CANN: Optimize RMS_NORM using cache (#15419)

* [CANN] Optimize RMS_NORM using cache

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comment

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
This commit is contained in:
Chenguang Li 2025-08-22 14:12:07 +08:00 committed by GitHub
parent 54a241f505
commit a0f98dd604
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 121 additions and 36 deletions

View file

@ -867,6 +867,86 @@ static aclTensor* aclnn_values(ggml_backend_cann_context& ctx, void* buffer,
return acl_tensor;
}
/**
* @brief Fills a tensor with a scalar value.
*
* This function fills the destination tensor `acl_dst` with the scalar value
* `scalar`.
*
* @param ctx The context for the CANN backend operations.
* @param scalar The scalar value used to fill the tensor.
* @param acl_dst The destination tensor to be filled with the scalar value.
*/
static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
aclTensor* acl_dst) {
auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceFillScalar, acl_dst, acl_scalar);
ggml_cann_release_resources(ctx, acl_scalar);
}
/**
* @brief Get or expand a cached float32 tensor filled with a scalar value.
*
* This function manages cached device memory for float32 tensors. If the current
* cache size is insufficient for the requested tensor shape, the old memory will
* be released and new memory will be allocated. The allocated buffer is then
* initialized either with zeros (when @p value == 0.0f) or with the given scalar
* value using CANN operations. Finally, an aclTensor object is created from the
* cached memory and returned.
*
* @param ctx The CANN backend context that manages device memory.
* @param buffer A pointer to the cached device buffer (will be allocated
* or reallocated if necessary).
* @param cache_element The current number of cached elements. This will be
* updated when the cache is expanded.
* @param ne The tensor shape array (number of elements in each dimension).
* @param nb The stride size for each dimension.
* @param dims The number of tensor dimensions.
* @param value The scalar value used to fill the tensor (supports zero
* initialization via memset or arbitrary values via fill_scalar).
* @return An aclTensor pointer created from the cached buffer.
*/
static aclTensor* get_f32_cache_acl_tensor(
ggml_backend_cann_context& ctx,
void** buffer,
int64_t &cache_element,
int64_t* ne,
size_t* nb,
int64_t dims,
float value) {
// Calculate total number of elements
int64_t n_element = 1;
for (int i = 0; i < dims; i++) {
n_element *= ne[i];
}
size_t size = n_element * sizeof(float);
// Allocate or expand cache if needed
if (cache_element < n_element) {
if (*buffer != nullptr) {
aclrtFree(*buffer);
*buffer = nullptr;
}
ACL_CHECK(aclrtMalloc(buffer, size, ACL_MEM_MALLOC_HUGE_FIRST));
cache_element = n_element;
// Initialize cache
if (value == 0.0f) {
ACL_CHECK(aclrtMemsetAsync(*buffer, size, 0, size, ctx.stream()));
} else {
int64_t pool_ne[1] = { n_element };
size_t pool_nb[1] = { sizeof(float) };
aclTensor* acl_value = ggml_cann_create_tensor(
*buffer, ACL_FLOAT, sizeof(float), pool_ne, pool_nb, 1);
aclnn_fill_scalar(ctx, 1, acl_value);
ggml_cann_release_resources(ctx, acl_value);
}
}
return ggml_cann_create_tensor(*buffer, ACL_FLOAT, sizeof(float), ne, nb, dims);
}
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
@ -875,20 +955,39 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
aclTensor* acl_gamma = aclnn_values(
ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1,
ggml_cann_type_mapping(src->type), ggml_element_size(src));
// build gamma, one...
size_t acl_gamma_nb[GGML_MAX_DIMS];
acl_gamma_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
acl_gamma_nb[i] = acl_gamma_nb[i - 1] * src->ne[i - 1];
}
aclTensor* acl_gamma = get_f32_cache_acl_tensor(
ctx,
&ctx.f32_one_cache,
ctx.f32_one_cache_element,
src->ne,
acl_gamma_nb,
1, // dims
1.0f // value
);
// build rstd, zero...
size_t acl_rstd_nb[GGML_MAX_DIMS];
acl_rstd_nb[0] = sizeof(float);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
acl_rstd_nb[i] = acl_rstd_nb[i - 1] * src->ne[i - 1];
}
aclTensor* acl_rstd = get_f32_cache_acl_tensor(
ctx,
&ctx.f32_zero_cache,
ctx.f32_zero_cache_element,
src->ne,
acl_rstd_nb,
GGML_MAX_DIMS,
0.0f // value
);
size_t zero_tensor_n_bytes =
src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes);
aclTensor* acl_rstd =
aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes,
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src));
GGML_CANN_CALL_ACLNN_OP(ctx, RmsNorm, acl_src, acl_gamma, eps, acl_dst, acl_rstd);
ggml_cann_release_resources(ctx, acl_src, acl_dst, acl_gamma, acl_rstd);
}
@ -903,14 +1002,13 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst,
const int n_past = ((int32_t*)dst->op_params)[0];
size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] *
src->ne[3] * ggml_element_size(src);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), ggml_nbytes(src));
void* buffer = one_tensor_allocator.get();
aclTensor* mask_tensor =
aclnn_values(ctx, one_tensor_allocator.get(), one_tensor_n_bytes,
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
ggml_element_size(src), value);
aclTensor* mask_tensor = ggml_cann_create_tensor(buffer, ggml_cann_type_mapping(src->type),
ggml_type_size(src->type), src->ne, src->nb, GGML_MAX_DIMS);
aclnn_fill_scalar(ctx, value, mask_tensor);
aclScalar* alpha = nullptr;
float alphaValue = 1.0f;
@ -1277,23 +1375,6 @@ void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
tmp_permute_tensor, tmp_mul_tensor, acl_dst);
}
/**
* @brief Fills a tensor with a scalar value.
*
* This function fills the destination tensor `acl_dst` with the scalar value
* `scalar`.
*
* @param ctx The context for the CANN backend operations.
* @param scalar The scalar value used to fill the tensor.
* @param acl_dst The destination tensor to be filled with the scalar value.
*/
static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
aclTensor* acl_dst) {
auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceFillScalar, acl_dst, acl_scalar);
ggml_cann_release_resources(ctx, acl_scalar);
}
/**
* @brief Raises each element of a tensor to the power of the corresponding
* element in another tensor.

View file

@ -379,6 +379,10 @@ struct ggml_backend_cann_context {
cann_task_queue task_queue;
bool async_mode;
bool support_set_rows;
void* f32_zero_cache = nullptr;
void* f32_one_cache = nullptr;
int64_t f32_zero_cache_element = 0;
int64_t f32_one_cache_element = 0;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */