CANN: optimize rope operator (#15335)

* optimize rope ops

* amendment

* delete trailing whitespace

* change the variable name
This commit is contained in:
SHUAI YANG 2025-08-19 21:28:22 +08:00 committed by GitHub
parent 67f09a3a27
commit a6d3cfe7fa
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 117 additions and 62 deletions

View file

@ -2154,86 +2154,129 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
GGML_TENSOR_BINARY_OP_LOCALS
// theta_scale arange, [0,1,...,ne00/2 - 1]
int64_t theta_scale_length = ne00 / 2;
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
theta_scale_length * sizeof(float_t));
void* theta_scale_buffer = theta_scale_allocator.get();
int64_t theta_scale_ne[] = {theta_scale_length, 1, 1, 1};
size_t theta_scale_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
theta_scale_length * sizeof(float_t)};
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(theta_scale_buffer, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = ne00 / 2;
float n_elements = ne00 / 2;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
// power
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
acl_theta_scale_tensor);
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
}
// position
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t position_length = src1->ne[0];
int64_t position_ne[] = {1, 1, position_length, 1};
size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t), sizeof(int32_t),
sizeof(int32_t) * position_length};
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
int64_t theta_ne[] = {theta_scale_length, 1, position_length, 1};
size_t theta_nb[GGML_MAX_DIMS];
theta_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
}
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
ggml_cann_pool_alloc sin_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* sin_buffer = sin_allocator.get();
bool is_q = (std::strncmp(dst->name, "Qcur-", 5) == 0);
bool is_k = (std::strncmp(dst->name, "Kcur-", 5) == 0);
// used for accuracy testing
bool is_attention = is_q || is_k;
if(ctx.init_ptr == nullptr || !is_attention) {
// theta_scale arange, [0,1,...,ne00/2 - 1]
if(ctx.init_ptr != nullptr){
ACL_CHECK(aclrtFree(ctx.init_ptr));
}
ACL_CHECK(aclrtMalloc(&ctx.init_ptr, theta_scale_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
float start = 0;
float step = 1;
float stop = ne00 / 2;
float n_elements = ne00 / 2;
aclnn_arange(ctx, acl_theta_scale_tensor, start, stop, step, n_elements);
// power
aclScalar* acl_theta_scale = aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale, acl_theta_scale_tensor,
acl_theta_scale_tensor);
// freq_scale
if (freq_scale != 1) {
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
}
// freq_factors
if (src2) {
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
src2->data, ggml_cann_type_mapping(src2->type),
ggml_type_size(src2->type), theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
aclnn_div(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor);
ggml_cann_release_resources(ctx, acl_freq_factors_tensor);
}
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor,acl_theta_scale);
}
if(ctx.sin_ptr == nullptr) {
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
}
if(position_length > ctx.max_prompt_length) {
ctx.max_prompt_length = position_length;
int64_t theta_length = theta_scale_length * ctx.max_prompt_length;
ACL_CHECK(aclrtFree(ctx.sin_ptr));
ACL_CHECK(aclrtFree(ctx.cos_ptr));
ACL_CHECK(aclrtMalloc(&ctx.sin_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
ACL_CHECK(aclrtMalloc(&ctx.cos_ptr, theta_length * sizeof(float_t), ACL_MEM_MALLOC_HUGE_FIRST));
}
bool is_fisrt_layer = (std::strncmp(dst->name, "Qcur-0", GGML_MAX_NAME) == 0);
if(is_fisrt_layer || !is_attention) {
aclTensor* acl_theta_scale_tensor =
ggml_cann_create_tensor(ctx.init_ptr, ACL_FLOAT, sizeof(float_t),
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
// position
aclTensor* acl_position_tensor = ggml_cann_create_tensor(
src1->data, ggml_cann_type_mapping(src1->type),
ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
// power * position
int64_t theta_length = theta_scale_length * position_length;
ggml_cann_pool_alloc theta_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* theta_buffer = theta_allocator.get();
aclTensor* acl_theta_tensor =
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
theta_ne, theta_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
acl_theta_tensor);
// sin/cos
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor);
}
aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
sin_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_sin(ctx, acl_theta_tensor, acl_sin_tensor);
ggml_cann_pool_alloc cos_allocator(ctx.pool(),
theta_length * sizeof(float_t));
void* cos_buffer = cos_allocator.get();
ctx.sin_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
cos_buffer, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
aclnn_cos(ctx, acl_theta_tensor, acl_cos_tensor);
ctx.cos_ptr, ACL_FLOAT, sizeof(float_t), theta_ne, theta_nb,
GGML_MAX_DIMS, ACL_FORMAT_ND);
// attn_factor
if (attn_factor != 1) {
@ -2257,8 +2300,7 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
}
// release
ggml_cann_release_resources(ctx, acl_theta_scale_tensor, acl_position_tensor,
acl_theta_tensor, acl_sin_tensor, acl_cos_tensor, acl_theta_scale);
ggml_cann_release_resources(ctx, acl_sin_tensor, acl_cos_tensor);
}
#ifdef __cplusplus

View file

@ -368,6 +368,10 @@ struct ggml_backend_cann_context {
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
void* init_ptr = nullptr;
void* sin_ptr = nullptr;
void* cos_ptr = nullptr;
int64_t max_prompt_length = 65536;
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
@ -414,6 +418,15 @@ struct ggml_backend_cann_context {
ACL_CHECK(aclrtDestroyStream(streams[i]));
}
}
if(init_ptr != nullptr) {
ACL_CHECK(aclrtFree(init_ptr));
}
if(sin_ptr != nullptr) {
ACL_CHECK(aclrtFree(sin_ptr));
}
if(cos_ptr != nullptr) {
ACL_CHECK(aclrtFree(cos_ptr));
}
}
/**