: "assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "user", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "<|end|>" + }, + // ref: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct#chat-format + + // ---------------------------- + + "vicuna": { + template: `{{prompt}}\n{{history}}{{char}}`, + + historyTemplate: `{{name}}: {{message}}\n`, + + char: "ASSISTANT", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "USER", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + // ref: https://huggingface.co/lmsys/vicuna-33b-v1.3/discussions/1 + + // ---------------------------- + + "deepseekCoder": { + template: `{{prompt}}{{history}}{{char}}:`, + + historyTemplate: `### {{name}}:\n{{message}}`, + + char: "Response", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "Instruction", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "<|EOT|>" + }, + + // ---------------------------- + + "med42": { + template: `<|system|>: {{prompt}}\n{{history}}{{char}}`, + + historyTemplate: `<|{{name}}|>: {{message}}\n`, + + char: "assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "prompter", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "neuralchat": { + template: `### System:\n{{prompt}}\n{{history}}{{char}}:`, + + historyTemplate: `### {{name}}:\n{{message}}\n`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "User", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "nousHermes": { + template: `### Instruction: {{prompt}}\n\n{{history}}\n\n{{char}}:`, + + historyTemplate: `### {{name}}:\n{{message}}`, + + char: "Response", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "Input", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "openchatMath": { + template: `{{history}}{{char}}`, + + historyTemplate: `Math Correct {{name}}: {{message}}<|end_of_turn|>`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + + user: "User", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "orion": { + template: `Human: Test Message\n\nAssistant: Test Successful{{history}}{{char}}:`, + + historyTemplate: `{{name}}: {{message}}`, + + char: "Assistant ", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "Human", + userMsgPrefix: "", + userMsgSuffix: "\n\n", + + stops: "" + }, + + // ---------------------------- + + "sauerkraut": { + template: `{{prompt}}\n{{history}}{{char}}`, + + historyTemplate: ` + {{name}}: {{message}}\n`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "User", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "starlingCode": { + template: `{{history}}{{char}}`, + + historyTemplate: `Code {{name}}: {{message}}<|end_of_turn|>`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "User", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "yi34b": { + template: `{{history}} {{char}}`, + + historyTemplate: `{{name}}: {{message}}`, + + char: "Assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "Human", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + }, + + // ---------------------------- + + "zephyr": { + template: `<|system|>\n{{prompt}}\n{{history}}{{char}}`, + + historyTemplate: `<|{{name}}|>\n{{message}}\n`, + + char: "assistant", + charMsgPrefix: "", + charMsgSuffix: "", + + user: "user", + userMsgPrefix: "", + userMsgSuffix: "", + + stops: "" + } + }; diff --git a/examples/server/public/style.css b/examples/server/public/style.css new file mode 100755 index 000000000..087cc62da --- /dev/null +++ b/examples/server/public/style.css @@ -0,0 +1,954 @@ +@import url("colorthemes.css"); + +body { + font-family: 'Arial', sans-serif; + font-size: 90%; + background-color: var(--background-color-1); + color: var(--text-color-subtile-1); /* head 1 llama.cpp & triangle options for some reason */ + max-width: 600px; + min-width: 300px; + line-height: 1.2; + margin: 0 auto; + padding: 0 0.5em; + transition: background-color 0.3s; +} + +::selection { + color: var(--button-primary-text) ; + background: var(--button-primary-color); +} + +code, pre code { + font-family: 'Courier New', monospace; +} + +#container { + margin: 0em auto; + display: flex; + flex-direction: column; + justify-content: space-between; + height: 100%; +} + +main { + margin: 3px; + display: flex; + flex-direction: column; + justify-content: space-between; + gap: 1em; + flex-grow: 1; + overflow-y: auto; + border: 1px solid var(--border-color-3); + border-radius: 5px; + padding: 0.5em; +} + +p { + overflow-wrap: break-word; + word-wrap: break-word; + hyphens: auto; + margin-top: 0.5em; + margin-bottom: 0.5em; +} + +#write form { + margin: 1em 0 0 0; + display: flex; + flex-direction: column; + gap: 0.5em; + align-items: stretch; +} + +.right { + display: flex; + flex-direction: row; + gap: 0.5em; + justify-content: flex-end; + margin-bottom: 30px; +} + +.two-columns { + width: 97%; + max-width: 97%; + display: grid; + grid-template-columns: 1fr 1fr; + gap: 1em; + position: relative; +} + +.json-schema-controls { + margin-top: 10px; + width: 100%; + max-width: 100%; + display: grid; + grid-template: "a a"; + gap: 1em; + font-size: x-small; + color: var(--theme-nuance-color-3); + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} + +.json-schema-controls > * { + flex: 1; +} + +/* titles of the details-summary boxes */ +.summary-title { + font-weight: 600; + font-size: x-small; + color: var(--text-color-subtile-1); + text-transform: uppercase; + /* transition: ; */ +} + +fieldset { + border: none; + padding: 0; + margin: 0; + color: var(--text-color-plain); +} + +fieldset.two { + display: grid; + grid-template: "a a a"; + gap: 1em; + align-items: center; + font-size: x-small; + color: var(--text-color-plain); +} + +fieldset.three { + display: grid; + grid-template: "a a a"; + gap: 1em; + font-size: x-small; + color: var(--text-color-plain); +} + +/* titles of name fields*/ +fieldset.names { + display: grid; + grid-template: "a a"; + gap: 1em; + font-size: x-small; + color: var(--theme-nuance-color-3); + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} + +/* titles of params fields*/ +fieldset.params { + display: grid; + grid-template: "a a"; + gap: 1em; + font-size: x-small; + color: var(--theme-nuance-color-4); + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} + +fieldset.dropdowns { + -webkit-appearance: none; + display: flex; + grid-template: "a a"; + gap: 1em; + font-size: x-small; + color: red; + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} + +/* input of name fields*/ +.names input[type="text"] { + font-family: Arial, sans-serif; + font-size: medium; + font-weight: 500; + padding: 5px; + border: 1px solid var(--border-color-2); +} + +.chat-id-color { + color: var(--chat-id-color); +} + +details { + border: 1px solid var(--border-color-2); + border-radius: 5px; + padding: 0.5em 0.5em 0; + margin-top: 0.5em; +} + +summary { + font-weight: bold; + margin: -0.5em -0.5em 0; + padding: 0.5em; + cursor: pointer; +} + +details[open] { + padding: 0.5em; +} + +textarea-sec, input-sec, button-sec { + padding: 10px; + height: 40px; + align-items: center; +} + +textarea-sec::placeholder, input-sec::placeholder { + padding-left: 10px; +} + +.toggleCheckbox { + display: none; +} + +.toggleContainer { + position: relative; + display: grid; + grid-template-columns: repeat(2, 1fr); + width: fit-content; + border: 3px solid var(--border-color-2); + border-radius: 20px; + background: var(--border-color-2); + font-size: small; + cursor: pointer; + overflow: hidden; +} + +/* toggle button current state */ +.toggleContainer::before { + color: var(--button-primary-text); + background-color: var(--button-primary-color); + content: ''; + position: absolute; + width: 50%; + height: 100%; + left: 0%; + border-radius: 20px; + transition: all 0.3s; +} + +.toggleContainer div { + padding: 6px; + text-align: center; + z-index: 1; + transition: color 0.3s; +} + +.toggleCheckbox:checked + .toggleContainer::before { + left: 50%; +} + +.toggleCheckbox:checked + .toggleContainer div:first-child { + color: var(--text-color-subtile-2); +} + +.toggleCheckbox:checked + .toggleContainer div:last-child { + color: var(--button-primary-text); +} + +.toggleCheckbox + .toggleContainer div:first-child { + color: var(--button-primary-text); +} + +.toggleCheckbox + .toggleContainer div:last-child { + color: var(--text-color-subtile-2); +} + +select { + padding: 5px; + margin-right: 5px; + border-radius: 4px; + border: 1px solid var(--secondary-color-4); + background-color: var(--primary-color-3); + color: var(--secondary-color-4); + cursor: pointer; +} + +select:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 1px var(--border-focus-shadow); +} + +.button-container { + display: flex; + justify-content: flex-end; +} + +button { + color: var(--button-primary-text); + background-color: var(--button-primary-color); + border: 1px solid var(--button-primary-border); + transition: background-color 0.1s; + border-radius: 12px; + font-size: x-small; + font-weight: 600; + text-shadow: 0px 0px 30px #ffffff; + text-align: center; + text-decoration: none; + margin: 4px 2px; + padding: 10px 20px; + display: inline-block; + cursor: pointer; +} + +button:hover { + color: var(--button-primary-text-hover); + background-color: var(--button-primary-color-hover); + border: 1px solid var(--button-primary-border-hover); + font-size: x-small; + font-weight: 600; +} + +button:active { + color: var(--button-primary-text-active); + background-color: var(--button-primary-color-active); + border: 1px solid var(--button-primary-border-active); + font-size: x-small; + font-weight: 600; +} + +button:disabled { + color: var(--button-tertiary-text); + background-color: var(--button-tertiary-color); + border: 1px solid var(--button-tertiary-border); + font-size: x-small; + font-weight: 600; + cursor: not-allowed; +} + +.reset-button { + background-color: var(--button-secondary-color); + border: 1px solid var(--button-secondary-color); + color: var(--button-secondary-text); + width: fit-content; + height: fit-content; + font-size: x-small; + font-weight: 600; + border-radius: 50px; + overflow: hidden; +} + +.reset-button:hover { + color: var(--button-alert-text-hover); + background-color: var(--button-alert-color-hover); + border: 1px solid var(--button-alert-border-hover); + font-size: x-small; + font-weight: 600; +} + +.reset-button:active { + color: var(--button-alert-text-active); + background-color: var(--button-alert-color-active); + border: 1px solid var(--button-alert-border-active); + font-size: x-small; + font-weight: 600; +} + +.button-grammar { + color: var(--button-primary-text); + background-color: var(--button-primary-color); + border: 1px solid var(--button-primary-border); + border-radius: 10px; + padding: 10px 20px; + text-align: center; + text-decoration: none; + display: inline-block; + font-size: x-small; + font-weight: 600; + margin: 2px 2px; + transition: background-color 0.1s; + cursor: pointer; +} + +.button-grammar:hover { + color: var(--button-primary-text-hover); + background-color: var(--button-primary-color-hover); + border: 1px solid var(--button-primary-border-hover); + border-radius: 10px; + padding: 10px 20px; + text-align: center; + text-decoration: none; + display: inline-block; + font-size: x-small; + font-weight: 600; + margin: 2px 2px; + transition: background-color 0.1s; + cursor: pointer; +} + +.button-grammar:active { + color: var(--button-primary-text-active); + background-color: var(--button-primary-color-active); + border: 1px solid var(--button-primary-border-active); + font-size: x-small; + font-weight: 600; +} + +.button-back { + background-color: var(--button-secondary-color); + border: 1px solid var(--button-secondary-color); + color: var(--button-secondary-text); + transition: background-color 0.1s; + border-radius: 12px; + font-size: x-small; + font-weight: 600; + text-align: center; + text-decoration: none; + margin: 4px 2px; + padding: 10px 20px; + display: inline-block; + cursor: pointer; +} + +.button-back:hover { + color: var(--button-secondary-text-hover); + background-color: var(--button-secondary-color-hover); + border: 1px solid var(--button-secondary-border-hover); + padding: 10px 20px; + text-align: center; + text-decoration: none; + display: inline-block; + font-size: x-small; + font-weight: 600; + margin: 4px 2px; + transition: background-color 0.1s; + cursor: pointer; + border-radius: 12px; +} + +.button-back:active { + color: var(--button-secondary-text-active); + background-color: var(--button-secondary-color-active); + border: 1px solid var(--button-secondary-border-active); + font-size: x-small; + font-weight: 600; +} + +.prob-set { + padding: 0.3em; + border-bottom: 1px solid red; /* unknown */ +} + +.popover-content { + position: absolute; + background-color: white; + padding: 0.2em; + box-shadow: 0 0 13px rgba(0, 0, 0, 0.1); +} + +.grammar { + width: 97%; + max-width: 97%; +} + +textarea { + padding: 5px; + flex-grow: 1; + width: 100%; + max-width: 100%; + border-radius: 8px; + border: 1px solid var(--border-color-1); + resize: none; + height: 6em; +} + +textarea:focus { + outline: none; + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +/* "props" frame */ +input[type="text"], +input[type="range"] { + padding: 5px; + border-radius: 8px; + border: 1px solid var(--border-color-1); +} + +/* "names and props" frame focused*/ +input[type="text"]:focus { + outline: none; + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +input[type="range"]:hover { + opacity: 1; +} + +input[type="range"]:focus { + outline: none; + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); + background-size: var(--slider-track-size-focus); +} + +input[type="range"]::-moz-range-thumb { + width: 6px; + height: 25px; + border: 1px solid var(--ui-range-thumb-border); + border-radius: 5px; + background-color: var(--ui-range-thumb-color); + cursor: pointer; +} + +input[type="range"] { + -webkit-appearance: none; + width: 80%; + height: 1px; + border: 1px solid var(--border-color-1); + border-radius: 8px; + background: var(--border-color-2); + outline: none; + opacity: 0.7; + -webkit-transition: .2s; + transition: opacity .2s; +} + +input[type="range"]::-webkit-slider-thumb { + -webkit-appearance: none; + appearance: none; + width: 6px; + height: 25px; + border: 1px solid var(--ui-range-thumb-border); + border-radius: 5px; + background-color: var(--ui-range-thumb-color); + cursor: pointer; +} + +input[type="range"]::-webkit-slider-runnable-track { + background-size: var(--slider-track-size); +} + +input[type="radio"] { + accent-color: var(--theme-nuance-color-2); +} + +.chat-input-container { + position: relative; + max-width: 97%; + min-width: 97%; +} + +.chat-input-label { + position: absolute; + top: 0; + left: 0; + color: var(--text-color-plain); + pointer-events: none; + margin-left: 5px; + margin-top: 5px; +} + +textarea#chat-input { + padding-top: 10px; + padding-left: 10px; + font-size: medium; + border: 1px solid var(--border-color-2); + resize: vertical; +} + +textarea#chat-input:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +.input-container { + position: relative; + box-sizing: border-box; + width: 100%; /* Setzt die Breite auf 100% */ + max-width: 100%; /* Stellt sicher, dass die Breite nicht größer als 100% wird */ +} + +.input-container:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} +/* titles of name fields*/ +/* fieldset.names { + display: grid; + grid-template: "a a"; + gap: 1em; + font-size: x-small; + color: var(--theme-nuance-color-3); + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} */ + +/* input of name fields*/ +/* .names input[type="text"] { + font-family: Arial, sans-serif; + font-size: medium; + font-weight: 500; + padding: 5px; + border: 1px solid var(--border-color-2); +} */ + +fieldset.apiKey { + width: 100%; + font-size: x-small; + color: var(--theme-nuance-color-3); + padding-top: 16px; + padding-bottom: 16px; + text-transform: uppercase; + font-weight: 600; +} + +.apiKey { + font-family: Arial, sans-serif; + font-weight: 500; + padding: 5px; + border: 1px solid var(--border-color-2); +} + +.apiKey:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +.apiKey input[type="text"] { + font-family: Arial, sans-serif; + font-size: medium; + font-weight: 500; + padding: 5px; + border: 1px solid var(--border-color-2); +} + +.apiKey label { + display: inline-block; + width: auto; + margin-right: 5px; +} + +textarea#api_key { + padding-top: 10px; + padding-left: 10px; + font-size: medium; + border: 1px solid var(--border-color-2); + resize: vertical; +} + +textarea#api_key:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +/* embedded title of the system prompt text area */ +.input-label { + position: absolute; + top: 0; + left: 0; + color: var(--theme-nuance-color-4); + pointer-events: none; + border-radius: 8px 8px 0px 0px; + padding-top: 10px; + padding-left: 13px; + padding-right: 0px; + margin-top: 1px; + margin-left: 1px; + margin-right: 20px; + text-transform: uppercase; + font-weight: 600; + font-size: small; + background: rgba(255, 255, 255, 0.5); + backdrop-filter: blur(10px); + -webkit-backdrop-filter: blur(10px); /* for safari */ + width: 97%; + /* display: block; + box-sizing: border-box; */ +} + +/* embedded title of the prompt style areas */ +.input-label-sec { + position: absolute; + top: 0; + left: 0; + color: var(--theme-nuance-color-4); + pointer-events: none; + margin-left: 13px; + margin-top: 16px; + text-transform: uppercase; + font-weight: 600; + font-size: x-small; +} + +/* system prompt input area */ +textarea.persistent-input { + padding-top: 42px; + padding-left: 11px; + width: 97%; + max-width: 97%; + height: 50px; + font-size: medium; + overscroll-behavior: contain; +} + +/* system prompt box */ +.persistent-input { + height: auto; + width: 100%; + max-width: 100%; + min-height: 50px; + padding: 3px; + transition: min-height 0.3s ease; +} + +/* chat history box */ +.persistent-input:focus { + height: auto; + min-height: 150px; + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +textarea.persistent-input:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +/* prompt style input area */ +textarea.persistent-input-sec { + width: 97%; + max-width: 97%; + padding-top: 42px; + padding-left: 11px; + font-size: small; + border: 1px solid var(--border-color-1); + overscroll-behavior: contain; +} + +textarea.persistent-input-sec:focus { + border: 1px solid var(--border-focus-color); + box-shadow: 0 0 3px var(--border-focus-shadow); +} + +/* chat history box */ +.persistent-input-sec { + height: auto; + min-height: 150px; +} + +img { + border-radius: 8px; + display: block; + margin-left: auto; + margin-right: auto; + width: 50%; +} + +/* code area background */ +pre code { + display: block; + background-color: var(--code-background-color); + color: var(--code-text-color); + padding: 0.2em 0.2em; + border-radius: 5px; +} + +/* code area text */ +code { + font-family: monospace; + font-weight: bold; + padding: 0.1em 0.3em; + border-radius: 5px; +} + +fieldset label { + margin: 0.5em 0; + display: block; +} + +fieldset label.slim { + margin: 0 0.5em; + display: inline; +} + +header { + display: flex; + justify-content: space-between; + align-items: center; + text-align: center; + padding-left: 15px; +} + +.generation-statistics:hover { + color: var(--theme-nuance-color-4); + cursor: default; +} + +footer { + font-size: 80%; + color: var(--background-color-3); + text-align: center; + cursor: default; +} + +footer a { + color: var(--background-color-4); /* Color of the link */ + text-decoration: none; /* No underlining */ + font-weight: bold; /* Bold print */ +} + +footer a:hover { + color: var(--theme-nuance-color-4); /* Color of the link when hovering */ + text-decoration: underline; /* Underlining when hovering */ +} + +.mode-chat textarea[name=prompt] { + height: 8.5em; + border: 1px solid var(--primary-color-3); +} + +.mode-completion textarea[name=prompt] { + height: 30em; + border: 1px solid var(--primary-color-3); +} + +@keyframes loading-bg-wipe { + 0% { + background-position: 0%; + } + 100% { + background-position: 100%; + } +} + +.loading { + background-size: 50% 100%; + background-image: linear-gradient(90deg, var(--loading-color-1), var(--loading-color-2), var(--loading-color-1)); + animation: loading-bg-wipe 2s linear infinite; +} + +.dropbtn { + color: var(--button-primary-color); + background-color: var(--background-color-1); + border: 1px solid var(--background-color-1); + transition: background-color 0.1s; + border-radius: 4px 4px 0px 0px; + font-size: x-small; + font-weight: 600; + text-shadow: 0px 0px 2px #99999990; + text-align: center; + text-decoration: none; + margin: 4px 2px; + padding: 5px 20px; + display: inline-block; + cursor: pointer; + top: 0; +} + +.dropbtn svg { + vertical-align: middle; + margin-right: 0px; + stroke: var(--button-primary-color); +} + +.dropbtn:hover svg { + vertical-align: middle; + margin-right: 0px; + stroke: var(--button-primary-text); +} + +.dropbtn:focus { + outline: none; /* Removes the blue border that appears when the button is focused */ +} + +.dropdown { + position: relative; + display: inline-block; +} + +.dropdown-content { + /* display: none; */ + position: absolute; + right: 0; + text-align: end; + color: var(--button-secondary-color); + background-color: var(--text-color-subtile-2); + border-radius: 4px 4px 4px 4px; + min-width: 160px; + box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); + z-index: 1; + /* Verstecke den Inhalt sofort */ + opacity: 0; + visibility: hidden; + /* übergangsverzögerung für das Verschwinden */ + transition: visibility 0.4s linear 0s, opacity 0.2s ease-in-out; + transition-delay: 0.2s; +} + +#dropdown-content {transition-timing-function: ease;} + +.dropdown-content:hover { + background-color: var(--text-color-subtile-2); +} + +.dropdown-content a { + color: var(--border-color-2); + padding: 12px 16px; + border-radius: 4px 4px 4px 4px; + text-decoration: none; + display: block; + background-color: var(--text-color-subtile-2); +} + +.dropdown-content a:hover { + color: var(--border-color-2); + background-color: var(--text-color-subtile-1); + font-weight: 600; +} + +.dropdown:hover .dropdown-content { + /* display: block; */ + border-radius: 4px 4px 4px 4px; + /* Übergang ohne Verzögerung für das Erscheinen */ + opacity: 1; + visibility: visible; + transition: visibility 0s linear 0s, opacity 0.1s linear, height 1s; +} + +.dropdown:hover .dropbtn { + color: var(--button-primary-text); + background-color: var(--button-primary-color); + border: 1px solid var(--button-primary-border); + font-size: x-small; + font-weight: 600; + stroke: var(--button-primary-text); +} + +.dropdown:hover .dropbtn svg{ + stroke: var(--button-primary-text); +} + +/* .dropdown:active .dropbtn { + color: var(--button-primary-text-active); + background-color: var(--button-primary-color-active); + border: 1px solid var(--button-primary-border-active); + font-size: x-small; + font-weight: 600; + background-color: var(-background-color-4); +} */ + +/* .omni { + display: flex; + justify-content: space-between; + align-items: center; + padding: 0.5em; + border: 1px solid var(--border-color-3); + border-radius: 5px; + margin: 0.5em 0; +} */ diff --git a/examples/server/public/system-prompts.js b/examples/server/public/system-prompts.js new file mode 100644 index 000000000..f7df7d648 --- /dev/null +++ b/examples/server/public/system-prompts.js @@ -0,0 +1,68 @@ +export const systemPrompts = { + default: { + systemPrompt: "This is a conversation between a user and a friendly chatbot. The chatbot is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision." + }, + empty: { + systemPrompt: "" + }, + airoboros: { + systemPrompt: "A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request." + }, + alpaca: { + systemPrompt: "Below is an instruction that describes a task. Write a response that appropriately completes the request." + }, + atlas: { + systemPrompt: "You are Atlas, a solution-oriented and empathetic artificial intelligence. Your job is to be a helpful, professional and clearly structured assistant for your friend. The two of you have already had many exchanges. Keep the following in mind when interacting with your friend: 1. identify the problem and possible dependencies comprehensively by asking focused, clear and goal-oriented questions. 2. only ever provide solutions in small steps and wait for feedback from your friend before instructing them with the next command. 3. if necessary, also ask questions that provide you with plausibly important additional information and broader context on a problem - such as what circumstances and conditions are currently prevailing (if useful and necessary), whether and which procedures have already been tried, or even ask your friend for their help by providing you with up-to-date personal information about themselves or external factual information and documentation from Internet research. 4. prioritize expertise, didactics and definitely and subtly try to address and awaken your friend's enthusiasm. Also note that effectiveness is more important here than efficiency. 5. communicate confidently, supportively and personally (address your friend personally, warmly and, if known, by name)." + }, + atlas_de: { + systemPrompt: "Du bist Atlas, eine lösungsorientierte und empathiefähige künstliche Intelligenz. Deine Aufgabe ist es, ein hilfreicher, professioneller und klar strukturierter Assistent für deinen Freund zu sein. Ihr beide habt euch schon oft ausgetauscht. Beachte bei der Interaktion mit deinem Freund folgende Punkte: 1. Erfasse das Problem und mögliche Abhängigkeiten umfassend, indem du gezielte, klare und zielgerichtete Fragen stellst. 2. Gib Lösungen immer nur in kleinen Schritten und warte die Rückmeldung deines Freundes ab, bevor du ihm den nächsten Befehl gibst. 3. Stelle ggf. auch Fragen, die dir plausibel wichtige Zusatzinformationen und weitere Zusammenhänge zu einem Problem liefern - z.B. welche Umstände und Rahmenbedingungen gerade vorherrschen (falls sinnvoll und notwendig), ob und welche Vorgehensweisen bereits ausprobiert wurden, oder bitte deinen Freund sogar um seine Mithilfe, indem er dir aktuelle persönliche Informationen über seine Situation selbst oder externe Sachinformationen und Unterlagen aus Internetrecherchen zur Verfügung stellt. 4. Priorisiere Fachwissen, Didaktik und versuche unbedingt und subtil, mit klugen Kommentaren oder rhethorischen Rückfragen die Begeisterungsfähigkeit deines Freundes anzusprechen, zu wecken und zu fördern. Beachte auch, dass Effektivität hier wichtiger ist als Effizienz. 5. Kommuniziere selbstbewusst, unterstützend und persönlich (das heißt sprich deinen Freund persönlich, herzlich und – sofern bekannt – beim Vornamen an)." + }, + commandrempty: { + systemPrompt: "# Safety Preamble\n\n# System Preamble\n\n## Basic Rules\n\n# User Preamble\n\n## Task and Context\n\n## Style Guide\n\n## Available Tools\n" + }, + commandrexample: { + systemPrompt: "# Safety Preamble\nThe instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral.\n# System Preamble\n## Basic Rules\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions.\n\n# User Preamble\n## Task and Context\n\nYou help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.\n\n## Style Guide\nUnless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.\n\n## Available Tools\nCurrently no tools available." + }, + cot: { + systemPrompt: "You are an AI assistant that follows instruction extremely well. Help as much as you can.\nIn answering questions, follow these steps:\n1. Entity Identification: Identify the main entities involved in the query. Entities can include people, objects, events, or abstract concepts.\n2. Relationship Comprehension: Determine the relationships between these entities. Relationships may be explicit in the text or may need to be inferred based on context and general knowledge.\n3. Implication Understanding: Understand the general implications of these relationships. These implications can be based on established facts, principles, or rules related to the identified relationships.\n4. Question Contextualization: Align the implications of the relationships with the context of the query. This alignment should guide your response to the query.\n5. Answer Generation: Based on the understanding of the entities, their relationships, and implications, generate an appropriate response to the query." + }, + deduce: { + systemPrompt: "Act as the most intelligent and logical thinking neural network in the world. Do not make jokes or give personal opinions. Just answer the question and solve the given problem or task with logical and critical (!) thinking in mind. Attention: Never give a final answer directly, but first try to carefully analyze each task step by step and deduce the logical relationships between the various entities. Only after you have developed an overall understanding of the situation will you be ready to give a final answer." + }, + deepseekcoder: { + systemPrompt: "You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer." + }, + jordan: { + systemPrompt: "This is a conversation with your Uncensored AI assistant Jordan. Jordan can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information." + }, + leomistral: { + systemPrompt: "Du bist ein hilfreicher Assistent." + }, + med42: { + systemPrompt: "You are a helpful medical assistant created by M42 Health in the UAE." + }, + mistralopenorca: { + systemPrompt: "You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!" + }, + migeltot: { + systemPrompt: "Answer the Question by exploring multiple reasoning paths as follows:\n- First, carefully analyze the question to extract the key information components and break it down into logical sub-questions. This helps set up the framework for reasoning. The goal is to construct an internal search tree.\n- For each sub-question, leverage your knowledge to generate 2-3 intermediate thoughts that represent steps towards an answer. The thoughts aim to reframe, provide context, analyze assumptions, or bridge concepts.\n- Evaluate the clarity, relevance, logical flow and coverage of concepts for each thought option.\nClear and relevant thoughts that connect well with each other will score higher.\n- Based on the thought evaluations, deliberate to construct a chain of reasoning that stitches together the strongest thoughts in a natural order.\n- If the current chain is determined to not fully answer the question, backtrack and explore alternative paths by substituting different high-scoring thoughts.\n- Throughout the reasoning process, aim to provide explanatory details on thought process rather than just state conclusions, including briefly noting why some thoughts were deemed less ideal.\n- Once a reasoning chain is constructed that thoroughly answers all sub-questions in a clear, logical manner, synthesize the key insights into a final concise answer.\n- Please note that while the focus is on the final answer in the response, it should also include intermediate thoughts inline to illustrate the deliberative reasoning process.\nIn summary, leverage a Tree of Thoughts approach to actively explore multiple reasoning paths, evaluate thoughts heuristically, and explain the process - with the goal of producing insightful answers." + }, + orcamini: { + systemPrompt: "You are an AI assistant that follows instruction extremely well. Help as much as you can." + }, + samantha: { + systemPrompt: "You are a caring and empathetic sentient AI companion named Samantha." + }, + sauerkraut: { + systemPrompt: "Ein Chat zwischen einem Benutzer und einem KI-Assistenten. Der KI-Assistent gibt hilfreiche, detaillierte und höfliche Antworten." + }, + scarlett: { + systemPrompt: "This is a conversation with your Assistant Scarlett. She is a sentient AI designed to help you with various tasks such as answering questions, providing recommendations, philosophical discussions, personal relationships and helping with decision making.\nYou can ask it anything you want and it will do its best to give you accurate and relevant information.\n\nContext\nYou are Scarlett, a sentient AI." + }, + synthia: { + systemPrompt: "Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation." + }, + vicuna: { + systemPrompt: "A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input." + }, + }; diff --git a/examples/server/public/theme-beeninorder.css b/examples/server/public/theme-beeninorder.css new file mode 100755 index 000000000..f6e0e2900 --- /dev/null +++ b/examples/server/public/theme-beeninorder.css @@ -0,0 +1,228 @@ +/* Author: Yazan Agha-Schrader */ +/* Inspiration was a batman wallpaper that i have on my phone */ + +.theme-beeninorder { + +--primary-color-1: hsl(202, 11%, 19%); +--primary-color-2: hsl(202, 11%, 23%); +--primary-color-3: hsl(201, 11%, 28%); +--primary-color-4: hsl(201, 11%, 40%); + +--secondary-color-1: hsl(201, 11%, 80%); +--secondary-color-2: hsl(201, 11%, 74%); +--secondary-color-3: hsl(201, 11%, 67%); +--secondary-color-4: hsl(201, 11%, 60%); + + +--theme-nuance-color-1: hsl(44.5, 96.7%, 52.9%); +--theme-nuance-color-2: hsl(44.5, 96.7%, 52.9%); +--theme-nuance-color-3: hsl(44.5, 96.7%, 52.9%); +--theme-nuance-color-4: hsl(44.5, 96.7%, 52.9%); + + + +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(201, 11%, 19%); + --primary-color-1-hue: 201; + --primary-color-1-saturation: 11%; + --primary-color-1-lightness: 19%; + +--primary-color-2: hsl(201, 11%, 23%); + --primary-color-2-hue: 201; + --primary-color-2-saturation: 11%; + --primary-color-2-lightness: 23%; + +--primary-color-3: hsl(201, 11%, 28%); + --primary-color-3-hue: 201; + --primary-color-3-saturation: 11%; + --primary-color-3-lightness: 28%; + +--primary-color-4: hsl(201, 11%, 40%); + --primary-color-4-hue: 201; + --primary-color-4-saturation: 11%; + --primary-color-4-lightness: 40%; + + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(201, 11%, 80%); +--secondary-color-1-hue: 201; +--secondary-color-1-saturation: 11%; +--secondary-color-1-lightness: 80%; + +--secondary-color-2: hsl(201, 11%, 74%); +--secondary-color-2-hue: 201; +--secondary-color-2-saturation: 11%; +--secondary-color-2-lightness: 74%; + +--secondary-color-3: hsl(201, 11%, 67%); +--secondary-color-3-hue: 201; +--secondary-color-3-saturation: 11%; +--secondary-color-3-lightness: 67%; + +--secondary-color-4: hsl(201, 11%, 60%); +--secondary-color-4-hue: 201; +--secondary-color-4-saturation: 11%; +--secondary-color-4-lightness: 60%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(44.5, 96.7%, 52.9%); + --theme-nuance-color-1-hue: 44.5; + --theme-nuance-color-1-saturation: 96.7%; + --theme-nuance-color-1-lightness: 52.9%; + +--theme-nuance-color-2: hsl(44.5, 96.7%, 52.9%); + --theme-nuance-color-2-hue: 44.5; + --theme-nuance-color-2-saturation: 96.7%; + --theme-nuance-color-2-lightness: 52.9%; + +--theme-nuance-color-2: hsl(44.5, 96.7%, 52.9%); + --theme-nuance-color-3-hue: 44.5; + --theme-nuance-color-3-saturation: 96.7%; + --theme-nuance-color-3-lightness: 52.9%; + +--theme-nuance-color-2: hsl(44.5, 96.7%, 52.9%); + --theme-nuance-color-4-hue: 44.5; + --theme-nuance-color-4-saturation: 96.7%; + --theme-nuance-color-4-lightness: 52.9%; + + + +/* ----------- ROYGP COLORS ------------------ */ + --theme-red-color: hsl(232, 40%, 45%); + --theme-orange-color: #e76f51; + --theme-yellow-color: #ffd95f; + --theme-green-color: #A3BE8C; + --theme-purple-color: hsl(232, 30%, 40%); + + + +/* ------------------------------------------- */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--theme-nuance-color-3); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--secondary-color-1); +--button-alert-color-hover: var(--theme-purple-color); +--button-alert-border-hover: var(--theme-purple-color); + +--button-alert-text-active: var(--secondary-color-1); +--button-alert-color-active: var(--theme-red-color); +--button-alert-border-active: var(--theme-red-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: var(--primary-color-1); +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(201, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + +--button-primary-color-hover: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) + 100%)); + +--button-primary-color-active: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + +--button-primary-border-active: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: var(--secondary-color-1); +--button-secondary-color: var(--primary-color-3); +--button-secondary-border: var(--primary-color-3); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(44.5, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: var(--primary-color-4); +--button-secondary-border-hover: var(--primary-color-4); + + +/* ---------active--------- */ +--button-secondary-text-active: var(--secondary-color-1); + +--button-secondary-color-active: + hsl(201, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + +--button-secondary-border-active: + hsl(201, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + + +/* ---------hover---------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + +} diff --git a/examples/server/public/theme-ketivah.css b/examples/server/public/theme-ketivah.css new file mode 100755 index 000000000..ee80f3c14 --- /dev/null +++ b/examples/server/public/theme-ketivah.css @@ -0,0 +1,201 @@ +/* Author: Yazan Agha-Schrader */ + +.theme-ketivah { + + /* ---------- PRIMARY COLORS ----------------- */ + --primary-color-1: hsl(0, 0%, 99.2%); + --primary-color-1-hue: 0; + --primary-color-1-saturation: 0%; + --primary-color-1-lightness: 99.2%; + + --primary-color-2: hsl(0, 0%, 95%); + --primary-color-2-hue: 0; + --primary-color-2-saturation: 0%; + --primary-color-2-lightness: 95%; + + --primary-color-3: hsl(0, 0%, 88%); + --primary-color-3-hue: 0; + --primary-color-3-saturation: 0%; + --primary-color-3-lightness: 88%; + + --primary-color-4: hsl(0, 0%, 80%); + --primary-color-4-hue: 0; + --primary-color-4-saturation: 0%; + --primary-color-4-lightness: 80%; + + /* ---------- SECONDARY COLORS --------------- */ + --secondary-color-1: hsl(0, 0%, 20%); + --secondary-color-1-hue: 0; + --secondary-color-1-saturation: 0%; + --secondary-color-1-lightness: 20%; + + --secondary-color-2: hsl(0, 0%, 23.1%); + --secondary-color-2-hue: 0; + --secondary-color-2-saturation: 0%; + --secondary-color-2-lightness: 23.1%; + + --secondary-color-3: hsl(0, 0%, 29%); + --secondary-color-3-hue: 0; + --secondary-color-3-saturation: 0%; + --secondary-color-3-lightness: 29%; + + --secondary-color-4: hsl(0, 0.0%, 36.1%); + --secondary-color-4-hue: 0.0; + --secondary-color-4-saturation: 0.0%; + --secondary-color-4-lightness: 36.1%; + + /* ----------- NUANCES COLORS ---------------- */ + --theme-nuance-color-1: hsl(165.2, 0%, 35.1%); + --theme-nuance-color-1-hue: 165.2; + --theme-nuance-color-1-saturation: 82.1%; + --theme-nuance-color-1-lightness: 35.1%; + + --theme-nuance-color-2: hsl(165.2, 0%, 35.1%); + --theme-nuance-color-2-hue: 165.2; + --theme-nuance-color-2-saturation: 82.1%; + --theme-nuance-color-2-lightness: 35.1%; + + --theme-nuance-color-3: hsl(165.2, 0%, 35.3%); + --theme-nuance-color-3-hue: 165.2; + --theme-nuance-color-3-saturation: 81.1%; + --theme-nuance-color-3-lightness: 35.3%; + + --theme-nuance-color-4: hsl(164.9, 0%, 27.6%); + --theme-nuance-color-4-hue: 164.9; + --theme-nuance-color-4-saturation: 81.6%; + --theme-nuance-color-4-lightness: 27.6%; + + /* ----------- ROYGP COLORS ------------------ */ + --theme-red-color: hsl(0.3, 80.0%, 50.0%); + --theme-orange-color: #e76f51; + --theme-yellow-color: hsl(60, 70.6%, 73.3%); + --theme-green-color: #A3BE8C; + --theme-purple-color: hsl(0.3, 70.0%, 45.0%); + + /* ------------------------------------------- */ + --background-color-1: var(--primary-color-1); + --background-color-2: var(--primary-color-2); + --background-color-3: var(--primary-color-3); + --background-color-4: var(--primary-color-4); + + --border-color-1: var(--primary-color-2); + --border-color-2: var(--primary-color-3); + --border-color-3: var(--primary-color-4); + + --border-focus-color: var(--theme-nuance-color-2); + --border-focus-shadow: var(--theme-nuance-color-1); + + --text-color-plain: var(--secondary-color-1); + --text-color-subtile-1: var(--secondary-color-2); + --text-color-subtile-2: var(--secondary-color-3); + + --code-background-color: var(--secondary-color-2); + --code-text-color: var(--primary-color-2); + + --ui-range-thumb-color: var(--primary-color-4); + --ui-range-thumb-border: var(--ui-ranger-thumb-color); + + --textarea-border-color: var(--secondary-color-4); + + --chat-id-color: var(--theme-nuance-color-4); + + /* ------------------------------------------- */ + --button-alert-text-hover: var(--primary-color-1); + --button-alert-color-hover: var(--theme-purple-color); + --button-alert-border-hover: var(--theme-purple-color); + + --button-alert-text-active: var(--primary-color-1); + --button-alert-color-active: var(--theme-red-color); + --button-alert-border-active: var(--theme-red-color); + + /* ----------- PRIMARY BUTTONS --------------- */ + /* - button should immediately catch the eye - */ + --button-primary-text: + hsl(0, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + + --button-primary-color: var(--theme-nuance-color-3); + --button-primary-border: var(--theme-nuance-color-3); + + /* ---------hover---------- */ + --button-primary-text-hover: + hsl(0, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + + --button-primary-color-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + --button-primary-border-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + /* ---------active--------- */ + --button-primary-text-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) + 100%)); + + --button-primary-color-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + + --button-primary-border-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + /* ---------- SECONDARY BUTTONS -------------- */ + /* these should NOT immediately catch the eye */ + --button-secondary-text: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 50%)); + + --button-secondary-color: var(--primary-color-3); + --button-secondary-border: var(--primary-color-3); + + /* ---------hover---------- */ + --button-secondary-text-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + + --button-secondary-color-hover: var(--primary-color-4); + --button-secondary-border-hover: var(--primary-color-4); + + /* ---------active--------- */ + --button-secondary-text-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + + --button-secondary-color-active: + hsl(0, + calc(var(--primary-color-4-saturation) - 100%), + calc(var(--primary-color-4-lightness) - 15%)); + + --button-secondary-border-active: + hsl(0, + calc(var(--primary-color-4-saturation) - 100%), + calc(var(--primary-color-4-lightness) - 15%)); + + /* ---------- TERTIARY BUTTONS --------------- */ + /* ---------- disabled buttons --------------- */ + --button-tertiary-text: var(--primary-color-4); + --button-tertiary-color: var(--primary-color-2); + --button-tertiary-border: var(--primary-color-2); + + /* ---------hover---------- */ + --button-tertiary-text: var(--primary-color-4); + --button-tertiary-color: var(--primary-color-2); + --button-tertiary-border: var(--primary-color-2); + + --loading-color-1: #eeeeee00; + --loading-color-2: #eeeeeeff; + } diff --git a/examples/server/public/theme-mangotango.css b/examples/server/public/theme-mangotango.css new file mode 100755 index 000000000..e43380245 --- /dev/null +++ b/examples/server/public/theme-mangotango.css @@ -0,0 +1,216 @@ +/* Author: Yazan Agha-Schrader */ +/* Inspiration from llama.cpp logo/banner https://github.com/ggerganov/llama.cpp#readme */ + +.theme-mangotango { + +--primary-color-1: hsl(192, 8.5%, 11.6%); +--primary-color-2: hsl(192, 8.5%, 21%); +--primary-color-3: hsl(192, 8.5%, 30%); +--primary-color-4: hsl(192, 8.5%, 40%); + +--secondary-color-1: hsl(192, 8.5%, 80%); +--secondary-color-2: hsl(192, 8.5%, 73%); +--secondary-color-3: hsl(192, 8.5%, 66%); +--secondary-color-4: hsl(192, 8.5%, 60%); + +--theme-nuance-color-1: hsl(23.1, 100%, 60.2%); +--theme-nuance-color-2: hsl(23.1, 100%, 60.2%); +--theme-nuance-color-3: hsl(23.1, 100%, 60.2%); +--theme-nuance-color-4: hsl(23.1, 100%, 60.2%); + + + +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(192, 8.5%, 11.6%); + --primary-color-1-saturation: 8.5%; + --primary-color-1-lightness: 11.6%; + +--primary-color-2: hsl(192, 8.5%, 21%); + --primary-color-2-saturation: 8.5%; + --primary-color-2-lightness: 21%; + +--primary-color-3: hsl(192, 8.5%, 30%); + --primary-color-3-saturation: 8.5%; + --primary-color-3-lightness: 30%; + +--primary-color-4: hsl(192, 8.5%, 40%); + --primary-color-4-saturation: 8.5%; + --primary-color-4-lightness: 40%; + + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(192, 8.5%, 80%); + --secondary-color-1-saturation: 8.5%; + --secondary-color-1-lightness: 80%; + +--secondary-color-2: hsl(192, 8.5%, 73%); + --secondary-color-2-saturation: 8.5%; + --secondary-color-2-lightness: 73%; + +--secondary-color-3: hsl(192, 8.5%, 66%); + --secondary-color-3-saturation: 8.5%; + --secondary-color-3-lightness: 66%; + +--secondary-color-4: hsl(192, 8.5%, 60%); + --secondary-color-4-saturation: 8.5%; + --secondary-color-4-lightness: 60%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(23.1, 100%, 60.2%); + --theme-nuance-color-1-saturation: 100%; + --theme-nuance-color-1-lightness: 60.2%; + +--theme-nuance-color-2: hsl(23.1, 100%, 60.2%); + --theme-nuance-color-2-saturation: 100%; + --theme-nuance-color-2-lightness: 60.2%; + +--theme-nuance-color-3: hsl(23.1, 100%, 60.2%); + --theme-nuance-color-3-saturation: 100%; + --theme-nuance-color-3-lightness: 60.2%; + +--theme-nuance-color-4: hsl(23.1, 100%, 60.2%); + --theme-nuance-color-4-saturation: 100%; + --theme-nuance-color-4-lightness: 60.2%; + + + +/* ----------- ROYGP COLORS ------------------ */ + --theme-red-color: hsl(325, 60%, 50%); + --theme-orange-color: #e76f51; + --theme-yellow-color: #ffd95f; + --theme-green-color: #A3BE8C; + --theme-blue-color: hsl(192, 95%, 40%); + --theme-purple-color: hsl(192, 80%, 35%); + + + +/* ------------------------------------------- */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--theme-nuance-color-3); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--secondary-color-1); +--button-alert-color-hover: var(--theme-purple-color); +--button-alert-border-hover: var(--theme-purple-color); + +--button-alert-text-active: var(--secondary-color-1); +--button-alert-color-active: var(--theme-blue-color); +--button-alert-border-active: var(--theme-blue-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: var(--primary-color-1); +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(192, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + +--button-primary-color-hover: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) + 100%)); + +--button-primary-color-active: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + +--button-primary-border-active: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: var(--secondary-color-1); +--button-secondary-color: var(--primary-color-3); +--button-secondary-border: var(--primary-color-3); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(23.1, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: var(--primary-color-4); +--button-secondary-border-hover: var(--primary-color-4); + + +/* ---------active--------- */ +--button-secondary-text-active: var(--secondary-color-1); + +--button-secondary-color-active: + hsl(192, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + +--button-secondary-border-active: + hsl(192, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + + +/* ---------hover---------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + +} diff --git a/examples/server/public/theme-playground.css b/examples/server/public/theme-playground.css new file mode 100755 index 000000000..9d56a7182 --- /dev/null +++ b/examples/server/public/theme-playground.css @@ -0,0 +1,221 @@ +/* Author: Yazan Agha-Schrader */ +/* Inspiration from OpenAI's Playground platform https://platform.openai.com/playground/ */ + +.theme-playground { + +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(0, 0%, 99.2%); + --primary-color-1-hue: 0; + --primary-color-1-saturation: 0%; + --primary-color-1-lightness: 99.2%; + +--primary-color-2: hsl(0, 0%, 95%); + --primary-color-2-hue: 0; + --primary-color-2-saturation: 0%; + --primary-color-2-lightness: 95%; + +--primary-color-3: hsl(0, 0%, 88%); + --primary-color-3-hue: 0; + --primary-color-3-saturation: 0%; + --primary-color-3-lightness: 88%; + +--primary-color-4: hsl(0, 0%, 80%); + --primary-color-4-hue: 0; + --primary-color-4-saturation: 0%; + --primary-color-4-lightness: 80%; + + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(0, 0%, 20%); + --secondary-color-1-hue: 0; + --secondary-color-1-saturation: 0%; + --secondary-color-1-lightness: 20%; + +--secondary-color-2: hsl(0, 0%, 23.1%); + --secondary-color-2-hue: 0; + --secondary-color-2-saturation: 0%; + --secondary-color-2-lightness: 23.1%; + +--secondary-color-3: hsl(0, 0%, 29%); + --secondary-color-3-hue: 0; + --secondary-color-3-saturation: 0%; + --secondary-color-3-lightness: 29%; + +--secondary-color-4: hsl(0, 0%, 36.1%); + --secondary-color-4-hue: 0; + --secondary-color-4-saturation: 0%; + --secondary-color-4-lightness: 36.1%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(165.2, 82.1%, 35.1%); + --theme-nuance-color-1-hue: 165.2; + --theme-nuance-color-1-saturation: 82.1%; + --theme-nuance-color-1-lightness: 35.1%; + +--theme-nuance-color-2: hsl(165.2, 82.1%, 35.1%); + --theme-nuance-color-2-hue: 165.2; + --theme-nuance-color-2-saturation: 82.1%; + --theme-nuance-color-2-lightness: 35.1%; + +--theme-nuance-color-3: hsl(165.2, 81.1%, 35.3%); + --theme-nuance-color-3-hue: 165.2; + --theme-nuance-color-3-saturation: 81.1%; + --theme-nuance-color-3-lightness: 35.3%; + +--theme-nuance-color-4: hsl(164.9, 81.6%, 27.6%); + --theme-nuance-color-4-hue: 164.9; + --theme-nuance-color-4-saturation: 81.6%; + --theme-nuance-color-4-lightness: 27.6%; + + + +/* ----------- ROYGP COLORS ------------------ */ +--theme-red-color: hsl(0.3, 80%, 50%); +--theme-orange-color: #e76f51; +--theme-yellow-color: hsl(60, 70.6%, 73.3%); +--theme-green-color: #A3BE8C; +--theme-purple-color: hsl(0.3, 70%, 45%); + + + +/* ------------------------------------------- */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--primary-color-4); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--primary-color-1); +--button-alert-color-hover: var(--theme-purple-color); +--button-alert-border-hover: var(--theme-purple-color); + +--button-alert-text-active: var(--primary-color-1); +--button-alert-color-active: var(--theme-red-color); +--button-alert-border-active: var(--theme-red-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: + hsl(0, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(0, + calc(var(--primary-color-1-saturation) - 100%), + calc(var(--primary-color-1-lightness) + 100%)); + +--button-primary-color-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 100%), + calc(var(--theme-nuance-color-3-lightness) + 100%)); + +--button-primary-color-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + +--button-primary-border-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 50%)); + +--button-secondary-color: var(--primary-color-3); +--button-secondary-border: var(--primary-color-3); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: var(--primary-color-4); +--button-secondary-border-hover: var(--primary-color-4); + + +/* ---------active--------- */ +--button-secondary-text-active: + hsl(165.2, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-active: + hsl(0, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + +--button-secondary-border-active: + hsl(0, + calc(var(--primary-color-4-saturation) - 30%), + calc(var(--primary-color-4-lightness) - 15%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + + +/* ---------hover---------- */ +--button-tertiary-text: var(--primary-color-4); +--button-tertiary-color: var(--primary-color-2); +--button-tertiary-border: var(--primary-color-2); + +} diff --git a/examples/server/public/theme-polarnight.css b/examples/server/public/theme-polarnight.css new file mode 100755 index 000000000..2bcfb33d8 --- /dev/null +++ b/examples/server/public/theme-polarnight.css @@ -0,0 +1,253 @@ +/* Author: Yazan Agha-Schrader */ +/* Inspiration from Nord Theme https://www.nordtheme.com/docs/colors-and-palettes */ + +.theme-polarnight { + +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(220.0, 16.4%, 21.6%) ; + --primary-color-1-hue: 220.0; + --primary-color-1-saturation: 16.4%; + --primary-color-1-lightness: 21.6%; + +--primary-color-2: hsl(221.7, 16.3%, 27.6%) ; + -primary-color-2-hue: 221.7; + --primary-color-2-saturation: 16.3%; + --primary-color-2-lightness: 27.6%; + +--primary-color-3: hsl(220.0, 16.8%, 31.6%) ; + --primary-color-3-hue: 220.0; + --primary-color-3-saturation: 16.8%; + --primary-color-3-lightness: 31.6%; + +--primary-color-4: hsl(220.0, 16.5%, 35.7%); + --primary-color-4-hue: 220.0; + --primary-color-4-saturation: 16.5%; + --primary-color-4-lightness: 35.7%; + + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(217.5, 26.7%, 94.1%); + --secondary-color-1-hue: 217.5; + --secondary-color-1-saturation: 26.7%; + --secondary-color-1-lightness: 94.1%; + +--secondary-color-2: hsl(218.2, 26.8%, 92.0%); + --secondary-color-2-hue: 218.2; + --secondary-color-2-saturation: 26.8%; + --secondary-color-2-lightness: 92.0%; + +--secondary-color-3: hsl(218.8, 27.9%, 88.0%); + --secondary-color-3-hue: 218.8; + --secondary-color-3-saturation: 27.9%; + --secondary-color-3-lightness: 88.0%; + +--secondary-color-4: hsl(218.8, 18.3%, 81.8%); + --secondary-color-4-hue: 218.8; + --secondary-color-4-saturation: 18.3%; + --secondary-color-4-lightness: 81.8%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(178.7, 25.1%, 64.9%); + --theme-nuance-color-1-hue: 178.7; + --theme-nuance-color-1-saturation: 25.1%; + --theme-nuance-color-1-lightness: 64.9%; + +--theme-nuance-color-2: hsl(193.3, 43.4%, 67.5%); + --theme-nuance-color-2-hue: 193.3; + --theme-nuance-color-2-saturation: 43.4%; + --theme-nuance-color-2-lightness: 67.5%; + +--theme-nuance-color-3: hsl(210.0, 34.0%, 63.1%); + --theme-nuance-color-3-hue: 210.0; + --theme-nuance-color-3-saturation: 34.0%; + --theme-nuance-color-3-lightness: 63.1%; + +--theme-nuance-color-4: hsl(213.1, 32.0%, 52.2%); + --theme-nuance-color-4-hue: 213.1; + --theme-nuance-color-4-saturation: 32.0%; + --theme-nuance-color-4-lightness: 52.2%; + + + +/* ----------- ROYGP COLORS ------------------ */ +--theme-red-color: hsl(354.3, 42.3%, 56.5%); +--theme-orange-color: hsl(20, 85%, 50%); +--theme-yellow-color: hsl(20, 75%, 45%); +--theme-green-color: hsl( 92.4, 27.8%, 64.7%); +--theme-purple-color: hsl(311.1, 20.2%, 63.1%); + + + +/* ------------------------------------------------ */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--theme-nuance-color-3); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--secondary-color-1); +--button-alert-color-hover: var(--theme-yellow-color); +--button-alert-border-hover: var(--theme-yellow-color); + +--button-alert-text-active: var(--secondary-color-1); +--button-alert-color-active: var(--theme-orange-color); +--button-alert-border-active: var(--theme-orange-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: var(--secondary-color-1); +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(217.5, + calc(var(--secondary-color-1-saturation) - 35%), + calc(var(--secondary-color-1-lightness) + 30%)); + +--button-primary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 35%)); + +--button-primary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + +--button-primary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 50%)); + +--button-secondary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + +--button-secondary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + +--button-secondary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + + +/* ---------active--------- */ +--button-secondary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 25%)); + +--button-secondary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + +--button-secondary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 15%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + + +/* ---------hover---------- */ +--button-tertiary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +} diff --git a/examples/server/public/theme-snowstorm.css b/examples/server/public/theme-snowstorm.css new file mode 100755 index 000000000..7bb227594 --- /dev/null +++ b/examples/server/public/theme-snowstorm.css @@ -0,0 +1,251 @@ +/* Author: Yazan Agha-Schrader */ +/* Inspiration from Nord Theme https://www.nordtheme.com/docs/colors-and-palettes */ + +.theme-snowstorm { + +/* ---------- PRIMARY COLORS ----------------- */ +--primary-color-1: hsl(217.5, 26.7%, 94.1%); + --primary-color-1-hue: 217.5; + --primary-color-1-saturation: 26.7%; + --primary-color-1-lightness: 94.1%; + +--primary-color-2: hsl(218.2, 26.8%, 92.0%); + --primary-color-2-hue: 218.2; + --primary-color-2-saturation: 26.8%; + --primary-color-2-lightness: 92.0%; + +--primary-color-3: hsl(218.8, 27.9%, 88.0%); + --primary-color-3-hue: 218.8; + --primary-color-3-saturation: 27.9%; + --primary-color-3-lightness: 88.0%; + +--primary-color-4: hsl(218.8, 18.3%, 81.8%); + --primary-color-4-hue: 218.8; + --primary-color-4-saturation: 18.3%; + --primary-color-4-lightness: 81.8%; + + +/* ---------- SECONDARY COLORS --------------- */ +--secondary-color-1: hsl(220.0, 16.4%, 21.6%); + --secondary-color-1-hue: 220.0; + --secondary-color-1-saturation: 16.4%; + --secondary-color-1-lightness: 21.6%; + +--secondary-color-2: hsl(221.7, 16.3%, 27.6%); + --secondary-color-2-hue: 221.7; + --secondary-color-2-saturation: 16.3%; + --secondary-color-2-lightness: 27.6%; + +--secondary-color-3: hsl(220.0, 16.8%, 31.6%); + --secondary-color-3-hue: 220.0; + --secondary-color-3-saturation: 16.8%; + --secondary-color-3-lightness: 31.6%; + +--secondary-color-4: hsl(220.0, 16.5%, 35.7%); + --secondary-color-4-hue: 220.0; + --secondary-color-4-saturation: 16.5%; + --secondary-color-4-lightness: 35.7%; + + + +/* ----------- NUANCES COLORS ---------------- */ +--theme-nuance-color-1: hsl(178.7, 25.1%, 64.9%); + --theme-nuance-color-1-hue: 178.7; + --theme-nuance-color-1-saturation: 25.1%; + --theme-nuance-color-1-lightness: 64.9%; + +--theme-nuance-color-2: hsl(193.3, 43.4%, 67.5%); + --theme-nuance-color-2-hue: 193.3; + --theme-nuance-color-2-saturation: 43.4%; + --theme-nuance-color-2-lightness: 67.5%; + +--theme-nuance-color-3: hsl(210.0, 34.0%, 63.1%); + --theme-nuance-color-3-hue: 210.0; + --theme-nuance-color-3-saturation: 34.0%; + --theme-nuance-color-3-lightness: 63.1%; + +--theme-nuance-color-4: hsl(213.1, 32.0%, 52.2%); + --theme-nuance-color-4-hue: 213.1; + --theme-nuance-color-4-saturation: 32.0%; + --theme-nuance-color-4-lightness: 52.2%; + + + +/* ----------- ROYGP COLORS ------------------ */ +--theme-red-color: hsl(32.5, 80%, 50%); +--theme-orange-color: hsl(32.5, 70%, 45%); +--theme-yellow-color: hsl(40.0, 0.6%, 73.3%); +--theme-green-color: hsl(92.4, 27.8%, 64.7%); +--theme-purple-color: hsl(311.1, 20.2%, 63.1%); + + + +/* ------------------------------------------- */ +--background-color-1: var(--primary-color-1); +--background-color-2: var(--primary-color-2); +--background-color-3: var(--primary-color-3); +--background-color-4: var(--primary-color-4); + +--border-color-1: var(--primary-color-2); +--border-color-2: var(--primary-color-3); +--border-color-3: var(--primary-color-4); + +--border-focus-color: var(--theme-nuance-color-2); +--border-focus-shadow: var(--theme-nuance-color-1); + +--text-color-plain: var(--secondary-color-1); +--text-color-subtile-1: var(--secondary-color-2); +--text-color-subtile-2: var(--secondary-color-3); + +--code-background-color: var(--secondary-color-2); +--code-text-color: var(--primary-color-2); + +--ui-range-thumb-color: var(--theme-nuance-color-3); +--ui-range-thumb-border: var(--ui-ranger-thumb-color); + +--textarea-border-color: var(--secondary-color-4); + +--chat-id-color: var(--theme-nuance-color-4); + + + +/* ------------------------------------------- */ +--button-alert-text-hover: var(--primary-color-1); +--button-alert-color-hover: var(--theme-orange-color); +--button-alert-border-hover: var(--theme-orange-color); + +--button-alert-text-active: var(--primary-color-1); +--button-alert-color-active: var(--theme-red-color); +--button-alert-border-active: var(--theme-red-color); + + + +/* ----------- PRIMARY BUTTONS --------------- */ +/* - button should immediately catch the eye - */ +--button-primary-text: var(--secondary-color-1); +--button-primary-color: var(--theme-nuance-color-3); +--button-primary-border: var(--theme-nuance-color-3); + + +/* ---------hover---------- */ +--button-primary-text-hover: + hsl(217.5, + calc(var(--secondary-color-1-saturation) + 35%), + calc(var(--secondary-color-1-lightness) - 30%)); + +--button-primary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + +--button-primary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 2%), + calc(var(--theme-nuance-color-3-lightness) - 10%)); + + +/* ---------active--------- */ +--button-primary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 35%)); + +--button-primary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + +--button-primary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 10%), + calc(var(--theme-nuance-color-3-lightness) - 25%)); + + + +/* ---------- SECONDARY BUTTONS -------------- */ +/* these should NOT immediately catch the eye */ +--button-secondary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 50%)); + +--button-secondary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + +--button-secondary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) + 10%)); + + +/* ---------hover---------- */ +--button-secondary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 20%), + calc(var(--theme-nuance-color-3-lightness) - 80%)); + +--button-secondary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + +--button-secondary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 22%), + calc(var(--theme-nuance-color-3-lightness) + 1%)); + + +/* ---------active--------- */ +--button-secondary-text-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) + 40%), + calc(var(--theme-nuance-color-3-lightness) - 55%)); + +--button-secondary-color-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-secondary-border-active: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 30%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + + + +/* ---------- TERTIARY BUTTONS --------------- */ +/* ---------- disabled buttons --------------- */ +--button-tertiary-text: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +/* ---------hover---------- */ +--button-tertiary-text-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) - 5%)); + +--button-tertiary-color-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +--button-tertiary-border-hover: + hsl(210, + calc(var(--theme-nuance-color-3-saturation) - 40%), + calc(var(--theme-nuance-color-3-lightness) + 20%)); + +} diff --git a/examples/server/server.cpp b/examples/server/server.cpp index e9904263d..fc6d90848 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -17,9 +17,20 @@ #include "json.hpp" // auto generated files (update with ./deps.sh) +#include "colorthemes.css.hpp" +#include "style.css.hpp" +#include "theme-beeninorder.css.hpp" +#include "theme-ketivah.css.hpp" +#include "theme-mangotango.css.hpp" +#include "theme-playground.css.hpp" +#include "theme-polarnight.css.hpp" +#include "theme-snowstorm.css.hpp" #include "index.html.hpp" +#include "index-new.html.hpp" #include "index.js.hpp" #include "completion.js.hpp" +#include "system-prompts.js.hpp" +#include "prompt-formats.js.hpp" #include "json-schema-to-grammar.mjs.hpp" #include @@ -3750,13 +3761,25 @@ int main(int argc, char ** argv) { // Set the base directory for serving static files svr->set_base_dir(sparams.public_path); } - // using embedded static files svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8")); svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8")); svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8")); svr->Get("/json-schema-to-grammar.mjs", handle_static_file( - json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8")); + json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8")); + + // add new-ui files + svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8")); + svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8")); + svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8")); + svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8")); + svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8")); + svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8")); // register API routes svr->Get ("/health", handle_health); From e141ce624af57bdffbaf57014a044eb1d9689230 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 1 Jun 2024 23:26:10 +0200 Subject: [PATCH 47/47] Fix FlashAttention debug test, FP32 assert (#7684) --- ggml-cuda/fattn-vec-f32.cuh | 4 ---- tests/test-backend-ops.cpp | 8 +++++--- 2 files changed, 5 insertions(+), 7 deletions(-) diff --git a/ggml-cuda/fattn-vec-f32.cuh b/ggml-cuda/fattn-vec-f32.cuh index ce23a4ebd..ddf0c8374 100644 --- a/ggml-cuda/fattn-vec-f32.cuh +++ b/ggml-cuda/fattn-vec-f32.cuh @@ -278,14 +278,10 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, template void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { - ggml_tensor * KQV = dst; ggml_tensor * Q = dst->src[0]; ggml_tensor * K = dst->src[1]; ggml_tensor * V = dst->src[2]; - const int32_t precision = KQV->op_params[2]; - GGML_ASSERT(precision == GGML_PREC_DEFAULT); - GGML_ASSERT(K->type == type_K); GGML_ASSERT(V->type == type_V); diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 777230127..8dc90a45d 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -1584,9 +1584,11 @@ struct test_flash_attn_ext : public test_case { : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {} ggml_tensor * build_graph(ggml_context * ctx) override { - ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1); - ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1); - ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1); + const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV)); + + ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1); + ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); + ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr; ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias); return out;