Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	Makefile
#	Package.swift
#	ci/run.sh
#	docs/backend/SYCL.md
#	examples/llama-bench/llama-bench.cpp
#	examples/server/CMakeLists.txt
#	examples/server/README.md
#	ggml/CMakeLists.txt
#	ggml/src/CMakeLists.txt
#	grammars/README.md
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.last
#	scripts/sync-ggml.sh
#	tests/run-json-schema-to-grammar.mjs
#	tests/test-backend-ops.cpp
This commit is contained in:
Concedo 2024-11-09 13:36:47 +08:00
commit a244b1ffd2
55 changed files with 31704 additions and 2916 deletions

View file

@ -24,6 +24,16 @@ insert_final_newline = unset
[examples/server/public/*] [examples/server/public/*]
indent_size = 2 indent_size = 2
[examples/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*] [examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab indent_style = tab

View file

@ -1005,6 +1005,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f16") { if (s == "f16") {
return GGML_TYPE_F16; return GGML_TYPE_F16;
} }
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") { if (s == "q8_0") {
return GGML_TYPE_Q8_0; return GGML_TYPE_Q8_0;
} }

View file

@ -3748,10 +3748,7 @@ class JaisModel(Model):
# Embeddings scale # Embeddings scale
self.embeddings_scale = 1.0 self.embeddings_scale = 1.0
# note: For some JAIS flavors, output is tied to (same as) wte in original model
self.output_is_wte = False
if 'mup_embeddings_scale' in self.hparams: if 'mup_embeddings_scale' in self.hparams:
self.output_is_wte = True # Hack (?)
self.embeddings_scale = self.hparams['mup_embeddings_scale'] self.embeddings_scale = self.hparams['mup_embeddings_scale']
elif 'embeddings_scale' in self.hparams: elif 'embeddings_scale' in self.hparams:
self.embeddings_scale = self.hparams['embeddings_scale'] self.embeddings_scale = self.hparams['embeddings_scale']
@ -3808,10 +3805,7 @@ class JaisModel(Model):
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD): if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((new_name, data_torch * self.embeddings_scale)) tensors.append((new_name, data_torch * self.embeddings_scale))
if self.output_is_wte:
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT): elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
assert not self.output_is_wte
tensors.append((new_name, data_torch * self.width_scale)) tensors.append((new_name, data_torch * self.width_scale))
else: else:
tensors.append((new_name, data_torch)) tensors.append((new_name, data_torch))

View file

@ -1,7 +1,7 @@
import * as readline from 'node:readline' import * as readline from 'node:readline'
import { stdin, stdout } from 'node:process' import { stdin, stdout } from 'node:process'
import { readFileSync } from 'node:fs' import { readFileSync } from 'node:fs'
import { SchemaConverter } from './public/json-schema-to-grammar.mjs' import { SchemaConverter } from './public_legacy/json-schema-to-grammar.mjs'
const args = process.argv.slice(2); const args = process.argv.slice(2);
const grammarJsonSchemaFile = args.find( const grammarJsonSchemaFile = args.find(

View file

@ -6,5 +6,20 @@ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
PUBLIC=$DIR/public PUBLIC=$DIR/public
echo "download js bundle files" echo "download js bundle files"
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
echo >> $PUBLIC/index.js # add newline # Note for contributors: Always pin to a specific version "maj.min.patch" to avoid breaking the CI
curl -L https://cdn.tailwindcss.com/3.4.14 > $PUBLIC/deps_tailwindcss.js
echo >> $PUBLIC/deps_tailwindcss.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/styled.min.css > $PUBLIC/deps_daisyui.min.css
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/themes.min.css >> $PUBLIC/deps_daisyui.min.css
echo >> $PUBLIC/deps_daisyui.min.css # add newline
curl -L https://unpkg.com/vue@3.5.12/dist/vue.esm-browser.js > $PUBLIC/deps_vue.esm-browser.js
echo >> $PUBLIC/deps_vue.esm-browser.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/markdown-it/13.0.2/markdown-it.js > $PUBLIC/deps_markdown-it.js
echo >> $PUBLIC/deps_markdown-it.js # add newline
ls -lah $PUBLIC

View file

@ -1,12 +1,16 @@
const paramDefaults = { const paramDefaults = {
stream: true, stream: true,
n_predict: 500,
temperature: 0.2, temperature: 0.2,
stop: ["</s>"]
}; };
let generation_settings = null; let generation_settings = null;
export class CompletionError extends Error {
constructor(message, name, data) {
super(message);
this.name = name;
}
};
// Completes the prompt as a generator. Recommended for most use cases. // Completes the prompt as a generator. Recommended for most use cases.
// //
@ -29,7 +33,7 @@ export async function* llama(prompt, params = {}, config = {}) {
const completionParams = { ...paramDefaults, ...params, prompt }; const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}/completion`, { const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST', method: 'POST',
body: JSON.stringify(completionParams), body: JSON.stringify(completionParams),
headers: { headers: {
@ -41,6 +45,18 @@ export async function* llama(prompt, params = {}, config = {}) {
signal: controller.signal, signal: controller.signal,
}); });
const status = response.status;
if (status !== 200) {
try {
const body = await response.json();
if (body && body.error && body.error.message) {
throw new CompletionError(body.error.message, 'ServerError');
}
} catch (err) {
throw new CompletionError(err.message, 'ServerError');
}
}
const reader = response.body.getReader(); const reader = response.body.getReader();
const decoder = new TextDecoder(); const decoder = new TextDecoder();
@ -78,7 +94,12 @@ export async function* llama(prompt, params = {}, config = {}) {
for (const line of lines) { for (const line of lines) {
const match = regex.exec(line); const match = regex.exec(line);
if (match) { if (match) {
result[match[1]] = match[2] result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data // since we know this is llama.cpp, let's just decode the json in data
if (result.data) { if (result.data) {
result.data = JSON.parse(result.data); result.data = JSON.parse(result.data);

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,209 @@
const paramDefaults = {
stream: true,
n_predict: 500,
temperature: 0.2,
stop: ["</s>"]
};
let generation_settings = null;
// Completes the prompt as a generator. Recommended for most use cases.
//
// Example:
//
// import { llama } from '/completion.js'
//
// const request = llama("Tell me a joke", {n_predict: 800})
// for await (const chunk of request) {
// document.write(chunk.data.content)
// }
//
export async function* llama(prompt, params = {}, config = {}) {
let controller = config.controller;
const api_url = config.api_url?.replace(/\/+$/, '') || "";
if (!controller) {
controller = new AbortController();
}
const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
let content = "";
let leftover = ""; // Buffer for partially read lines
try {
let cont = true;
while (cont) {
const result = await reader.read();
if (result.done) {
break;
}
// Add any leftover data to the current chunk of data
const text = leftover + decoder.decode(result.value);
// Check if the last character is a line break
const endsWithLineBreak = text.endsWith('\n');
// Split the text into lines
let lines = text.split('\n');
// If the text doesn't end with a line break, then the last line is incomplete
// Store it in leftover to be added to the next chunk of data
if (!endsWithLineBreak) {
leftover = lines.pop();
} else {
leftover = ""; // Reset leftover if we have a line break at the end
}
// Parse all sse events and add them to result
const regex = /^(\S+):\s(.*)$/gm;
for (const line of lines) {
const match = regex.exec(line);
if (match) {
result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data
if (result.data) {
result.data = JSON.parse(result.data);
content += result.data.content;
// yield
yield result;
// if we got a stop token from server, we will break here
if (result.data.stop) {
if (result.data.generation_settings) {
generation_settings = result.data.generation_settings;
}
cont = false;
break;
}
}
if (result.error) {
try {
result.error = JSON.parse(result.error);
if (result.error.message.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error [${result.error.code} - ${result.error.type}]: ${result.error.message}`);
}
} catch(e) {
console.error(`llama.cpp error ${result.error}`)
}
}
}
}
}
} catch (e) {
if (e.name !== 'AbortError') {
console.error("llama error: ", e);
}
throw e;
}
finally {
controller.abort();
}
return content;
}
// Call llama, return an event target that you can subscribe to
//
// Example:
//
// import { llamaEventTarget } from '/completion.js'
//
// const conn = llamaEventTarget(prompt)
// conn.addEventListener("message", (chunk) => {
// document.write(chunk.detail.content)
// })
//
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
const eventTarget = new EventTarget();
(async () => {
let content = "";
for await (const chunk of llama(prompt, params, config)) {
if (chunk.data) {
content += chunk.data.content;
eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
}
if (chunk.data.generation_settings) {
eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
}
if (chunk.data.timings) {
eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
}
}
eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
})();
return eventTarget;
}
// Call llama, return a promise that resolves to the completed text. This does not support streaming
//
// Example:
//
// llamaPromise(prompt).then((content) => {
// document.write(content)
// })
//
// or
//
// const content = await llamaPromise(prompt)
// document.write(content)
//
export const llamaPromise = (prompt, params = {}, config = {}) => {
return new Promise(async (resolve, reject) => {
let content = "";
try {
for await (const chunk of llama(prompt, params, config)) {
content += chunk.data.content;
}
resolve(content);
} catch (error) {
reject(error);
}
});
};
/**
* (deprecated)
*/
export const llamaComplete = async (params, controller, callback) => {
for await (const chunk of llama(params.prompt, params, { controller })) {
callback(chunk);
}
}
// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async (config = {}) => {
if (!generation_settings) {
const api_url = config.api_url?.replace(/\/+$/, '') || "";
const props = await fetch(`${api_url}/props`).then(r => r.json());
generation_settings = props.default_generation_settings;
}
return generation_settings;
}

View file

Before

Width:  |  Height:  |  Size: 4 KiB

After

Width:  |  Height:  |  Size: 4 KiB

Before After
Before After

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,12 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="refresh" content="5">
</head>
<body>
<div id="loading">
The model is loading. Please wait.<br/>
The user interface will appear soon.
</div>
</body>
</html>

View file

@ -15,22 +15,13 @@
#define MIMETYPE_JSON "application/json; charset=utf-8" #define MIMETYPE_JSON "application/json; charset=utf-8"
// auto generated files (update with ./deps.sh) // auto generated files (update with ./deps.sh)
#include "colorthemes.css.hpp"
#include "style.css.hpp"
#include "theme-beeninorder.css.hpp"
#include "theme-ketivah.css.hpp"
#include "theme-mangotango.css.hpp"
#include "theme-playground.css.hpp"
#include "theme-polarnight.css.hpp"
#include "theme-snowstorm.css.hpp"
#include "index.html.hpp" #include "index.html.hpp"
#include "index-new.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp" #include "completion.js.hpp"
#include "system-prompts.js.hpp"
#include "prompt-formats.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#include "loading.html.hpp" #include "loading.html.hpp"
#include "deps_daisyui.min.css.hpp"
#include "deps_markdown-it.js.hpp"
#include "deps_tailwindcss.js.hpp"
#include "deps_vue.esm-browser.js.hpp"
#include <atomic> #include <atomic>
#include <condition_variable> #include <condition_variable>
@ -2286,16 +2277,6 @@ int main(int argc, char ** argv) {
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL}; std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
svr->set_default_headers({{"Server", "llama.cpp"}}); svr->set_default_headers({{"Server", "llama.cpp"}});
// CORS preflight
svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
// Access-Control-Allow-Origin is already set by middleware
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "POST");
res.set_header("Access-Control-Allow-Headers", "*");
return res.set_content("", "text/html"); // blank response, no data
});
svr->set_logger(log_server_request); svr->set_logger(log_server_request);
auto res_error = [](httplib::Response & res, const json & error_data) { auto res_error = [](httplib::Response & res, const json & error_data) {
@ -2408,6 +2389,14 @@ int main(int argc, char ** argv) {
// register server middlewares // register server middlewares
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
// If this is OPTIONS request, skip validation because browsers don't include Authorization header
if (req.method == "OPTIONS") {
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "GET, POST");
res.set_header("Access-Control-Allow-Headers", "*");
res.set_content("", "text/html"); // blank response, no data
return httplib::Server::HandlerResponse::Handled; // skip further processing
}
if (!middleware_server_state(req, res)) { if (!middleware_server_state(req, res)) {
return httplib::Server::HandlerResponse::Handled; return httplib::Server::HandlerResponse::Handled;
} }
@ -3117,33 +3106,19 @@ int main(int argc, char ** argv) {
// register static assets routes // register static assets routes
if (!params.public_path.empty()) { if (!params.public_path.empty()) {
// Set the base directory for serving static files // Set the base directory for serving static files
svr->set_base_dir(params.public_path); bool is_found = svr->set_mount_point("/", params.public_path);
} if (!is_found) {
LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
if (!params.api_keys.empty()) { return 1;
// for now, if API key is set, web UI is unusable }
svr->Get("/", [&](const httplib::Request &, httplib::Response & res) {
return res.set_content("Web UI is disabled because API key is set.", "text/html; charset=utf-8");
});
} else { } else {
// using embedded static files // using embedded static files
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8")); svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8")); svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8")); svr->Get("/deps_daisyui.min.css", handle_static_file(deps_daisyui_min_css, deps_daisyui_min_css_len, "text/css; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8")); svr->Get("/deps_markdown-it.js", handle_static_file(deps_markdown_it_js, deps_markdown_it_js_len, "text/javascript; charset=utf-8"));
svr->Get("/deps_tailwindcss.js", handle_static_file(deps_tailwindcss_js, deps_tailwindcss_js_len, "text/javascript; charset=utf-8"));
// add new-ui files svr->Get("/deps_vue.esm-browser.js", handle_static_file(deps_vue_esm_browser_js, deps_vue_esm_browser_js_len, "text/javascript; charset=utf-8"));
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
} }
// register API routes // register API routes

View file

@ -64,5 +64,5 @@ Feature: Security
| localhost | Access-Control-Allow-Origin | localhost | | localhost | Access-Control-Allow-Origin | localhost |
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr | | web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
| origin | Access-Control-Allow-Credentials | true | | origin | Access-Control-Allow-Credentials | true |
| web.mydomain.fr | Access-Control-Allow-Methods | POST | | web.mydomain.fr | Access-Control-Allow-Methods | GET, POST |
| web.mydomain.fr | Access-Control-Allow-Headers | * | | web.mydomain.fr | Access-Control-Allow-Headers | * |

View file

@ -515,7 +515,7 @@ extern "C" {
GGML_OP_WIN_UNPART, GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS, GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS, GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV, GGML_OP_RWKV_WKV6,
GGML_OP_UNARY, GGML_OP_UNARY,
@ -1752,6 +1752,9 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
enum ggml_prec prec); enum ggml_prec prec);
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a);
// TODO: needs to be adapted to ggml_flash_attn_ext // TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back( GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -1825,7 +1828,7 @@ extern "C" {
struct ggml_tensor * pw, struct ggml_tensor * pw,
struct ggml_tensor * ph); struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_rwkv_wkv( GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * k, struct ggml_tensor * k,
struct ggml_tensor * v, struct ggml_tensor * v,

View file

@ -412,6 +412,8 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.gemm = ggml_gemm_q4_0_4x8_q8_0, .gemm = ggml_gemm_q4_0_4x8_q8_0,
}, },
[GGML_TYPE_Q4_0_8_8] = { [GGML_TYPE_Q4_0_8_8] = {
.vec_dot = NULL,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1, .nrows = 1,
.ncols = 8, .ncols = 8,
.gemv = ggml_gemv_q4_0_8x8_q8_0, .gemv = ggml_gemv_q4_0_8x8_q8_0,
@ -11678,24 +11680,30 @@ static void ggml_compute_forward_add_rel_pos(
} }
} }
// ggml_compute_forward_rwkv_wkv // ggml_compute_forward_rwkv_wkv6
static void ggml_compute_forward_rwkv_wkv_f32( static void ggml_compute_forward_rwkv_wkv6_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
const size_t T = dst->src[1]->ne[3]; const int64_t T = dst->src[1]->ne[3];
const size_t C = dst->ne[0]; const int64_t C = dst->ne[0];
const size_t H = dst->src[1]->ne[2]; const int64_t HEADS = dst->src[1]->ne[2];
const size_t n_seqs = dst->src[5]->ne[1]; const int64_t n_seqs = dst->src[5]->ne[1];
const int64_t head_size = C / HEADS;
float * dst_data = (float *) dst->data; float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T; float * state = ((float *) dst->data) + C * T;
if (params->ith != 0) { const int ith = params->ith;
const int nth = params->nth;
if (ith >= HEADS) {
return; return;
} }
memset(dst_data, 0, T * C * sizeof(float)); const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;
float * k = (float *) dst->src[0]->data; float * k = (float *) dst->src[0]->data;
float * v = (float *) dst->src[1]->data; float * v = (float *) dst->src[1]->data;
@ -11703,54 +11711,160 @@ static void ggml_compute_forward_rwkv_wkv_f32(
float * time_faaaa = (float *) dst->src[3]->data; float * time_faaaa = (float *) dst->src[3]->data;
float * time_decay = (float *) dst->src[4]->data; float * time_decay = (float *) dst->src[4]->data;
size_t t_stride = H * (C / H); size_t t_stride = HEADS * head_size; // Same to C
size_t h_stride = C / H; size_t h_stride = C / HEADS;
size_t h_stride_2d = (C / H) * (C / H); GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
size_t h_stride_2d = head_size * head_size;
// basically fused operations: if (ith == 0) {
// dst = r @ (time_faaaa * (k @ v) + state), memset(dst_data, 0, T * C * sizeof(float));
// state = time_decay * state + (k @ v), }
// recursive through each token ggml_barrier(params->threadpool);
for (size_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = (C / H) * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
for (size_t h = 0; h < H; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (size_t i = 0; i < C / H; i++) { #if defined(__AVX__) && !defined(__AVX512F__)
size_t t_h_i_offset = t_h_offset + i; #define GGML_F32X GGML_F32x8
size_t h_i_offset = h_offset + i; #define GGML_F32X_SET1 GGML_F32x8_SET1
size_t h_2d_i_offset = h_2d_offset + i * h_stride; #define GGML_F32X_LOAD GGML_F32x8_LOAD
#define GGML_F32X_STORE GGML_F32x8_STORE
#define GGML_F32X_MUL GGML_F32x8_MUL
#define GGML_F32X_FMA GGML_F32x8_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__AVX512F__)
#define GGML_F32X GGML_F32x16
#define GGML_F32X_SET1 GGML_F32x16_SET1
#define GGML_F32X_LOAD GGML_F32x16_LOAD
#define GGML_F32X_STORE GGML_F32x16_STORE
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
#define GGML_F32X_LOAD GGML_F32x4_LOAD
#define GGML_F32X_STORE GGML_F32x4_STORE
#define GGML_F32X_MUL GGML_F32x4_MUL
#define GGML_F32X_FMA GGML_F32x4_FMA
#define WKV_VECTOR_SIZE 4
#endif
float k_val = k[t_h_i_offset]; #ifdef WKV_VECTOR_SIZE
float r_val = r[t_h_i_offset]; const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
float time_faaaa_val = time_faaaa[h_i_offset];
// RWKV v6: different time_decay for each token.
float time_decay_val = time_decay[t_h_i_offset];
for (size_t j = 0; j < C / H; j ++) { for (int64_t t = 0; t < T; t++) {
size_t t_h_j_offset = t_h_offset + j; size_t t_offset = t * t_stride;
size_t h_2d_i_j_offset = h_2d_i_offset + j; size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
float v_val = v[t_h_j_offset]; for (int64_t h = h_start; h < h_end; h++) {
float kv_val = v_val * k_val; size_t h_offset = h * h_stride;
float prev_state_val = state_prev[h_2d_i_j_offset]; size_t t_h_offset = t_offset + h_offset;
float temp_val = kv_val * time_faaaa_val + prev_state_val; size_t h_2d_offset = h * h_stride_2d;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_i_offset = h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float r_val = r[t_h_i_offset];
float time_faaaa_val = time_faaaa[h_i_offset];
float time_decay_val = time_decay[t_h_i_offset];
// Broadcast scalar values to vectors
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
GGML_F32X r_vec = GGML_F32X_SET1(r_val);
GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * WKV_VECTOR_SIZE;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
// Load x elements at once
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
// Compute kv = v * k
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
// Compute temp = kv * time_faaaa + prev_state
GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
// Update dst: dst += temp * r
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
// Update state: state = prev_state * time_decay + kv
GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val * time_faaaa_val + prev_state_val;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
}
} }
} }
} }
}
#else
// basically fused operations:
// dst = r @ (time_faaaa * (k @ v) + state),
// state = time_decay * state + (k @ v),
// recursive through each token
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_i_offset = h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float r_val = r[t_h_i_offset];
float time_faaaa_val = time_faaaa[h_i_offset];
// RWKV v6: different time_decay for each token.
float time_decay_val = time_decay[t_h_i_offset];
for (int64_t j = 0; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val * time_faaaa_val + prev_state_val;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
}
}
}
}
#endif
} }
static void ggml_compute_forward_rwkv_wkv(
static void ggml_compute_forward_rwkv_wkv6(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
@ -11759,7 +11873,7 @@ static void ggml_compute_forward_rwkv_wkv(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_rwkv_wkv_f32(params, dst); ggml_compute_forward_rwkv_wkv6_f32(params, dst);
} break; } break;
default: default:
{ {
@ -12511,9 +12625,9 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_add_rel_pos(params, tensor); ggml_compute_forward_add_rel_pos(params, tensor);
} break; } break;
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
{ {
ggml_compute_forward_rwkv_wkv(params, tensor); ggml_compute_forward_rwkv_wkv6(params, tensor);
} break; } break;
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
{ {
@ -12811,7 +12925,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_WIN_PART: case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART: case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS: case GGML_OP_GET_REL_POS:
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY: case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32: case GGML_OP_MAP_CUSTOM1_F32:

View file

@ -38,7 +38,7 @@ bool g_mul_mat_q = false;
#include "ggml-cuda/tsembd.cuh" #include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh" #include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh" #include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/rwkv-wkv.cuh" #include "ggml-cuda/wkv6.cuh"
#include <algorithm> #include <algorithm>
#include <array> #include <array>
@ -2324,8 +2324,8 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CROSS_ENTROPY_LOSS: case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst); ggml_cuda_cross_entropy_loss(ctx, dst);
break; break;
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
ggml_cuda_op_rwkv_wkv(ctx, dst); ggml_cuda_op_rwkv_wkv6(ctx, dst);
break; break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK: case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst); ggml_cuda_cross_entropy_loss_back(ctx, dst);
@ -3158,12 +3158,15 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_ARANGE: case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
return true; return true;
case GGML_OP_FLASH_ATTN_EXT: { case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE #ifndef FLASH_ATTN_AVAILABLE
return false; return false;
#endif #endif
if (op->src[1]->type == GGML_TYPE_BF16 || op->src[2]->type == GGML_TYPE_BF16) {
return false;
}
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) { if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
return true; return true;
} }

View file

@ -13,9 +13,9 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
const ggml_tensor * KQV = dst; const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[3]; const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
if (precision != GGML_PREC_DEFAULT) { if (prec != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) { if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
constexpr int cols_per_block = 16; constexpr int cols_per_block = 16;
switch (Q->ne[0]) { switch (Q->ne[0]) {
@ -301,11 +301,11 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device); ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[3]; const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// On AMD the tile kernels perform poorly, use the vec kernel instead: // On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) { if (cc >= CC_OFFSET_AMD) {
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) { if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else { } else {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
@ -332,7 +332,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
} }
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) { if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
if (precision == GGML_PREC_DEFAULT) { if (prec == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst); ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return; return;
} else if(Q->ne[0] <= 128) { } else if(Q->ne[0] <= 128) {

View file

@ -1,5 +0,0 @@
#include "common.cuh"
#define CUDA_WKV_BLOCK_SIZE 64
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -1,5 +1,5 @@
#include "common.cuh" #include "common.cuh"
#include "rwkv-wkv.cuh" #include "wkv6.cuh"
static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) { static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
const int tid = threadIdx.x; const int tid = threadIdx.x;
@ -64,7 +64,7 @@ static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const
} }
} }
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * k_d = (const float *)dst->src[0]->data; const float * k_d = (const float *)dst->src[0]->data;
const float * v_d = (const float *)dst->src[1]->data; const float * v_d = (const float *)dst->src[1]->data;
const float * r_d = (const float *)dst->src[2]->data; const float * r_d = (const float *)dst->src[2]->data;
@ -83,7 +83,7 @@ void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0); GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); // The current cuda kernel is designed for RWKV6, HEAD_SIZE == 64
rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d); rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
} }

View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_WKV_BLOCK_SIZE 64
void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -36,16 +36,20 @@ static struct ggml_backend_metal_device_context {
id<MTLDevice> mtl_device; id<MTLDevice> mtl_device;
int mtl_device_ref_count; int mtl_device_ref_count;
bool support_simdgroup_reduction; bool has_simdgroup_reduction;
bool support_simdgroup_mm; bool has_simdgroup_mm;
bool has_bfloat;
bool use_bfloat;
char name[128]; char name[128];
} g_ggml_ctx_dev_main = { } g_ggml_ctx_dev_main = {
/*.mtl_device =*/ nil, /*.mtl_device =*/ nil,
/*.mtl_device_ref_count =*/ 0, /*.mtl_device_ref_count =*/ 0,
/*.support_simdgroup_reduction =*/ false, /*.has_simdgroup_reduction =*/ false,
/*.support_simdgroup_mm =*/ false, /*.has_simdgroup_mm =*/ false,
/*.name =*/ "", /*.has_bfloat =*/ false,
/*.use_bfloat =*/ false,
/*.name =*/ "",
}; };
// acquire // acquire
@ -55,10 +59,19 @@ static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_dev
if (ctx->mtl_device == nil) { if (ctx->mtl_device == nil) {
ctx->mtl_device = MTLCreateSystemDefaultDevice(); ctx->mtl_device = MTLCreateSystemDefaultDevice();
ctx->support_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
ctx->support_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
ctx->support_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7]; ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6];
#if defined(GGML_METAL_USE_BF16)
ctx->use_bfloat = ctx->has_bfloat;
#else
ctx->use_bfloat = false;
#endif
strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1); strncpy(ctx->name, [[ctx->mtl_device name] UTF8String], sizeof(ctx->name) - 1);
} }
@ -120,6 +133,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
@ -146,10 +160,14 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW,
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4,
GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
@ -170,10 +188,11 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
@ -195,6 +214,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
@ -216,6 +236,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
@ -256,6 +277,12 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96,
@ -287,12 +314,14 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256,
@ -300,8 +329,11 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_BF16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F16, GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
GGML_METAL_KERNEL_TYPE_CPY_F16_F32, GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
GGML_METAL_KERNEL_TYPE_CPY_BF16_F32,
GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
@ -480,7 +512,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
// dictionary of preprocessor macros // dictionary of preprocessor macros
NSMutableDictionary * prep = [NSMutableDictionary dictionary]; NSMutableDictionary * prep = [NSMutableDictionary dictionary];
MTLCompileOptions* options = [MTLCompileOptions new]; if (ctx_dev->use_bfloat) {
[prep setObject:@"1" forKey:@"GGML_METAL_USE_BF16"];
}
MTLCompileOptions * options = [MTLCompileOptions new];
options.preprocessorMacros = prep; options.preprocessorMacros = prep;
//[options setFastMathEnabled:false]; //[options setFastMathEnabled:false];
@ -530,9 +566,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
} }
} }
GGML_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx_dev->support_simdgroup_reduction ? "true" : "false"); GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false");
GGML_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx_dev->support_simdgroup_mm ? "true" : "false"); GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false");
GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false"); GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false");
GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false");
GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false");
ctx->capture_next_compute = false; ctx->capture_next_compute = false;
ctx->capture_started = false; ctx->capture_started = false;
@ -568,6 +606,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \ struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \ id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
kernel->pipeline = [device newComputePipelineStateWithFunction:metal_function error:&error]; \ kernel->pipeline = [device newComputePipelineStateWithFunction:metal_function error:&error]; \
GGML_LOG_INFO("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
(int) kernel->pipeline.threadExecutionWidth); \
[metal_function release]; \ [metal_function release]; \
if (error) { \ if (error) { \
GGML_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ GGML_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
@ -578,8 +619,9 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \ GGML_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
} }
const bool support_simdgroup_mm = ctx_dev->support_simdgroup_mm; const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
const bool support_simdgroup_reduction = ctx_dev->support_simdgroup_reduction; const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
const bool use_bfloat = ctx_dev->use_bfloat;
// simd_sum and simd_max requires MTLGPUFamilyApple7 // simd_sum and simd_max requires MTLGPUFamilyApple7
@ -607,14 +649,15 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16, get_rows_bf16, use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
@ -635,101 +678,108 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32, mul_mv_bf16_f32, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW, mul_mv_bf16_f32_1row, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4, mul_mv_bf16_f32_l4, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16, mul_mv_bf16_bf16, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, has_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, has_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, has_simdgroup_reduction);
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32, mul_mv_id_bf16_f32, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32, mul_mm_bf16_f32, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
@ -745,58 +795,69 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64, flash_attn_ext_bf16_h64, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80, flash_attn_ext_bf16_h80, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96, flash_attn_ext_bf16_h96, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112, flash_attn_ext_q4_0_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112, flash_attn_ext_bf16_h112, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128, flash_attn_ext_q4_0_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128, flash_attn_ext_bf16_h128, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256, flash_attn_ext_bf16_h256, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H64, flash_attn_ext_q4_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H80, flash_attn_ext_q4_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H96, flash_attn_ext_q4_0_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112, flash_attn_ext_q4_1_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H112, flash_attn_ext_q4_0_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128, flash_attn_ext_q4_1_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H128, flash_attn_ext_q4_0_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_0_H256, flash_attn_ext_q4_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H64, flash_attn_ext_q4_1_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H80, flash_attn_ext_q4_1_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H96, flash_attn_ext_q4_1_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112, flash_attn_ext_q5_0_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H112, flash_attn_ext_q4_1_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128, flash_attn_ext_q5_0_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H128, flash_attn_ext_q4_1_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q4_1_H256, flash_attn_ext_q4_1_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H64, flash_attn_ext_q5_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H80, flash_attn_ext_q5_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H96, flash_attn_ext_q5_0_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112, flash_attn_ext_q5_1_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H112, flash_attn_ext_q5_0_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128, flash_attn_ext_q5_1_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H128, flash_attn_ext_q5_0_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_0_H256, flash_attn_ext_q5_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H64, flash_attn_ext_q5_1_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H80, flash_attn_ext_q5_1_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H96, flash_attn_ext_q5_1_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, flash_attn_ext_q8_0_h112, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H112, flash_attn_ext_q5_1_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, flash_attn_ext_q8_0_h128, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H128, flash_attn_ext_q5_1_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q5_1_H256, flash_attn_ext_q5_1_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H64, flash_attn_ext_q8_0_h64, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H80, flash_attn_ext_q8_0_h80, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, flash_attn_ext_vec_q4_1_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H96, flash_attn_ext_q8_0_h96, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, flash_attn_ext_vec_q5_0_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H112, flash_attn_ext_q8_0_h112, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, flash_attn_ext_vec_q5_1_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H128, flash_attn_ext_q8_0_h128, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, flash_attn_ext_vec_q8_0_h128, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_Q8_0_H256, flash_attn_ext_q8_0_h256, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, flash_attn_ext_vec_q4_0_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128, flash_attn_ext_vec_bf16_h128, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, flash_attn_ext_vec_q4_1_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128, flash_attn_ext_vec_q4_0_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, flash_attn_ext_vec_q5_0_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128, flash_attn_ext_vec_q4_1_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, flash_attn_ext_vec_q5_1_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128, flash_attn_ext_vec_q5_0_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H128, flash_attn_ext_vec_q5_1_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H128, flash_attn_ext_vec_q8_0_h128, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256, flash_attn_ext_vec_bf16_h256, has_simdgroup_reduction && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256, flash_attn_ext_vec_q4_0_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256, flash_attn_ext_vec_q4_1_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256, flash_attn_ext_vec_q5_0_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_1_H256, flash_attn_ext_vec_q5_1_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q8_0_H256, flash_attn_ext_vec_q8_0_h256, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_BF16, cpy_f32_bf16, use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_F32, cpy_bf16_f32, use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16, cpy_bf16_bf16, use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
@ -886,15 +947,18 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs
} }
static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_context * ctx_dev, const struct ggml_tensor * op) { static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_context * ctx_dev, const struct ggml_tensor * op) {
for (size_t i = 0, n = 3; i < n; ++i) { const bool has_simdgroup_mm = ctx_dev->has_simdgroup_mm;
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) { const bool has_simdgroup_reduction = ctx_dev->has_simdgroup_reduction;
return false; const bool use_bfloat = ctx_dev->use_bfloat;
if (!use_bfloat) {
for (size_t i = 0, n = 3; i < n; ++i) {
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
return false;
}
} }
} }
const bool support_simdgroup_mm = ctx_dev->support_simdgroup_mm;
const bool support_simdgroup_reduction = ctx_dev->support_simdgroup_reduction;
switch (op->op) { switch (op->op) {
case GGML_OP_UNARY: case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) { switch (ggml_get_unary_op(op)) {
@ -932,7 +996,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM: case GGML_OP_GROUP_NORM:
return support_simdgroup_reduction; return has_simdgroup_reduction;
case GGML_OP_NORM: case GGML_OP_NORM:
case GGML_OP_ROPE: case GGML_OP_ROPE:
return true; return true;
@ -952,13 +1016,13 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
if (op->src[1]->type != op->src[2]->type) { if (op->src[1]->type != op->src[2]->type) {
return false; return false;
} }
return support_simdgroup_mm; // TODO: over-restricted for vec-kernels return has_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_SSM_CONV: case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN: case GGML_OP_SSM_SCAN:
return true; return true;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
return support_simdgroup_reduction && return has_simdgroup_reduction &&
(op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32); (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
case GGML_OP_CPY: case GGML_OP_CPY:
case GGML_OP_DUP: case GGML_OP_DUP:
@ -969,6 +1033,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
switch (op->type) { switch (op->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
case GGML_TYPE_F16: case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1: case GGML_TYPE_Q4_1:
@ -981,10 +1046,18 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
} }
case GGML_TYPE_F16: case GGML_TYPE_F16:
switch (op->type) { switch (op->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
case GGML_TYPE_F16: case GGML_TYPE_F16:
return true; return true;
default: default:
return false;
}
case GGML_TYPE_BF16:
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_BF16:
return true;
default:
return false; return false;
} }
default: default:
@ -1070,7 +1143,7 @@ static void ggml_metal_encode_node(
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
const uint64_t nb21 = src2 ? src2->nb[1] : 0; const uint64_t nb21 = src2 ? src2->nb[1] : 0;
const uint64_t nb22 = src2 ? src2->nb[2] : 0; const uint64_t nb22 = src2 ? src2->nb[2] : 0;
const uint64_t nb23 = src2 ? src2->nb[3] : 0; const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23);
const int64_t ne0 = dst ? dst->ne[0] : 0; const int64_t ne0 = dst ? dst->ne[0] : 0;
const int64_t ne1 = dst ? dst->ne[1] : 0; const int64_t ne1 = dst ? dst->ne[1] : 0;
@ -1855,6 +1928,7 @@ static void ggml_metal_encode_node(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
default: break; default: break;
} }
@ -1863,6 +1937,7 @@ static void ggml_metal_encode_node(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_BF16_F32 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
@ -1940,6 +2015,25 @@ static void ggml_metal_encode_node(
nrows = 4; nrows = 4;
} }
} break; } break;
case GGML_TYPE_BF16:
{
nth0 = 32;
nth1 = 1;
if (src1t == GGML_TYPE_F32) {
if (ne11 * ne12 < 4) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_1ROW].pipeline;
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32_L4].pipeline;
nrows = ne11;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_F32].pipeline;
nrows = 4;
}
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_BF16_BF16].pipeline;
nrows = 4;
}
} break;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
{ {
nth0 = 8; nth0 = 8;
@ -2158,12 +2252,12 @@ static void ggml_metal_encode_node(
if ([device supportsFamily:MTLGPUFamilyApple7] && if ([device supportsFamily:MTLGPUFamilyApple7] &&
ne00 % 32 == 0 && ne00 >= 64 && ne00 % 32 == 0 && ne00 >= 64 &&
dst_rows > dst_rows_min) { dst_rows > dst_rows_min) {
// some Metal matrix data types require aligned pointers // some Metal matrix data types require aligned pointers
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
case GGML_TYPE_BF16: GGML_ASSERT(nb01 % 8 == 0); break;
default: break; default: break;
} }
@ -2172,6 +2266,7 @@ static void ggml_metal_encode_node(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break;
@ -2241,6 +2336,13 @@ static void ggml_metal_encode_node(
nth1 = 1; nth1 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline; pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
} break; } break;
case GGML_TYPE_BF16:
{
GGML_ASSERT(src1t == GGML_TYPE_F32);
nth0 = 32;
nth1 = 1;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_BF16_F32].pipeline;
} break;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
{ {
nth0 = 8; nth0 = 8;
@ -2438,6 +2540,7 @@ static void ggml_metal_encode_node(
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_BF16 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
@ -2962,6 +3065,23 @@ static void ggml_metal_encode_node(
} }
} }
} break; } break;
case GGML_TYPE_BF16:
{
switch (ne00) {
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H64 ].pipeline; break;
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H80 ].pipeline; break;
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H96 ].pipeline; break;
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H112].pipeline; break;
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_BF16_H256].pipeline; break;
default:
{
GGML_LOG_ERROR("unsupported size: %lld\n", ne00);
GGML_LOG_ERROR("add template specialization for this size\n");
GGML_ABORT("add template specialization for this size");
}
}
} break;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
{ {
switch (ne00) { switch (ne00) {
@ -3062,6 +3182,7 @@ static void ggml_metal_encode_node(
{ {
switch (src1->type) { switch (src1->type) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H128].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H128].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H128].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H128].pipeline; break;
@ -3079,6 +3200,7 @@ static void ggml_metal_encode_node(
{ {
switch (src1->type) { switch (src1->type) {
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_BF16_H256].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_0_H256].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q4_1_H256].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_Q5_0_H256].pipeline; break;
@ -3123,18 +3245,15 @@ static void ggml_metal_encode_node(
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:18];
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:19];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20]; [encoder setBytes:&scale length:sizeof( float) atIndex:20];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21]; [encoder setBytes:&max_bias length:sizeof( float) atIndex:21];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22]; [encoder setBytes:&m0 length:sizeof(m0) atIndex:22];
[encoder setBytes:&scale length:sizeof( float) atIndex:23]; [encoder setBytes:&m1 length:sizeof(m1) atIndex:23];
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24]; [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:24];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25]; [encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:25];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
[encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:28];
if (!use_vec_kernel) { if (!use_vec_kernel) {
// half8x8 kernel // half8x8 kernel
@ -3145,11 +3264,14 @@ static void ggml_metal_encode_node(
GGML_ASSERT(nqptg % 8 == 0); GGML_ASSERT(nqptg % 8 == 0);
GGML_ASSERT(ncpsg % 32 == 0); GGML_ASSERT(ncpsg % 32 == 0);
// 2*(2*ncpsg + nqptg)*(nsg)
// ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float)
//
// 16*32*(nsg) // 16*32*(nsg)
// the shared memory needed for the simdgroups to load the KV cache // the shared memory needed for the simdgroups to load the KV cache
// each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
// //
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16)) #define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2; int64_t nsgmax = 2;
@ -3183,12 +3305,12 @@ static void ggml_metal_encode_node(
// ne00 + 2*ncpsg*(nsg) // ne00 + 2*ncpsg*(nsg)
// for each query, we load it as f16 in shared memory (ne00) // for each query, we load it as f16 in shared memory (ne00)
// and store the attention scores (nqptg x ncpsg) as f32 // and store the soft_max values and the mask
// //
// 2*ne00*(nsg) // ne00*(nsg)
// each simdgroup has a full f32 head vector in shared mem to accumulate results // each simdgroup has a full f16 head vector in shared mem to accumulate results
// //
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*ncpsg*(nsg)) + 2*ne00*(nsg))*(sizeof(float)/2), 16)) #define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*ncpsg*(nsg)) + ne00*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2; int64_t nsgmax = 2;
@ -3237,6 +3359,7 @@ static void ggml_metal_encode_node(
switch (dstt) { switch (dstt) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_BF16].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
@ -3254,6 +3377,14 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("not implemented"); default: GGML_ABORT("not implemented");
}; };
} break; } break;
case GGML_TYPE_BF16:
{
switch (dstt) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_F32].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_BF16_BF16].pipeline; break;
default: GGML_ASSERT(false && "not implemented");
};
} break;
default: GGML_ABORT("not implemented"); default: GGML_ABORT("not implemented");
} }

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -26,5 +26,8 @@
#include "softmax.hpp" #include "softmax.hpp"
#include "tsembd.hpp" #include "tsembd.hpp"
#include "im2col.hpp" #include "im2col.hpp"
#include "wkv6.hpp"
#include "outprod.hpp"
#include "element_wise.hpp"
#endif // GGML_SYCL_BACKEND_HPP #endif // GGML_SYCL_BACKEND_HPP

View file

@ -62,3 +62,43 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
} }
return sycl_down_blk_size; return sycl_down_blk_size;
} }
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const int64_t nrows0 = ggml_nrows(src0);
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
float * dst_ddf = (float *) dst->data;
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
ggml_sycl_set_device(ctx.device);
queue_ptr main_stream = ctx.stream();
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
// do the computation
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
// print_ggml_tensor("tensor", dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}

View file

@ -404,4 +404,262 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size); int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(ggml_backend_sycl_context & ctx,
const struct ggml_tensor *src0,
const struct ggml_tensor *src1, struct ggml_tensor *dst,
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne0[] = {ne0, ne1, ne2, ne3};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb0[] = {nb0, nb1, nb2, nb3};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne0);
collapse(cne1);
}
}
{
int64_t ne0 = cne0[0];
int64_t ne1 = cne0[1];
int64_t ne2 = cne0[2];
int64_t ne3 = cne0[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb0[0];
size_t nb1 = cnb0[1];
size_t nb2 = cnb0[2];
size_t nb3 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s11, s12, s13,
item_ct1);
});
}
}
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
(sycl::half *)dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
#endif // GGML_SYCL_COMMON_HPP #endif // GGML_SYCL_COMMON_HPP

View file

@ -106,6 +106,7 @@ static void concat_f32_sycl(const float *x, const float *y, float *dst,
concat_f32_dim1(x, y, dst, ne0, ne01, item_ct1); concat_f32_dim1(x, y, dst, ne0, ne01, item_ct1);
}); });
break; break;
// dim >=2 will be dispatched to the default path
default: default:
stream->parallel_for( stream->parallel_for(
sycl::nd_range<3>(gridDim * sycl::nd_range<3>(gridDim *

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,76 @@
#ifndef GGML_SYCL_ELEMENTWISE_HPP
#define GGML_SYCL_ELEMENTWISE_HPP
#include "common.hpp"
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View file

@ -0,0 +1,55 @@
#include <sycl/sycl.hpp>
#include "outprod.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_TENSOR_BINARY_OP_LOCALS
// Get SYCL queue
dpct::queue_ptr stream = ctx.stream();
// Dimension checks
GGML_ASSERT(ne01 == ne11); // Inner dimensions must match
GGML_ASSERT(ne0 == ne00); // Output rows match src0 rows
GGML_ASSERT(ne1 == ne10); // Output cols match src1 cols
// Get data pointers
const float* src0_d = (const float*)src0->data;
const float* src1_d = (const float*)src1->data;
float* dst_d = (float*)dst->data;
// GEMM parameters
const float alpha = 1.0f;
const float beta = 0.0f;
// Handle transposition of src1
const bool src1_T = ggml_is_transposed(src1);
const oneapi::mkl::transpose src1_op =
src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
try {
// Perform matrix multiplication using oneMKL GEMM
oneapi::mkl::blas::gemm(*stream,
oneapi::mkl::transpose::nontrans, src1_op,
ne0, ne1, ne01,
alpha,
src0_d, ne00,
src1_d, ldb,
beta,
dst_d, ne0);
}
catch (sycl::exception const& exc) {
std::cerr << exc.what() << std::endl;
GGML_ASSERT(false);
}
}

View file

@ -0,0 +1,11 @@
#ifndef GGML_SYCL_OUTPROD_HPP
#define GGML_SYCL_OUTPROD_HPP
#include "common.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst);
#endif // GGML_SYCL_OUTPROD_HPP

View file

@ -25,6 +25,11 @@
#define SYCL_RELU_BLOCK_SIZE 256 #define SYCL_RELU_BLOCK_SIZE 256
#define SYCL_HARDSIGMOID_BLOCK_SIZE 256 #define SYCL_HARDSIGMOID_BLOCK_SIZE 256
#define SYCL_HARDSWISH_BLOCK_SIZE 256 #define SYCL_HARDSWISH_BLOCK_SIZE 256
#define SYCL_EXP_BLOCK_SIZE 256
#define SYCL_NEG_BLOCK_SIZE 256
#define SYCL_SIGMOID_BLOCK_SIZE 256
#define SYCL_SQRT_BLOCK_SIZE 256
#define SYCL_SIN_BLOCK_SIZE 256
#define SYCL_SQR_BLOCK_SIZE 256 #define SYCL_SQR_BLOCK_SIZE 256
#define SYCL_CPY_BLOCK_SIZE 32 #define SYCL_CPY_BLOCK_SIZE 32
#define SYCL_SCALE_BLOCK_SIZE 256 #define SYCL_SCALE_BLOCK_SIZE 256
@ -41,6 +46,7 @@
#define SYCL_ACC_BLOCK_SIZE 256 #define SYCL_ACC_BLOCK_SIZE 256
#define SYCL_IM2COL_BLOCK_SIZE 256 #define SYCL_IM2COL_BLOCK_SIZE 256
#define SYCL_POOL2D_BLOCK_SIZE 256 #define SYCL_POOL2D_BLOCK_SIZE 256
#define SYCL_ARGMAX_BLOCK_SIZE 256
#define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256 #define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256
#define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256 #define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256

138
ggml/src/ggml-sycl/wkv6.cpp Normal file
View file

@ -0,0 +1,138 @@
#include <sycl/sycl.hpp>
#include "wkv6.hpp"
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
// Helper function for the main kernel
static void rwkv_wkv_f32_kernel(
const int B, const int T, const int C, const int H,
const float* k, const float* v, const float* r,
const float* tf, const float* td, const float* s,
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
const int tid = item_ct1.get_local_id(2);
const int bid = item_ct1.get_group(2);
const int head_size = WKV_BLOCK_SIZE;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
// Set up shared memory pointers
float* _k = shared_mem;
float* _r = _k + head_size;
float* _tf = _r + head_size;
float* _td = _tf + head_size;
// Local state array
float state[WKV_BLOCK_SIZE];
// Load initial state
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
// Sync threads before shared memory operations
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load time-mixing parameters
_tf[tid] = tf[head_i * head_size + tid];
item_ct1.barrier(sycl::access::fence_space::local_space);
// Main sequence processing loop
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
t += C) {
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load current timestep data to shared memory
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
item_ct1.barrier(sycl::access::fence_space::local_space);
const float _v = v[t];
float y = 0;
// Process in chunks of 4 for better vectorization
sycl::float4 k4, r4, tf4, td4, s4, kv4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
// Load data in vec4 chunks
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
// Compute key-value product
sycl::float4 kv4 = k4 * _v;
// Accumulate weighted sum
y += sycl::dot(r4, tf4 * kv4 + s4);
// Update state
s4 = s4 * td4 + kv4;
// Store updated state
state[j] = s4.x();
state[j+1] = s4.y();
state[j+2] = s4.z();
state[j+3] = s4.w();
}
dst[t] = y;
}
// Save final state
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
const float* k_d = (const float*)dst->src[0]->data;
const float* v_d = (const float*)dst->src[1]->data;
const float* r_d = (const float*)dst->src[2]->data;
const float* tf_d = (const float*)dst->src[3]->data;
const float* td_d = (const float*)dst->src[4]->data;
const float* s_d = (const float*)dst->src[5]->data;
float* dst_d = (float*)dst->data;
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[3];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[2];
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
dpct::queue_ptr stream = ctx.stream();
// Calculate execution configuration
const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
sycl::range<3> block_dims(1, 1, C / H);
sycl::range<3> grid_dims(1, 1, B * H);
// Submit kernel
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv_f32_kernel(
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
item_ct1, shared_mem_acc.get_pointer()
);
});
});
}

View file

@ -0,0 +1,10 @@
#ifndef GGML_SYCL_WKV6_HPP
#define GGML_SYCL_WKV6_HPP
#include "common.hpp"
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor * dst);
#endif // GGML_SYCL_WKV6_HPP

View file

@ -975,7 +975,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"WIN_UNPART", "WIN_UNPART",
"GET_REL_POS", "GET_REL_POS",
"ADD_REL_POS", "ADD_REL_POS",
"RWKV_WKV", "RWKV_WKV6",
"UNARY", "UNARY",
@ -1070,7 +1070,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"win_unpart(x)", "win_unpart(x)",
"get_rel_pos(x)", "get_rel_pos(x)",
"add_rel_pos(x)", "add_rel_pos(x)",
"rwkv_wkv(k, v, r, tf, td, s)", "rwkv_wkv6(k, v, r, tf, td, s)",
"unary(x)", "unary(x)",
@ -4228,6 +4228,15 @@ void ggml_flash_attn_ext_set_prec(
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
} }
enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a) {
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
return (enum ggml_prec) prec_i32;
}
// ggml_flash_attn_back // ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back( struct ggml_tensor * ggml_flash_attn_back(
@ -4503,9 +4512,9 @@ struct ggml_tensor * ggml_add_rel_pos_inplace(
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
} }
// ggml_rwkv_wkv // ggml_rwkv_wkv6
struct ggml_tensor * ggml_rwkv_wkv( struct ggml_tensor * ggml_rwkv_wkv6(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * k, struct ggml_tensor * k,
struct ggml_tensor * v, struct ggml_tensor * v,
@ -4537,7 +4546,7 @@ struct ggml_tensor * ggml_rwkv_wkv(
const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
result->op = GGML_OP_RWKV_WKV; result->op = GGML_OP_RWKV_WKV6;
result->src[0] = k; result->src[0] = k;
result->src[1] = v; result->src[1] = v;
result->src[2] = r; result->src[2] = r;
@ -6084,7 +6093,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
} break; } break;
case GGML_OP_GET_REL_POS: case GGML_OP_GET_REL_POS:
case GGML_OP_ADD_REL_POS: case GGML_OP_ADD_REL_POS:
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY: case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32: case GGML_OP_MAP_CUSTOM1_F32:

File diff suppressed because one or more lines are too long

View file

@ -1876,8 +1876,11 @@ static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
const auto * ctx = (llama_sampler_dry *) smpl->ctx; const auto * ctx = (llama_sampler_dry *) smpl->ctx;
// nullptr is passed as vocab because it is only needed for raw sequence breaker processing, which we have already done and will be copying llama_vocab dummy_vocab;
auto * result = llama_sampler_init_dry(nullptr, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
// Copy the state, including the processed breakers // Copy the state, including the processed breakers
{ {
auto * result_ctx = (llama_sampler_dry *) result->ctx; auto * result_ctx = (llama_sampler_dry *) result->ctx;

View file

@ -7052,7 +7052,7 @@ static const std::map<llm_tensor, llm_tensor_info> llm_tensor_info_mapping = {
{LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, {LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, {LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, {LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
{LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV}}, {LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}},
{LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_ATTN_NORM_2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_ATTN_NORM_2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_ATTN_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_ATTN_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@ -7168,7 +7168,7 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs); ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C); op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
} break; } break;
case GGML_OP_RWKV_WKV: case GGML_OP_RWKV_WKV6:
{ {
// FIXME // FIXME
const int64_t S = 123; const int64_t S = 123;
@ -7181,7 +7181,7 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
ggml_tensor * tf = w; ggml_tensor * tf = w;
ggml_tensor * td = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens); ggml_tensor * td = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens);
ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H); ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
op_tensor = ggml_rwkv_wkv(ctx, k, v, r, tf, td, state); op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
} break; } break;
default: default:
GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name); GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
@ -10145,7 +10145,7 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix(
v = ggml_transpose(ctx, v); v = ggml_transpose(ctx, v);
r = ggml_transpose(ctx, r); r = ggml_transpose(ctx, r);
struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state); struct ggml_tensor * wkv_output = ggml_rwkv_wkv6(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
cur = ggml_view_1d(ctx, wkv_output, n_embd * n_tokens, 0); cur = ggml_view_1d(ctx, wkv_output, n_embd * n_tokens, 0);
*wkv_state = ggml_view_1d(ctx, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float)); *wkv_state = ggml_view_1d(ctx, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));