mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
CANN: optimize rope operator (#15335)
* optimize rope ops * amendment * delete trailing whitespace * change the variable name
This commit is contained in:
parent
67f09a3a27
commit
a6d3cfe7fa
2 changed files with 117 additions and 62 deletions
|
@ -2154,86 +2154,129 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
int64_t theta_scale_length = ne00 / 2;
|
||||
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
|
||||
theta_scale_length * sizeof(float_t));
|
||||
void* theta_scale_buffer = theta_scale_allocator.get();
|
||||
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
|
||||
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
|
||||
theta_scale_length * sizeof(float_t)};
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(theta_scale_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
float stop = ne00 / 2;
|
||||
float n_elements = ne00 / 2;
|
||||
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
|
||||
|
||||
// power
|
||||
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
|
||||
acl_theta_scale_tensor);
|
||||
|
||||
// freq_scale
|
||||
if (freq_scale != 1) {
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
|
||||
}
|
||||
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
|
||||
src2->data, ggml_cann_type_mapping(src2->type),
|
||||
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
|
||||
}
|
||||
|
||||
// position
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
int64_t position_length = src1->ne[0];
|
||||
int64_t position_ne[] = {1, 1, position_length, 1};
|
||||
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), sizeof(int32_t),
|
||||
sizeof(int32_t) * position_length};
|
||||
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
|
||||
src1->data, ggml_cann_type_mapping(src1->type),
|
||||
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
|
||||
|
||||
// power * position
|
||||
int64_t theta_length = theta_scale_length * position_length;
|
||||
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* theta_buffer = theta_allocator.get();
|
||||
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
|
||||
size_t theta_nb[GGML_MAX_DIMS];
|
||||
theta_nb[0] = sizeof(float_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_theta_tensor =
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
theta_ne, theta_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
|
||||
acl_theta_tensor);
|
||||
|
||||
// sin/cos
|
||||
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* sin_buffer = sin_allocator.get();
|
||||
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
|
||||
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
|
||||
|
||||
// used for accuracy testing
|
||||
bool is_attention = is_q || is_k;
|
||||
|
||||
if(ctx.init_ptr == nullptr || !is_attention) {
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
if(ctx.init_ptr != nullptr){
|
||||
ACL_CHECK(aclrtFree(ctx.init_ptr));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
float stop = ne00 / 2;
|
||||
float n_elements = ne00 / 2;
|
||||
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
|
||||
|
||||
// power
|
||||
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
|
||||
acl_theta_scale_tensor);
|
||||
|
||||
// freq_scale
|
||||
if (freq_scale != 1) {
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
|
||||
}
|
||||
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
|
||||
src2->data, ggml_cann_type_mapping(src2->type),
|
||||
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
|
||||
}
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
|
||||
}
|
||||
|
||||
if(ctx.sin_ptr == nullptr) {
|
||||
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
|
||||
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
if(position_length > ctx.max_prompt_length) {
|
||||
ctx.max_prompt_length = position_length;
|
||||
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
|
||||
ACL_CHECK(aclrtFree(ctx.sin_ptr));
|
||||
ACL_CHECK(aclrtFree(ctx.cos_ptr));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
|
||||
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
|
||||
|
||||
if(is_fisrt_layer || !is_attention) {
|
||||
|
||||
aclTensor* acl_theta_scale_tensor =
|
||||
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
|
||||
// position
|
||||
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
|
||||
src1->data, ggml_cann_type_mapping(src1->type),
|
||||
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
|
||||
|
||||
// power * position
|
||||
int64_t theta_length = theta_scale_length * position_length;
|
||||
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* theta_buffer = theta_allocator.get();
|
||||
|
||||
aclTensor* acl_theta_tensor =
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
theta_ne, theta_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
|
||||
acl_theta_tensor);
|
||||
|
||||
// sin/cos
|
||||
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
|
||||
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
|
||||
|
||||
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
|
||||
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
|
||||
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
|
||||
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor);
|
||||
}
|
||||
|
||||
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
|
||||
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
|
||||
|
||||
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
|
||||
theta_length * sizeof(float_t));
|
||||
void* cos_buffer = cos_allocator.get();
|
||||
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
|
||||
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
|
||||
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
|
||||
// attn_factor
|
||||
if (attn_factor != 1) {
|
||||
|
@ -2257,8 +2300,7 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
|||
}
|
||||
|
||||
// release
|
||||
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
|
||||
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor, acl_theta_scale);
|
||||
ggml_cann_release_resources(ctx, acl_sin_tensor, acl_cos_tensor);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
@ -368,6 +368,10 @@ struct ggml_backend_cann_context {
|
|||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
void* init_ptr = nullptr;
|
||||
void* sin_ptr = nullptr;
|
||||
void* cos_ptr = nullptr;
|
||||
int64_t max_prompt_length = 65536;
|
||||
#ifdef USE_ACL_GRAPH
|
||||
/// Cached CANN ACL graph used for executing the current ggml computation graph.
|
||||
std::unique_ptr<ggml_cann_graph> cann_graph;
|
||||
|
@ -414,6 +418,15 @@ struct ggml_backend_cann_context {
|
|||
ACL_CHECK(aclrtDestroyStream(streams[i]));
|
||||
}
|
||||
}
|
||||
if(init_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(init_ptr));
|
||||
}
|
||||
if(sin_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(sin_ptr));
|
||||
}
|
||||
if(cos_ptr != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cos_ptr));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue