still merging in process

This commit is contained in:
Concedo 2023-05-20 15:58:33 +08:00
parent a8958f6b76
commit a0cfed1e30
19 changed files with 6903 additions and 5644 deletions

View file

@ -4,7 +4,7 @@
#include "otherarch.h"
#include "rwkv_v2.h"
#include "ggml.h"
#include "ggml_v2.h"
#include <string>
#include <vector>
@ -48,21 +48,21 @@ bool read_int32(FILE * file, int32_t * dest) {
return true;
}
#define GGML_TYPE_UNKNOWN GGML_TYPE_COUNT
#define GGML_V2_TYPE_UNKNOWN GGML_V2_TYPE_COUNT
#define FORMAT_TYPE_COUNT 10
static const ggml_type FORMAT_TYPE_TO_GGML_TYPE[FORMAT_TYPE_COUNT] = {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
GGML_TYPE_UNKNOWN, // Unused
GGML_TYPE_Q4_2,
GGML_TYPE_UNKNOWN, // Unused
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0
static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[FORMAT_TYPE_COUNT] = {
GGML_V2_TYPE_F32,
GGML_V2_TYPE_F16,
GGML_V2_TYPE_Q4_0,
GGML_V2_TYPE_Q4_1,
GGML_V2_TYPE_UNKNOWN, // Unused
GGML_V2_TYPE_Q4_2,
GGML_V2_TYPE_UNKNOWN, // Unused
GGML_V2_TYPE_Q5_0,
GGML_V2_TYPE_Q5_1,
GGML_V2_TYPE_Q8_0
};
static int32_t format_name_to_format_type(const char * format_name) {
@ -79,29 +79,29 @@ static int32_t format_name_to_format_type(const char * format_name) {
// --- Model definition and loading utilities ---
struct rwkv_layer {
struct ggml_tensor * ln1_weight;
struct ggml_tensor * ln1_bias;
struct ggml_v2_tensor * ln1_weight;
struct ggml_v2_tensor * ln1_bias;
// RWKV, also called "attention" by the author.
struct ggml_tensor * att_time_mix_k;
struct ggml_tensor * att_time_mix_v;
struct ggml_tensor * att_time_mix_r;
struct ggml_tensor * att_time_first;
struct ggml_tensor * att_time_decay;
struct ggml_tensor * att_key;
struct ggml_tensor * att_value;
struct ggml_tensor * att_receptance;
struct ggml_tensor * att_output;
struct ggml_v2_tensor * att_time_mix_k;
struct ggml_v2_tensor * att_time_mix_v;
struct ggml_v2_tensor * att_time_mix_r;
struct ggml_v2_tensor * att_time_first;
struct ggml_v2_tensor * att_time_decay;
struct ggml_v2_tensor * att_key;
struct ggml_v2_tensor * att_value;
struct ggml_v2_tensor * att_receptance;
struct ggml_v2_tensor * att_output;
struct ggml_tensor * ln2_weight;
struct ggml_tensor * ln2_bias;
struct ggml_v2_tensor * ln2_weight;
struct ggml_v2_tensor * ln2_bias;
// FFN.
struct ggml_tensor * ffn_time_mix_k;
struct ggml_tensor * ffn_time_mix_r;
struct ggml_tensor * ffn_key;
struct ggml_tensor * ffn_value;
struct ggml_tensor * ffn_receptance;
struct ggml_v2_tensor * ffn_time_mix_k;
struct ggml_v2_tensor * ffn_time_mix_r;
struct ggml_v2_tensor * ffn_key;
struct ggml_v2_tensor * ffn_value;
struct ggml_v2_tensor * ffn_receptance;
};
struct rwkv_model {
@ -111,23 +111,23 @@ struct rwkv_model {
// 0 for float32, 1 for float16.
int32_t data_type;
struct ggml_tensor * emb;
struct ggml_v2_tensor * emb;
struct ggml_tensor * ln0_weight;
struct ggml_tensor * ln0_bias;
struct ggml_v2_tensor * ln0_weight;
struct ggml_v2_tensor * ln0_bias;
std::vector<rwkv_layer> layers;
struct ggml_tensor * ln_out_weight;
struct ggml_tensor * ln_out_bias;
struct ggml_v2_tensor * ln_out_weight;
struct ggml_v2_tensor * ln_out_bias;
struct ggml_tensor * head;
struct ggml_v2_tensor * head;
};
// Finds model parameter by key and sets it into dest.
// If the parameter was not found, returns false.
bool set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, char * key, struct ggml_tensor ** dest) {
struct ggml_tensor * parameter = (*parameters)[key];
bool set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, char * key, struct ggml_v2_tensor ** dest) {
struct ggml_v2_tensor * parameter = (*parameters)[key];
RWKV_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
*dest = parameter;
return true;
@ -135,7 +135,7 @@ bool set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * param
// Finds block parameter by block index and key and sets it into dest.
// If the parameter was not found, returns false.
bool set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, int32_t block_index, char * key, struct ggml_tensor ** dest) {
bool set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, char * key, struct ggml_v2_tensor ** dest) {
char full_key[128];
sprintf(full_key, "blocks.%d.%s", block_index, key);
return set_parameter(parameters, full_key, dest);
@ -167,28 +167,28 @@ void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const flo
}
}
struct ggml_tensor * rwkv_exp(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_exp_impl);
struct ggml_v2_tensor * rwkv_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
return ggml_v2_map_unary_f32(ctx, x, rwkv_exp_impl);
}
struct ggml_tensor * rwkv_1_minus_x(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
struct ggml_v2_tensor * rwkv_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
return ggml_v2_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
}
struct ggml_tensor * rwkv_sigmoid(ggml_context * ctx, struct ggml_tensor * x) {
return ggml_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
struct ggml_v2_tensor * rwkv_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
return ggml_v2_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
}
struct ggml_tensor * rwkv_max(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y) {
return ggml_map_binary_f32(ctx, x, y, rwkv_max_impl);
struct ggml_v2_tensor * rwkv_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) {
return ggml_v2_map_binary_f32(ctx, x, y, rwkv_max_impl);
}
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
struct ggml_v2_tensor * rwkv_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) {
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
x = ggml_norm(ctx, x);
x = ggml_mul(ctx, x, weight);
x = ggml_add(ctx, x, bias);
// Looks like ggml_v2_norm does the first part, we only need to apply weight & bias.
x = ggml_v2_norm(ctx, x);
x = ggml_v2_mul(ctx, x, weight);
x = ggml_v2_add(ctx, x, bias);
return x;
}
@ -196,12 +196,12 @@ struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x,
struct rwkv_context {
struct rwkv_model * model;
struct ggml_tensor * token_index;
struct ggml_tensor * state;
struct ggml_tensor ** state_parts;
struct ggml_tensor * logits;
struct ggml_context * ctx;
struct ggml_cgraph * graph;
struct ggml_v2_tensor * token_index;
struct ggml_v2_tensor * state;
struct ggml_v2_tensor ** state_parts;
struct ggml_v2_tensor * logits;
struct ggml_v2_context * ctx;
struct ggml_v2_cgraph * graph;
bool freed;
float * state_in = 0; //stores input state, or use null for a new state
float * state_out = 0; //stores address of output state buffer
@ -267,13 +267,13 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
size_t(256) * 1024 * 1024;
// Initialize ggml
struct ggml_init_params params;
struct ggml_v2_init_params params;
params.mem_size = memory_required;
params.mem_buffer = NULL;
params.no_alloc = false;
struct ggml_context * ctx = ggml_init(params);
struct ggml_v2_context * ctx = ggml_v2_init(params);
std::unordered_map<std::string, struct ggml_tensor *> parameters;
std::unordered_map<std::string, struct ggml_v2_tensor *> parameters;
while (true) {
int32_t dim_count;
@ -294,22 +294,22 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
read_int32(file, &data_type);
RWKV_ASSERT_NULL(data_type >= 0 && data_type < FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);
ggml_type ggml_data_type = FORMAT_TYPE_TO_GGML_TYPE[data_type];
ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type];
RWKV_ASSERT_NULL(ggml_data_type != GGML_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
RWKV_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
struct ggml_tensor * tensor;
struct ggml_v2_tensor * tensor;
int32_t x = -1;
int32_t y = -1;
if (dim_count == 1) {
read_int32(file, &x);
tensor = ggml_new_tensor_1d(ctx, ggml_data_type, x);
tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x);
} else if (dim_count == 2) {
read_int32(file, &x);
read_int32(file, &y);
tensor = ggml_new_tensor_2d(ctx, ggml_data_type, x, y);
tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y);
} else {
abort();
}
@ -317,7 +317,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
std::string key(key_length, 0);
RWKV_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key");
RWKV_ASSERT_NULL(fread(tensor->data, 1, ggml_nbytes(tensor), file) == ggml_nbytes(tensor), "Failed to read parameter data");
RWKV_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data");
parameters[key] = tensor;
}
@ -365,7 +365,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
set_parameter(&parameters, "head.weight", &(model->head));
// Verify order of dimensions
struct ggml_tensor * emb = model->emb;
struct ggml_v2_tensor * emb = model->emb;
RWKV_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
RWKV_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %lld", emb->ne[0]);
RWKV_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %lld", emb->ne[1]);
@ -374,17 +374,17 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
int32_t n_layer = model->n_layer;
// Build graph
struct ggml_tensor * state = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_layer * 5 * n_embed);
struct ggml_v2_tensor * state = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_F32, n_layer * 5 * n_embed);
// x = self.w.emb.weight[token]
struct ggml_tensor * token_index = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
struct ggml_tensor * x = ggml_get_rows(ctx, model->emb, token_index);
struct ggml_v2_tensor * token_index = ggml_v2_new_tensor_1d(ctx, GGML_V2_TYPE_I32, 1);
struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index);
// x = self.layer_norm(x, self.w.blocks[0].ln0)
x = rwkv_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
// We collect parts of new state here. Each part is (n_embed) vector.
struct ggml_tensor ** state_parts = new ggml_tensor * [n_layer * 5];
struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5];
for (int i = 0; i < n_layer; i++) {
auto layer = model->layers[i];
@ -392,99 +392,99 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
// RWKV/time mixing
{
// self.layer_norm(x, self.w.blocks[i].ln1)
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
struct ggml_v2_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
// state[5 * i + 1]
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
struct ggml_tensor * xk = ggml_add(
struct ggml_v2_tensor * xk = ggml_v2_add(
ctx,
ggml_mul(ctx, x0, layer.att_time_mix_k),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
ggml_v2_mul(ctx, x0, layer.att_time_mix_k),
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
);
struct ggml_tensor * xv = ggml_add(
struct ggml_v2_tensor * xv = ggml_v2_add(
ctx,
ggml_mul(ctx, x0, layer.att_time_mix_v),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
ggml_v2_mul(ctx, x0, layer.att_time_mix_v),
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
);
struct ggml_tensor * xr = ggml_add(
struct ggml_v2_tensor * xr = ggml_v2_add(
ctx,
ggml_mul(ctx, x0, layer.att_time_mix_r),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
ggml_v2_mul(ctx, x0, layer.att_time_mix_r),
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
);
// state[5 * i + 1] = x
state_parts[5 * i + 1] = x0;
// r = torch.sigmoid(rw @ xr)
struct ggml_tensor * r = rwkv_sigmoid(
struct ggml_v2_tensor * r = rwkv_sigmoid(
ctx,
ggml_mul_mat(ctx, layer.att_receptance, xr)
ggml_v2_mul_mat(ctx, layer.att_receptance, xr)
);
// k = kw @ xk
struct ggml_tensor * k = ggml_mul_mat(ctx, layer.att_key, xk);
struct ggml_v2_tensor * k = ggml_v2_mul_mat(ctx, layer.att_key, xk);
// v = vw @ xv
struct ggml_tensor * v = ggml_mul_mat(ctx, layer.att_value, xv);
struct ggml_v2_tensor * v = ggml_v2_mul_mat(ctx, layer.att_value, xv);
// aa = state[5 * i + 2]
// bb = state[5 * i + 3]
// pp = state[5 * i + 4]
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float));
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float));
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float));
struct ggml_v2_tensor * aa = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float));
struct ggml_v2_tensor * bb = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float));
struct ggml_v2_tensor * pp = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float));
// ww = time_first + k
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k);
// qq = torch.maximum(pp, ww)
struct ggml_tensor * qq = rwkv_max(ctx, pp, ww);
struct ggml_v2_tensor * qq = rwkv_max(ctx, pp, ww);
// e1 = torch.exp(pp - qq)
struct ggml_tensor * e1 = rwkv_exp(ctx, ggml_sub(ctx, pp, qq));
struct ggml_v2_tensor * e1 = rwkv_exp(ctx, ggml_v2_sub(ctx, pp, qq));
// e2 = torch.exp(ww - qq)
struct ggml_tensor * e2 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
struct ggml_v2_tensor * e2 = rwkv_exp(ctx, ggml_v2_sub(ctx, ww, qq));
// a = e1 * aa + e2 * v
struct ggml_tensor * a = ggml_add(
struct ggml_v2_tensor * a = ggml_v2_add(
ctx,
ggml_mul(ctx, e1, aa),
ggml_mul(ctx, e2, v)
ggml_v2_mul(ctx, e1, aa),
ggml_v2_mul(ctx, e2, v)
);
// b = e1 * bb + e2
struct ggml_tensor * b = ggml_add(
struct ggml_v2_tensor * b = ggml_v2_add(
ctx,
ggml_mul(ctx, e1, bb),
ggml_v2_mul(ctx, e1, bb),
e2
);
// wkv = a / b
struct ggml_tensor * wkv = ggml_div(ctx, a, b);
struct ggml_v2_tensor * wkv = ggml_v2_div(ctx, a, b);
// ww = pp + time_decay
ww = ggml_add(ctx, pp, layer.att_time_decay);
ww = ggml_v2_add(ctx, pp, layer.att_time_decay);
// qq = torch.maximum(ww, k)
qq = rwkv_max(ctx, ww, k);
// e1 = torch.exp(ww - qq)
e1 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
e1 = rwkv_exp(ctx, ggml_v2_sub(ctx, ww, qq));
// e2 = torch.exp(k - qq)
e2 = rwkv_exp(ctx, ggml_sub(ctx, k, qq));
e2 = rwkv_exp(ctx, ggml_v2_sub(ctx, k, qq));
// state[5 * i + 2] = e1 * aa + e2 * v
state_parts[5 * i + 2] = ggml_add(
state_parts[5 * i + 2] = ggml_v2_add(
ctx,
ggml_mul(ctx, e1, aa),
ggml_mul(ctx, e2, v)
ggml_v2_mul(ctx, e1, aa),
ggml_v2_mul(ctx, e2, v)
);
// state[5 * i + 3] = e1 * bb + e2
state_parts[5 * i + 3] = ggml_add(
state_parts[5 * i + 3] = ggml_v2_add(
ctx,
ggml_mul(ctx, e1, bb),
ggml_v2_mul(ctx, e1, bb),
e2
);
// state[5 * i + 4] = qq
state_parts[5 * i + 4] = qq;
// ow @ (r * wkv)
x = ggml_add(
x = ggml_v2_add(
ctx,
x,
ggml_mul_mat(
ggml_v2_mul_mat(
ctx,
layer.att_output,
ggml_mul(ctx, r, wkv)
ggml_v2_mul(ctx, r, wkv)
)
);
}
@ -492,42 +492,42 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
// FFN/channel mixing
{
// self.layer_norm(x, self.w.blocks[i].ln2)
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
struct ggml_v2_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
// state[5 * i + 0]
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
struct ggml_tensor * xk = ggml_add(
struct ggml_v2_tensor * xk = ggml_v2_add(
ctx,
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k),
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
);
struct ggml_tensor * xr = ggml_add(
struct ggml_v2_tensor * xr = ggml_v2_add(
ctx,
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r),
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
);
// state[5 * i + 0] = x
state_parts[5 * i + 0] = x0;
// r = torch.sigmoid(rw @ xr)
struct ggml_tensor * r = rwkv_sigmoid(
struct ggml_v2_tensor * r = rwkv_sigmoid(
ctx,
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr)
);
// k = torch.square(torch.relu(kw @ xk))
struct ggml_tensor * k = ggml_sqr(ctx, ggml_relu(
struct ggml_v2_tensor * k = ggml_v2_sqr(ctx, ggml_v2_relu(
ctx,
ggml_mul_mat(ctx, layer.ffn_key, xk)
ggml_v2_mul_mat(ctx, layer.ffn_key, xk)
));
// r * (vw @ k)
x = ggml_add(
x = ggml_v2_add(
ctx,
x,
ggml_mul(
ggml_v2_mul(
ctx,
r,
ggml_mul_mat(ctx, layer.ffn_value, k)
ggml_v2_mul_mat(ctx, layer.ffn_value, k)
)
);
}
@ -537,14 +537,14 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
x = rwkv_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
// x = (self.w.head.weight @ x).float()
struct ggml_tensor * logits = ggml_mul_mat(ctx, model->head, x);
struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x);
struct ggml_cgraph * graph = (struct ggml_cgraph *) calloc(1, sizeof(struct ggml_cgraph));
struct ggml_v2_cgraph * graph = (struct ggml_v2_cgraph *) calloc(1, sizeof(struct ggml_v2_cgraph));
*graph = ggml_build_forward(logits);
*graph = ggml_v2_build_forward(logits);
for (int i = 0; i < n_layer * 5; i++) {
ggml_build_forward_expand(graph, state_parts[i]);
ggml_v2_build_forward_expand(graph, state_parts[i]);
}
graph->n_threads = n_threads;
@ -578,15 +578,15 @@ bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float
RWKV_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);
ggml_set_i32_1d(ctx->token_index, 0, token);
ggml_v2_set_i32_1d(ctx->token_index, 0, token);
if (state_in == NULL) {
ggml_set_f32(ctx->state, 0.0F);
ggml_v2_set_f32(ctx->state, 0.0F);
for (int i = 0; i < n_layer; i++) {
// state[5 * i + 4] = -1e30
ggml_set_f32(
ggml_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)),
ggml_v2_set_f32(
ggml_v2_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)),
-1e30F
);
}
@ -594,10 +594,10 @@ bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * sizeof(float));
}
ggml_graph_compute(ctx->ctx, ctx->graph);
ggml_v2_graph_compute(ctx->ctx, ctx->graph);
for (size_t i = 0; i < size_t(n_layer * 5); i++) {
struct ggml_tensor * part = ctx->state_parts[i];
struct ggml_v2_tensor * part = ctx->state_parts[i];
memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float));
}
@ -611,7 +611,7 @@ void rwkv_free(struct rwkv_context * ctx) {
ctx->model->layers.~vector();
free(ctx->model);
delete[] ctx->state_parts;
ggml_free(ctx->ctx);
ggml_v2_free(ctx->ctx);
free(ctx->graph);
free(ctx);
}
@ -621,15 +621,15 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
RWKV_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name);
ggml_type type = FORMAT_TYPE_TO_GGML_TYPE[format_type];
ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type];
RWKV_ASSERT_FALSE(type != GGML_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
RWKV_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
// Needed to initialize FP16 lookup table
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
struct ggml_v2_init_params params = { 0, NULL, false };
struct ggml_v2_context * ctx = ggml_v2_init(params);
ggml_v2_free(ctx);
}
printf("Loading model from '%s'\n", model_file_path_in);
@ -680,7 +680,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
std::vector<float> work;
std::vector<uint8_t> data_u8;
std::vector<ggml_fp16_t> data_f16;
std::vector<ggml_v2_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
@ -700,9 +700,9 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
RWKV_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type);
ggml_type parameter_ggml_type = FORMAT_TYPE_TO_GGML_TYPE[parameter_data_type];
ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type];
RWKV_ASSERT_FALSE(parameter_ggml_type != GGML_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);
RWKV_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
@ -715,9 +715,9 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
finp.read(&name[0], key_length);
{
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_type_name(parameter_ggml_type));
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_v2_type_name(parameter_ggml_v2_type));
total_size_orig += (size_t) (nelements * ggml_type_sizef(parameter_ggml_type));
total_size_orig += (size_t) (nelements * ggml_v2_type_sizef(parameter_ggml_v2_type));
}
// Quantize only 2D tensors, except embedding and head matrices.
@ -736,10 +736,10 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
if (parameter_data_type == 1) {
data_f16.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_v2_fp16_t));
data_f32.resize(nelements);
for (int i = 0; i < nelements; ++i) {
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
data_f32[i] = ggml_v2_fp16_to_fp32(data_f16[i]);
}
} else {
data_f32.resize(nelements);
@ -772,23 +772,23 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
std::vector<int64_t> hist_cur(1 << 4, 0);
switch (type) {
case GGML_TYPE_Q4_0:
cur_size = ggml_quantize_q4_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q4_0:
cur_size = ggml_v2_quantize_q4_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
case GGML_TYPE_Q4_1:
cur_size = ggml_quantize_q4_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q4_1:
cur_size = ggml_v2_quantize_q4_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
case GGML_TYPE_Q4_2:
cur_size = ggml_quantize_q4_2_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q4_2:
cur_size = ggml_v2_quantize_q4_2_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
case GGML_TYPE_Q5_0:
cur_size = ggml_quantize_q5_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q5_0:
cur_size = ggml_v2_quantize_q5_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
case GGML_TYPE_Q5_1:
cur_size = ggml_quantize_q5_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q5_1:
cur_size = ggml_v2_quantize_q5_1_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
case GGML_TYPE_Q8_0:
cur_size = ggml_quantize_q8_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
case GGML_V2_TYPE_Q8_0:
cur_size = ggml_v2_quantize_q8_0_v2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
break;
default: {
fprintf(stderr, "unsupported quantization type %d\n", type);
@ -848,18 +848,18 @@ const char * rwkv_get_system_info_string(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
s += "AVX = " + std::to_string(ggml_v2_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_v2_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_v2_cpu_has_avx512()) + " | ";
s += "FMA = " + std::to_string(ggml_v2_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_v2_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_v2_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_v2_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_v2_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_v2_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_v2_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_v2_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_v2_cpu_has_vsx()) + " | ";
return s.c_str();
}