Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	Makefile
#	flake.lock
#	ggml-cuda.cu
#	ggml-cuda.h
This commit is contained in:
Concedo 2024-03-19 18:57:22 +08:00
commit a3fa919c67
33 changed files with 1777 additions and 1484 deletions

View file

@ -564,6 +564,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output"},
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
@ -2072,6 +2073,11 @@ struct llama_model {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
#ifdef GGML_USE_CUBLAS
if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
}
#endif
ggml_backend_buffer_free(buf);
}
}
@ -4367,9 +4373,9 @@ static bool llm_load_tensors(
{
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
} else {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
if (!model.output) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
@ -4574,10 +4580,12 @@ static bool llm_load_tensors(
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
// same as tok_embd, duplicated to allow offloading
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
if (!model.output) {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
}
}
for (int i = 0; i < n_layer; ++i) {
@ -5105,6 +5113,13 @@ static bool llm_load_tensors(
size_t first, last;
ml.get_mapping_range(&first, &last, ctx);
buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
#ifdef GGML_USE_CUBLAS
if (n_layer >= n_gpu_layers) {
ggml_backend_cuda_register_host_buffer(
ggml_backend_buffer_get_base(buf),
ggml_backend_buffer_get_size(buf));
}
#endif
}
#ifdef GGML_USE_METAL
else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
@ -8303,7 +8318,6 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
@ -8673,12 +8687,15 @@ static struct ggml_cgraph * llama_build_graph(
}
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
// to fix this, we assign the norm layer manually to the backend of its layer
if (il != -1 && strcmp(name, "norm") == 0) {
for (auto * backend : lctx.backends) {
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
break;
// FIXME: fix in ggml_backend_sched
const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
if (batch.n_tokens < 32 || full_offload) {
if (il != -1 && strcmp(name, "norm") == 0) {
for (auto * backend : lctx.backends) {
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
break;
}
}
}
}
@ -13414,27 +13431,25 @@ struct llama_context * llama_new_context_with_model(
ctx->backends.push_back(ctx->backend_metal);
}
#elif defined(GGML_USE_CUBLAS)
if (model->n_gpu_layers > 0) {
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_cuda_init(device);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
} else {
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
ggml_backend_t backend = ggml_backend_cuda_init(device);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
}
}
}
#elif defined(GGML_USE_VULKAN)
@ -13592,14 +13607,17 @@ struct llama_context * llama_new_context_with_model(
ggml_backend_t backend = ctx->backends[i];
ggml_backend_buffer_type_t buft = backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
if (size > 1) {
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
// note: the number of splits during measure is higher than during inference due to the kv shift
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits);
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
}
}