Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/docker.yml
#	README.md
#	build-xcframework.sh
#	examples/llava/CMakeLists.txt
#	examples/llava/clip.cpp
#	examples/rpc/rpc-server.cpp
#	examples/run/run.cpp
#	ggml/src/ggml-cann/ggml-cann.cpp
#	scripts/sync-ggml-am.sh
#	scripts/sync-ggml.last
#	tests/test-backend-ops.cpp
#	tests/test-chat.cpp
This commit is contained in:
Concedo 2025-04-12 10:06:47 +08:00
commit a0ae187563
33 changed files with 2247 additions and 1202 deletions

View file

@ -229,12 +229,13 @@ static bool common_download_file_single(const std::string & url, const std::stri
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
// Check if hf-token or bearer-token was specified
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
@ -545,7 +546,10 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
std::string model_endpoint = get_model_endpoint();
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
@ -660,13 +664,8 @@ static void common_params_handle_model(
}
}
std::string hf_endpoint = "https://huggingface.co/";
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
if (hf_endpoint_env) {
hf_endpoint = hf_endpoint_env;
if (hf_endpoint.back() != '/') hf_endpoint += '/';
}
model.url = hf_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
std::string model_endpoint = get_model_endpoint();
model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
// make sure model path is present (for caching purposes)
if (model.path.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs

View file

@ -1622,7 +1622,7 @@ static common_chat_params common_chat_templates_apply_jinja(
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null() && params.tools.is_array() && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}

View file

@ -837,7 +837,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
#if defined(__linux__) || defined(__FreeBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@ -847,7 +847,9 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
@ -1034,6 +1036,19 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
}
return model_endpoint;
}
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {

View file

@ -539,6 +539,8 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
std::string get_model_endpoint();
//
// Batch utils
//

View file

@ -735,6 +735,9 @@ class Model:
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if res is None:
logger.warning("\n")
@ -1750,7 +1753,7 @@ class LlamaModel(Model):
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
rope_factors = []
for freq in freqs:
@ -1806,10 +1809,6 @@ class Llama4Model(LlamaModel):
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
name = name.replace("feed_forward.", "mlp.") # a bit hacky for now
name = name.replace(".router.weight", ".gate.weight") # a bit hacky for now
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
@ -4901,6 +4900,22 @@ class JaisModel(Model):
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("Glm4ForCausalLM")
class Glm4Model(Model):
model_arch = gguf.MODEL_ARCH.GLM4
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM
@ -5592,7 +5607,6 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_architecture = hparams["architectures"][0]
try:
model_class = Model.from_model_architecture(model_architecture)
except NotImplementedError:

View file

@ -114,6 +114,7 @@ models = [
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
]

View file

@ -1,5 +1,8 @@
#include "ggml.h"
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
@ -7,6 +10,7 @@
#include <map>
#include <sstream>
#include <vector>
#include <memory>
// Internal header for clip.cpp
@ -125,6 +129,23 @@ static projector_type clip_projector_type_from_string(const std::string & str) {
return PROJECTOR_TYPE_UNKNOWN;
}
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// logging
//
@ -183,6 +204,36 @@ static void clip_log_internal(enum ggml_log_level level, const char * format, ..
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
//
// cpp wrappers
//
// wrapper for clip_image_size
struct clip_image_size_deleter {
void operator()(clip_image_size * val) { clip_image_size_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
// wrapper for clip_image_u8
struct clip_image_u8_deleter {
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
};
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
// wrapper for clip_image_f32
struct clip_image_f32_deleter {
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
};
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
struct clip_image_u8_batch {
std::vector<clip_image_u8_ptr> entries;
};
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
};
//
// common utils
//
@ -219,6 +270,20 @@ static void string_replace_all(std::string & s, const std::string & search, cons
s = std::move(builder);
}
// split string by a `std::string delim` instead of `char delim`
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t pos = 0;
std::string token;
while ((pos = s.find(delimiter)) != std::string::npos) {
token = s.substr(0, pos);
tokens.push_back(token);
s.erase(0, pos + delimiter.length());
}
tokens.push_back(s);
return tokens;
}
//
// gguf utils
//
@ -276,3 +341,9 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx);

View file

@ -46,23 +46,6 @@ struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callbac
//#define CLIP_DEBUG_FUNCTIONS
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
std::ofstream file(filename, std::ios::binary);
@ -360,20 +343,20 @@ struct clip_ctx {
bool use_rms_norm = false;
int32_t ftype = 1;
struct gguf_context * ctx_gguf = nullptr;
struct ggml_context * ctx_data = nullptr;
gguf_context_ptr ctx_gguf;
ggml_context_ptr ctx_data;
std::vector<uint8_t> buf_compute_meta;
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
ggml_backend_t backend = nullptr;
ggml_backend_buffer_t buf = nullptr;
ggml_backend_ptr backend;
ggml_backend_buffer_ptr buf;
ggml_backend_sched_ptr sched;
struct clip_image_size * load_image_size = nullptr;
clip_image_size load_image_size;
clip_ctx(clip_context_params & ctx_params) {
@ -405,17 +388,9 @@ struct clip_ctx {
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
);
}
~clip_ctx() {
ggml_free(ctx_data);
gguf_free(ctx_gguf);
ggml_backend_buffer_free(buf);
ggml_backend_free(backend);
clip_image_size_free(load_image_size);
}
};
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
@ -431,7 +406,7 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
const int n_layer = hparams.n_layer;
const float eps = hparams.eps;
GGML_ASSERT(imgs->size == 1); // batch_size == 1
GGML_ASSERT(imgs.entries.size() == 1); // batch_size == 1
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
@ -439,7 +414,9 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_context_ptr ctx0_ptr(ggml_init(params));
auto ctx0 = ctx0_ptr.get();
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// input raw
@ -561,12 +538,10 @@ static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_im
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) {
LOG_ERR("This gguf file seems to have no vision encoder\n");
return nullptr;
@ -579,23 +554,20 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
int image_size_width = image_size;
int image_size_height = image_size;
if (ctx->has_minicpmv_projector) {
if (load_image_size == nullptr) {
load_image_size = clip_image_size_init();
}
LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
image_size_width = load_image_size->width;
image_size_height = load_image_size->height;
LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
image_size_width = load_image_size.width;
image_size_height = load_image_size.height;
if (is_inf) {
image_size_width = imgs->data->nx;
image_size_height = imgs->data->ny;
image_size_width = imgs.entries[0]->nx;
image_size_height = imgs.entries[0]->ny;
}
}
else if (ctx->has_qwen2vl_merger) {
// use the image's native resolution when image is avaible
if (is_inf) {
// if (imgs->data->nx && imgs->data->ny) {
image_size_width = imgs->data->nx;
image_size_height = imgs->data->ny;
image_size_width = imgs.entries[0]->nx;
image_size_height = imgs.entries[0]->ny;
}
}
const int patch_size = hparams.patch_size;
@ -611,7 +583,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
const bool use_window_attn = hparams.full_attn_layers.size() > 0;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
const int batch_size = imgs->size;
const int batch_size = imgs.entries.size();
if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
GGML_ASSERT(batch_size == 1);
@ -623,7 +595,9 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_context_ptr ctx0_ptr(ggml_init(params));
auto ctx0 = ctx0_ptr.get();
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
@ -1181,7 +1155,7 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
} else {
GGML_ABORT("fatel error");
GGML_ABORT("fatal error");
}
}
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
@ -1213,12 +1187,10 @@ static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_im
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
return clip_image_build_graph_siglip(ctx, imgs);
} else {
@ -1396,7 +1368,7 @@ struct clip_model_loader {
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_clip.ctx_data = ggml_init(params);
ctx_clip.ctx_data.reset(ggml_init(params));
if (!ctx_clip.ctx_data) {
throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
}
@ -1410,7 +1382,7 @@ struct clip_model_loader {
if (cur) {
tensors_to_load.push_back(cur);
// add tensors to context
struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data, cur);
struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
ggml_set_name(data_tensor, cur->name);
cur = data_tensor;
}
@ -1583,11 +1555,11 @@ struct clip_model_loader {
}
// alloc memory and offload data
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
ctx_clip.buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data, buft);
ggml_backend_buffer_set_usage(ctx_clip.buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend.get());
ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
for (auto & t : tensors_to_load) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data, t->name);
struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
const size_t offset = tensor_offset[t->name];
fin.seekg(offset, std::ios::beg);
if (!fin) {
@ -1612,10 +1584,20 @@ struct clip_model_loader {
void alloc_compute_meta() {
ctx_clip.buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
// create a fake batch
clip_image_f32_batch batch;
batch.size = 1;
batch.data = nullptr;
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, &batch, nullptr, false);
clip_image_f32_ptr img(clip_image_f32_init());
clip_image_size image_size;
image_size.width = clip_get_image_size(&ctx_clip);
image_size.height = clip_get_image_size(&ctx_clip);
int n_patches = clip_get_image_size(&ctx_clip) / image_size.width;
img->nx = n_patches;
img->ny = n_patches;
img->buf.resize(n_patches * image_size.width * image_size.height * 3);
batch.entries.push_back(std::move(img));
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
ggml_backend_t backend = ctx_clip.backend_ptrs[i];
@ -1716,11 +1698,11 @@ struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_p
}
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
ctx_clip->load_image_size = load_image_size;
ctx_clip->load_image_size = *load_image_size; // copy
}
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
return ctx_clip->load_image_size;
return &ctx_clip->load_image_size;
}
struct clip_image_size * clip_image_size_init() {
@ -1738,25 +1720,53 @@ struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
struct clip_image_f32_batch * clip_image_f32_batch_init() {
return new clip_image_f32_batch();
}
unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
if (nx) *nx = img->nx;
if (ny) *ny = img->ny;
return img->buf.data();
}
void clip_image_size_free(struct clip_image_size * load_image_size) {
if (load_image_size == nullptr) {
return;
}
delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
}
void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
return batch->entries.size();
}
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->nx;
}
size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return 0;
}
return batch->entries[idx]->ny;
}
clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
if (idx < 0 || idx >= (int)batch->entries.size()) {
LOG_ERR("%s: invalid index %d\n", __func__, idx);
return nullptr;
}
return batch->entries[idx].get();
}
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
@ -1917,14 +1927,15 @@ static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int ta
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
dst->nx = src->nx;
dst->ny = src->ny;
dst->buf.resize(src->buf.size());
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
dst.ny = src.ny;
dst.buf.resize(src.buf.size());
for (size_t i = 0; i < src->buf.size(); ++i) {
// TODO @ngxson : seems like this could be done more efficiently on cgraph
for (size_t i = 0; i < src.buf.size(); ++i) {
int c = i % 3; // rgb
dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
}
}
@ -1932,7 +1943,7 @@ inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
@ -2070,13 +2081,13 @@ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & or
return best_fit;
}
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
std::vector<clip_image_u8*> patches;
static std::vector<clip_image_u8_ptr> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
std::vector<clip_image_u8_ptr> patches;
int width = image.nx;
int height = image.ny;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
clip_image_u8 *patch = clip_image_u8_init();
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = std::min(patch_size, width - j);
patch->ny = std::min(patch_size, height - i);
patch->buf.resize(3 * patch->nx * patch->ny);
@ -2087,7 +2098,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
}
}
}
patches.push_back(patch);
patches.push_back(std::move(patch));
}
}
return patches;
@ -2168,7 +2179,7 @@ static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int mul
// -> https://arxiv.org/pdf/2403.11703
// -> https://github.com/thunlp/LLaVA-UHD
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
static std::vector<std::vector<clip_image_u8_ptr>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
const std::pair<int, int> original_size={img->nx,img->ny};
const int original_width = img->nx;
const int original_height = img->ny;
@ -2176,30 +2187,30 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8 *>> images;
std::vector<std::vector<clip_image_u8_ptr>> images;
LOG_DBG("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8 *>());
images.push_back(std::vector<clip_image_u8_ptr>());
if (multiple <= 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
clip_image_u8 * source_image = clip_image_u8_init();
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
images[images.size()-1].push_back(source_image);
images.back().push_back(std::move(source_image));
}
else if (multiple > 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
clip_image_u8 * source_image = clip_image_u8_init();
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_DBG("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images[images.size()-1].push_back(source_image);
images.back().push_back(std::move(source_image));
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
LOG_DBG("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8 * refine_image = clip_image_u8_init();
clip_image_u8_ptr refine_image(clip_image_u8_init());
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_DBG("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
@ -2210,9 +2221,9 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
int grid_x = int(width / best_grid.first);
int grid_y = int(height / best_grid.second);
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
images.push_back(std::vector<clip_image_u8 *>());
images.push_back(std::vector<clip_image_u8_ptr>());
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
clip_image_u8 * patch = clip_image_u8_init();
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = grid_x;
patch->ny = grid_y;
patch->buf.resize(3 * patch->nx * patch->ny);
@ -2225,10 +2236,9 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
patch->buf[j+2] = refine_image->buf[i+2];
}
}
images[images.size()-1].push_back(patch);
images.back().push_back(std::move(patch));
}
}
clip_image_u8_free(refine_image);
}
return images;
}
@ -2236,8 +2246,8 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const int max_slice_nums=9;
const int scale_resolution=448;
const int original_width = ctx_clip->load_image_size->width;
const int original_height = ctx_clip->load_image_size->height;
const int original_width = ctx_clip->load_image_size.width;
const int original_height = ctx_clip->load_image_size.height;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
@ -2247,64 +2257,44 @@ int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
if(clip_is_minicpmv(ctx)){
if (clip_is_minicpmv(ctx)) {
int max_slice_nums = 9;
std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
res_imgs->size = 0;
for (size_t i = 0; i < imgs.size(); ++i){
res_imgs->size += imgs[i].size();
}
res_imgs->data = new clip_image_f32[res_imgs->size];
int idx = 0;
std::vector<std::vector<clip_image_u8_ptr>> imgs = uhd_slice_image(img, max_slice_nums);
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
clip_image_f32 * res = clip_image_f32_init();
normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
res_imgs->data[idx++] = *res;
clip_image_f32_free(res);
}
}
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
if (imgs[i][j] != nullptr) {
clip_image_u8_free(imgs[i][j]);
}
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i][j], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
clip_image_u8 * resized = clip_image_u8_init();
auto patch_size = clip_patch_size(ctx) * 2;
clip_image_u8 resized;
auto patch_size = clip_get_patch_size(ctx) * 2;
int nx = ceil((float)img->nx / patch_size) * patch_size;
int ny = ceil((float)img->ny / patch_size) * patch_size;
bicubic_resize(*img, *resized, nx, ny);
bicubic_resize(*img, resized, nx, ny);
res_imgs->data = new clip_image_f32[1];
// clip_image_f32 * res = clip_image_f32_init();
normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
// res_imgs->data[0] = *res;
res_imgs->size = 1;
// clip_image_f32_free(res);
clip_image_u8_free(resized);
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
clip_image_u8 resized_image;
int32_t sz=ctx->vision_model.hparams.image_size;
bicubic_resize(*img, resized_image,sz,sz);
clip_image_f32 * res = clip_image_f32_init();
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(&resized_image, res, ctx->image_mean, ctx->image_std);
res_imgs->data[0] = *res;
clip_image_f32_free(res);
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(img_f32));
return true;
}
@ -2319,16 +2309,12 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
pad_to_square = false;
}
// free the previous res_imgs if any set
if (res_imgs->size > 0) {
clip_image_f32_batch_free(res_imgs);
}
res_imgs->data = nullptr;
res_imgs->size = 0;
res_imgs->entries.clear();
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
if (pad_to_square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
@ -2371,28 +2357,18 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
// clip_image_u8_free(temp2);
// }
std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
std::vector<clip_image_u8_ptr> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
clip_image_u8 *image_original_resize = clip_image_u8_init();
clip_image_u8_ptr image_original_resize(clip_image_u8_init());
// bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), image_original_resize);
// clip_image_f32_batch_init(patches.size());
res_imgs->size = patches.size();
res_imgs->data = new clip_image_f32[res_imgs->size];
int num=0;
for (auto& patch : patches) {
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
num++;
patches.insert(patches.begin(), std::move(image_original_resize));
for (auto & patch : patches) {
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*patch, *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
for (size_t i = 0; i < patches.size(); i++) {
// LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
clip_image_u8_free(patches[i]);
}
clip_image_u8_free(temp);
return true;
} else {
temp->nx = img->nx;
@ -2408,7 +2384,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
clip_image_f32 * res = clip_image_f32_init();
clip_image_f32_ptr res(clip_image_f32_init());
res->nx = nx2;
res->ny = ny2;
res->buf.resize(3 * nx2 * ny2);
@ -2460,7 +2436,6 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
}
}
clip_image_u8_free(temp);
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
@ -2470,10 +2445,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
// }
// res_imgs.push_back(res);
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
res_imgs->data[0] = *res;
clip_image_f32_free(res);
res_imgs->entries.push_back(std::move(res));
return true;
}
@ -2501,15 +2473,15 @@ size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w
return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
int32_t clip_image_size(const struct clip_ctx * ctx) {
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_size;
}
int32_t clip_patch_size(const struct clip_ctx * ctx) {
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.patch_size;
}
int32_t clip_hidden_size(const struct clip_ctx * ctx) {
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.hidden_size;
}
@ -2561,6 +2533,8 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
n_patches = x_patch * y_patch;
} else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
n_patches = 256;
}
return n_patches;
@ -2658,19 +2632,23 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3
return false;
}
clip_image_f32_batch imgs{};
imgs.size = 1;
imgs.data = img;
clip_image_f32_batch imgs;
clip_image_f32_ptr img_copy(clip_image_f32_init());
*img_copy = *img;
imgs.entries.push_back(std::move(img_copy));
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
const clip_image_f32_batch & imgs = *imgs_c_ptr;
if (!ctx->has_vision_encoder) {
LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
return false;
}
int batch_size = imgs->size;
int batch_size = imgs.entries.size();
if (ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
}
@ -2697,25 +2675,22 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
int image_size_width = image_size;
int image_size_height = image_size;
if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
image_size_width = imgs->data[0].nx;
image_size_height = imgs->data[0].ny;
image_size_width = imgs.entries[0]->nx;
image_size_height = imgs.entries[0]->ny;
}
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
if(ctx->load_image_size==nullptr){
ctx->load_image_size= clip_image_size_init();
}
const int pos_w = ctx->load_image_size->width/patch_size;
const int pos_h = ctx->load_image_size->height/patch_size;
const int pos_w = ctx->load_image_size.width / patch_size;
const int pos_h = ctx->load_image_size.height / patch_size;
{
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
for (size_t i = 0; i < imgs.entries.size(); i++) {
const int nx = imgs.entries[i]->nx;
const int ny = imgs.entries[i]->ny;
if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
GGML_ASSERT(nx == image_size && ny == image_size);
}
@ -2726,7 +2701,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k];
}
}
}
@ -3011,8 +2986,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
/* verbosity */ GGML_LOG_LEVEL_ERROR,
});
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx_data;
const auto & ctx_src = ctx_clip->ctx_gguf.get();
const auto & ctx_data = ctx_clip->ctx_data.get();
auto * ctx_out = gguf_init_empty();
gguf_set_kv(ctx_out, ctx_src);
@ -3247,3 +3222,11 @@ bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img,
clip_image_encode(ctx, n_threads, &clip_img, vec);
return true;
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
return ctx->proj_type;
}

View file

@ -30,15 +30,8 @@ struct clip_image_size {
int height;
};
struct clip_image_u8_batch {
struct clip_image_u8 * data;
size_t size;
};
struct clip_image_f32_batch {
struct clip_image_f32 * data;
size_t size;
};
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
@ -55,9 +48,9 @@ CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
// TODO: should be enum, not string
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
@ -73,9 +66,13 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
@ -83,6 +80,12 @@ CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
// use for accessing underlay data of clip_image_f32_batch
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes

View file

@ -2,11 +2,11 @@
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "stb_image.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include "chat.h"
#include "mtmd.h"
#include <vector>
#include <limits.h>
@ -57,13 +57,18 @@ static void sigint_handler(int signo) {
#endif
struct gemma3_context {
struct clip_ctx * ctx_clip = NULL;
common_init_result llama_init;
mtmd_context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
int n_batch;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
int n_threads = 1;
llama_pos n_past = 0;
@ -74,21 +79,24 @@ struct gemma3_context {
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
init_clip_model(params);
n_batch = params.n_batch;
tmpls = common_chat_templates_init(model, params.chat_template);
init_vision_context(params);
}
void init_clip_model(common_params & params) {
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
if (!ctx_clip) {
LOG_ERR("Failed to load CLIP model from %s\n", clip_path);
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
/* use_gpu */ true,
/* timings */ true,
/* n_threads */ params.cpuparams.n_threads,
/* verbosity */ GGML_LOG_LEVEL_INFO,
}));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
~gemma3_context() {
clip_free(ctx_clip);
}
};
struct decode_embd_batch {
@ -124,77 +132,6 @@ struct decode_embd_batch {
}
};
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
common_batch_clear(ctx.batch);
for (llama_token & t : tokens) {
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
}
if (logits_last) {
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
}
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("Failed to decode text\n");
return 1;
}
return 0;
}
static int eval_image(gemma3_context & ctx, std::string & fname) {
std::vector<float> image_embd_v;
int n_embd = llama_model_n_embd(ctx.model);
int n_tokens = 256;
image_embd_v.resize(n_tokens * n_embd);
bool ok;
struct clip_image_u8 * img_u8 = clip_image_u8_init();
ok = clip_image_load_from_file(fname.c_str(), img_u8);
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
clip_image_u8_free(img_u8);
return 2; // non-fatal error
}
clip_image_f32_batch batch_f32;
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
int64_t t0 = ggml_time_ms();
LOG("Encoding image %s\n", fname.c_str());
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
if (!ok) {
LOG_ERR("Unable to encode image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
// decode image embeddings
int64_t t1 = ggml_time_ms();
eval_text(ctx, "<start_of_image>");
llama_set_causal_attn(ctx.lctx, false);
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
if (llama_decode(ctx.lctx, batch_img.batch)) {
LOG_ERR("failed to decode image\n");
return 1;
}
ctx.n_past += n_tokens;
llama_set_causal_attn(ctx.lctx, true);
eval_text(ctx, "<end_of_image>");
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
return 0;
}
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating) {
@ -224,6 +161,45 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
return 0;
}
static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
std::vector<mtmd_bitmap> bitmaps;
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
tmpl_inputs.use_jinja = false; // jinja is buggy here
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
for (auto & fname : images_fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
return 2; // image not found
}
bitmaps.push_back(std::move(bitmap));
}
mtmd_input_text text;
text.text = formatted_chat.prompt;
text.add_special = add_bos;
text.parse_special = true;
mtmd_input_chunks_ptr chunks(mtmd_tokenize(ctx.ctx_vision.get(), text, bitmaps));
if (chunks == nullptr) {
LOG_ERR("Unable to tokenize prompt\n");
return 1;
}
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks.get(), ctx.n_past, 0, ctx.n_batch)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past += mtmd_helper_get_n_tokens(chunks.get());
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
@ -265,21 +241,15 @@ int main(int argc, char ** argv) {
#endif
}
if (eval_text(ctx, "<bos>")) {
return 1;
}
if (is_single_turn) {
g_is_generating = true;
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
if (params.prompt.find("<__image__>") == std::string::npos) {
params.prompt += " <__image__>";
}
for (auto & fname : params.image) {
if (eval_image(ctx, fname)) {
return 1;
}
}
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
if (eval_message(ctx, msg, params.image, true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
@ -293,9 +263,9 @@ int main(int argc, char ** argv) {
LOG("\n /quit or /exit exit the program");
LOG("\n");
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
}
bool is_first_msg = true;
std::vector<std::string> images_fname;
std::string content;
while (true) {
g_is_generating = false;
@ -320,24 +290,31 @@ int main(int argc, char ** argv) {
g_is_generating = true;
if (line.find("/image") == 0) {
std::string image = line.substr(7);
int res = eval_image(ctx, image);
if (res == 2) {
continue; // image not found
}
if (res) {
return 1;
}
images_fname.push_back(string_strip(image));
content += "<__image__>";
continue;
} else {
content += line;
}
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, images_fname, is_first_msg);
if (ret == 2) {
// non-fatal error
images_fname.clear();
content.clear();
continue;
}
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
if (ret) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
return 1;
}
images_fname.clear();
content.clear();
is_first_msg = false;
}
}

View file

@ -10,6 +10,7 @@
#include <cstring>
#include <limits>
#include <vector>
#include <memory>
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
@ -45,6 +46,17 @@ struct clip_image_grid_shape {
int second;
};
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
struct clip_image_size_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
@ -105,8 +117,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_context * ctx;
} model;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t patch_size = clip_patch_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
const int32_t patch_size = clip_get_patch_size(ctx_clip);
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
@ -246,12 +258,9 @@ static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size)
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
LOG_ERR("%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;
}
@ -259,66 +268,72 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
image_embd_v.resize(n_imgs);
clip_image_size load_image_size;
for (size_t i = 0; i < img_res_v.size; i++) {
for (size_t i = 0; i < n_imgs; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
int patch_size = 14;
load_image_size.width = nx;
load_image_size.height = ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
bool encoded = false;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
}
else {
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size->width = img->nx;
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
load_image_size.width = img->nx;
load_image_size.height = img->ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = img_res_v.data[0].nx;
load_image_size->height = img_res_v.data[0].ny;
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
@ -328,8 +343,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
delete[] img_res_v.data;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@ -340,17 +355,18 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
for (size_t i = 0; i < img_res_v.size; i++) {
image_embd_v.resize(n_imgs);
for (size_t i = 0; i < n_imgs; i++) {
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
@ -360,12 +376,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
// free all img_res_v - not needed anymore
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

341
examples/llava/mtmd.cpp Normal file
View file

@ -0,0 +1,341 @@
#include "clip.h"
#include "clip-impl.h"
#include "mtmd.h"
#include "llama.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
std::vector<float> image_embd_v; // image embedding vector
bool print_timings;
int n_threads;
std::string image_marker;
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
clip_context_params ctx_clip_params;
ctx_clip_params.use_gpu = ctx_params.use_gpu;
ctx_clip_params.verbosity = ctx_params.verbosity;
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
if (!ctx_clip) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
this->text_model = text_model;
}
~mtmd_context() {
clip_free(ctx_clip);
}
};
struct mtmd_image_tokens_data {
clip_image_f32_batch batch_f32; // preprocessed image patches
};
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params) {
try {
return new mtmd_context(mmproj_fname, text_model, ctx_params);
} catch (const std::exception & e) {
LOG_ERR("%s: error: %s\n", __func__, e.what());
return nullptr;
}
}
void mtmd_free(mtmd_context * ctx) {
if (ctx) {
delete ctx;
}
}
// copied from common_tokenize
static std::vector<llama_token> mtmd_tokenize_text_internal(
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps) {
mtmd_input_chunks * output = new mtmd_input_chunks;
auto vocab = llama_model_get_vocab(ctx->text_model);
std::string prompt_modified(text.text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
output->clear();
output->reserve(parts.size());
size_t i_img = 0;
for (const auto & part : parts) {
//printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
if (tokens.empty()) {
continue;
}
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output->emplace_back(std::move(chunk));
if (&parts.back() != &part) {
// add image token to middle of 2 parts
if (i_img >= bitmaps.size()) {
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
return nullptr;
}
// shim layer
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img].nx;
img_u8->ny = bitmaps[i_img].ny;
img_u8->buf.resize(bitmaps[i_img].data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
// preprocess image
clip_image_f32_batch batch_f32;
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
return nullptr;
}
mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
image_tokens->ny = 1; // TODO
image_tokens->batch_f32 = std::move(batch_f32);
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
image_tokens,
};
output->emplace_back(std::move(chunk));
i_img++;
}
}
return output;
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
delete chunk.tokens_image;
}
}
delete chunks;
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
return ok ? 0 : 1;
}
float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_tokens += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_tokens += chunk.tokens_image->n_tokens();
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_tokens;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch) {
int32_t ret;
llama_pos n_past = pos0;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
for (auto & chunk : *chunks) {
bool is_last = &chunk == &chunks->back();
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
// TODO @ngxson : may need to split into smaller batches
text_batch.n_tokens = chunk.tokens_text.size();
for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
text_batch.token [i] = chunk.tokens_text[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
GGML_ASSERT(chunk.tokens_image != nullptr);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image...\n");
}
ret = mtmd_encode(ctx, chunk.tokens_image);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = chunk.tokens_image->n_tokens();
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_img.batch);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
}
n_past += n_tokens;
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
llama_batch_free(text_batch);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image from buffer\n");
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_file(fname, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname);
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}

146
examples/llava/mtmd.h Normal file
View file

@ -0,0 +1,146 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <vector>
#include <cinttypes>
#include <memory>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#ifdef __cplusplus
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
struct mtmd_context;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
};
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens * tokens_image = nullptr;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_text {
std::string text;
bool add_special;
bool parse_special;
};
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
MTMD_API mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// free image chunk data
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
struct mtmd_input_chunks_deleter {
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
};
using mtmd_input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
#else
static_assert(false && "C header is not yet supported by this library");
#endif
#endif

View file

@ -3907,6 +3907,21 @@ int main(int argc, char ** argv) {
res_ok(res, {{ "success", true }});
};
const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
json data = {
{
"template", common_chat_templates_source(ctx_server.chat_templates.get()),
},
{
"model_info", {
{ "llama.context_length", ctx_server.slots.back().n_ctx, },
}
},
};
res_ok(res, data);
};
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
@ -4471,6 +4486,7 @@ int main(int argc, char ** argv) {
svr->Get ("/metrics", handle_metrics);
svr->Get ("/props", handle_props);
svr->Post("/props", handle_props_change);
svr->Post("/api/show", handle_api_show);
svr->Get ("/models", handle_models); // public endpoint (no API key check)
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
svr->Post("/completion", handle_completions); // legacy

View file

@ -513,17 +513,12 @@ extern "C" {
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_MAP_CUSTOM1_F32,
GGML_OP_MAP_CUSTOM2_F32,
GGML_OP_MAP_CUSTOM3_F32,
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
GGML_OP_CUSTOM,
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_OPT_STEP_ADAMW,
@ -1735,24 +1730,29 @@ extern "C" {
float p0,
float p1);
// nearest interpolate
enum ggml_scale_mode {
GGML_SCALE_MODE_NEAREST = 0,
GGML_SCALE_MODE_BILINEAR = 1,
};
// interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor);
int scale_factor,
enum ggml_scale_mode mode);
// nearest interpolate
// nearest interpolate to specified dimensions
// used in tortoise.cpp
// interpolate
// interpolate scale to specified dimensions
GGML_API struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3);
int ne3,
enum ggml_scale_mode mode);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
@ -1929,83 +1929,6 @@ extern "C" {
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
@ -2061,6 +1984,30 @@ extern "C" {
int n_tasks,
void * userdata);
typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
GGML_API struct ggml_tensor * ggml_custom_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata);
// loss function
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(

View file

@ -2041,41 +2041,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_rwkv_wkv7(params, tensor);
} break;
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_unary(params, tensor, fun);
}
break;
case GGML_OP_MAP_BINARY:
{
ggml_binary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_binary(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1_F32:
{
ggml_custom1_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom1_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM2_F32:
{
ggml_custom2_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom2_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM3_F32:
{
ggml_custom3_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom3_f32(params, tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1:
{
ggml_compute_forward_map_custom1(params, tensor);
@ -2091,6 +2056,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
ggml_compute_forward_map_custom3(params, tensor);
}
break;
case GGML_OP_CUSTOM:
{
ggml_compute_forward_custom(params, tensor);
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
ggml_compute_forward_cross_entropy_loss(params, tensor);
@ -2342,11 +2312,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
{
n_tasks = 1;
} break;
@ -2380,6 +2345,16 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_CUSTOM:
{
struct ggml_custom_op_params p;
memcpy(&p, node->op_params, sizeof(p));
if (p.n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p.n_tasks, n_threads);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:

View file

@ -6351,24 +6351,72 @@ static void ggml_compute_forward_upscale_f32(
const float sf2 = (float)ne2/src0->ne[2];
const float sf3 = (float)ne3/src0->ne[3];
// TODO: optimize
const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i01 = i1 / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / sf0;
if (mode == GGML_SCALE_MODE_NEAREST) {
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i01 = i1 / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / sf0;
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
*y = *x;
}
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
// setting a pixel offset of 0 would replicate the behavior of pytorch interpolate with align_corners=True
const float pixel_offset = 0.5f;
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
int64_t y0 = (int64_t)floorf(y);
int64_t y1 = y0 + 1;
y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
float dy = y - (float)y0;
dy = std::max(0.0f, std::min(dy, 1.0f));
for (int64_t i0 = 0; i0 < ne0; i0++) {
const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
int64_t x0 = (int64_t)floorf(x);
int64_t x1 = x0 + 1;
x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
float dx = x - (float)x0;
dx = std::max(0.0f, std::min(dx, 1.0f));
// fetch the four surrounding pixel values and interpolate
const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y_dst = val;
}
}
}
}
} else {
GGML_ABORT("unsupported upscale mode");
}
}
@ -8268,152 +8316,6 @@ void ggml_compute_forward_rwkv_wkv7(
}
}
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
void ggml_compute_forward_map_unary(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_unary_f32(params, dst, fun);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_map_binary
static void ggml_compute_forward_map_binary_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
if (params->ith != 0) {
return;
}
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(src1));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])),
(float *) ((char *) src1->data + i*(src1->nb[1])));
}
}
void ggml_compute_forward_map_binary(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_binary_f32(params, dst, fun);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_map_custom1
void ggml_compute_forward_map_custom1_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_custom1_op_f32_t fun) {
const ggml_tensor * a = dst->src[0];
if (params->ith != 0) {
return;
}
fun(dst, a);
}
// ggml_compute_forward_map_custom2
void ggml_compute_forward_map_custom2_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_custom2_op_f32_t fun) {
const ggml_tensor * a = dst->src[0];
const ggml_tensor * b = dst->src[1];
if (params->ith != 0) {
return;
}
fun(dst, a, b);
}
// ggml_compute_forward_map_custom3
void ggml_compute_forward_map_custom3_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const ggml_custom3_op_f32_t fun) {
const ggml_tensor * a = dst->src[0];
const ggml_tensor * b = dst->src[1];
const ggml_tensor * c = dst->src[1];
if (params->ith != 0) {
return;
}
fun(dst, a, b, c);
}
// ggml_compute_forward_map_custom1
void ggml_compute_forward_map_custom1(
@ -8459,6 +8361,18 @@ void ggml_compute_forward_map_custom3(
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_custom
void ggml_compute_forward_custom(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
struct ggml_custom_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_cross_entropy_loss
static void ggml_compute_forward_cross_entropy_loss_f32(

View file

@ -96,29 +96,10 @@ void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params,
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rwkv_wkv7(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_gla(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_unary(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun);
void ggml_compute_forward_map_binary(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun);
void ggml_compute_forward_map_custom1_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom1_op_f32_t fun);
void ggml_compute_forward_map_custom2_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom2_op_f32_t fun);
void ggml_compute_forward_map_custom3_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom3_op_f32_t fun);
void ggml_compute_forward_map_custom1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_custom2(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_custom3(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_custom(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View file

@ -855,13 +855,17 @@ static inline __vector float __lzs_f16cx4_load(const ggml_fp16_t * x) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return vec_xl(0, tmp);
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
return vec_xl(0, (const float *)(tmp));
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, __vector float y) {
float arr[4];
vec_xst(y, 0, arr);
// note: keep type-cast here to prevent compiler bugs
// see: https://github.com/ggml-org/llama.cpp/issues/12846
vec_xst(y, 0, (float *)(arr));
for (int i = 0; i < 4; i++) {
x[i] = GGML_FP32_TO_FP16(arr[i]);

View file

@ -3221,6 +3221,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:

View file

@ -16,6 +16,14 @@
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
#if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#endif
#if defined(__F16C__)
#include <immintrin.h>
#endif
@ -140,8 +148,14 @@ struct ggml_map_custom2_op_params {
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
int n_tasks;
void * userdata;
};
struct ggml_custom_op_params {
ggml_custom_op_t fun;
int n_tasks;
void * userdata;
};
// bitset
@ -311,13 +325,6 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
// for MUSA compilers , we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/11843
//
#if defined(__ARM_NEON) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)

View file

@ -1334,8 +1334,9 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_POOL_1D:
return false;
case GGML_OP_POOL_2D:
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_POOL_2D:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_TIMESTEP_EMBEDDING:

File diff suppressed because it is too large Load diff

View file

@ -2,6 +2,13 @@
#define GGML_SYCL_ELEMENTWISE_HPP
#include "common.hpp"
#include "ggml.h"
#include <limits.h>
template <typename T>
T neg_infinity() {
return -std::numeric_limits<T>::infinity();
}
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
@ -24,6 +31,19 @@ static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
template<typename T>
struct typed_data {
const T * src;
T * dst;
};
template<typename T>
typed_data<T> cast_data(ggml_tensor * dst) {
return {
/* .src = */ static_cast<const T *>(dst->src[0]->data),
/* .dst = */ static_cast<T *>(dst->data)
};
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
@ -65,6 +85,10 @@ void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
// ---------
void ggml_sycl_add(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View file

@ -1617,17 +1617,6 @@ static void scale_f32(const float * x, float * dst, const float scale, const int
dst[i] = scale * x[i];
}
static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
if (i >= k) {
return;
}
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
template <typename Ti, typename To>
static void pool2d_nchw_kernel(
@ -1768,18 +1757,6 @@ static void scale_f32_sycl(const float *x, float *dst, const float scale,
});
}
static void clamp_f32_sycl(const float *x, float *dst, const float min,
const float max, const int k,
queue_ptr stream) {
const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
clamp_f32(x, dst, min, max, k, item_ct1);
});
}
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
const int nrows, queue_ptr stream) {
@ -2258,26 +2235,6 @@ inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor *dst
SYCL_CHECK(0);
}
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(dst->src[0]), ctx.stream());
/*
DPCT1010:88: SYCL uses exceptions to report errors and does not use the
error codes. The call was replaced with 0. You need to rewrite this code.
*/
SYCL_CHECK(0);
}
static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
static bool peer_access_enabled = false;
@ -3218,10 +3175,6 @@ static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
ggml_sycl_op_scale(ctx, dst);
}
static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_clamp(ctx, dst);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_diag_mask_inf(ctx, dst);
}
@ -3700,7 +3653,8 @@ static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_
#ifdef GGML_SYCL_GRAPH
if (!g_ggml_sycl_disable_graph) {
if (!sycl_ctx->exec_graph && !dpct::get_device(sycl_ctx->device).has(sycl::aspect::ext_oneapi_graph)) {
const bool graph_support = dpct::get_device(sycl_ctx->device).has(sycl::aspect::ext_oneapi_limited_graph);
if (!graph_support) {
GGML_SYCL_DEBUG("[SYCL-GRAPH] can not use graphs on device:%d\n", sycl_ctx->device);
ggml_backend_sycl_graph_compute_impl(sycl_ctx, cgraph);
return GGML_STATUS_SUCCESS;
@ -3711,8 +3665,10 @@ static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_
ggml_backend_sycl_graph_compute_impl(sycl_ctx, cgraph);
model_sycl_graph.end_recording();
if (!sycl_ctx->exec_graph) {
auto exec_graph = model_sycl_graph.finalize({sycl_ex::property::graph::updatable{}});
const bool graph_update_support = dpct::get_device(sycl_ctx->device).has(sycl::aspect::ext_oneapi_graph);
if (!sycl_ctx->exec_graph || !graph_update_support) {
auto exec_graph = graph_update_support ? model_sycl_graph.finalize(sycl_ex::property::graph::updatable{}) :
model_sycl_graph.finalize();
sycl_ctx->exec_graph = std::make_unique<
sycl_ex::command_graph<sycl_ex::graph_state::executable>>(exec_graph);
} else {
@ -3900,7 +3856,11 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
return ggml_is_contiguous(op->src[0]) && (op->src[0]->type == GGML_TYPE_F32);
#if defined (GGML_SYCL_F16)
return ggml_is_contiguous(op->src[0]) && (op->type == op->src[0]->type);
#else
return ggml_is_contiguous(op->src[0]) && (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) && (op->type == op->src[0]->type);
#endif
default:
return false;
}
@ -4022,13 +3982,18 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
return (op->src[0]->type == GGML_TYPE_F32);
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_LOG:
return (op->src[0]->type == GGML_TYPE_F32);
#if defined (GGML_SYCL_F16)
return ((op->type == GGML_TYPE_F32 || op->type == GGML_SYCL_F16) && (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_SYCL_F16) && (op->type == op->src[0]->type));
#else
return (op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32) && (op->type == op->src[0]->type);
#endif
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_L2_NORM:
@ -4055,12 +4020,13 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_IM2COL:
// TODO: add support for the new F32 operations
return op->src[0]->type == GGML_TYPE_F16;
case GGML_OP_UPSCALE:
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:

View file

@ -5766,7 +5766,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
}
return nullptr;
case GGML_OP_UPSCALE:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 && dst->op_params[0] == GGML_SCALE_MODE_NEAREST) {
return ctx->device->pipeline_upscale_f32;
}
return nullptr;
@ -9421,9 +9421,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_COS:
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UPSCALE:
return op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_ACC:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
case GGML_OP_PAD:
case GGML_OP_DIAG_MASK_INF:
@ -9791,7 +9792,7 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
} else if (tensor->op == GGML_OP_CONCAT) {
tensor_clone = ggml_concat(ggml_ctx, src_clone[0], src_clone[1], *(int *)tensor->op_params);
} else if (tensor->op == GGML_OP_UPSCALE) {
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
tensor_clone = ggml_upscale_ext(ggml_ctx, src_clone[0], tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->op_params[0], tensor->op_params[1], (ggml_scale_mode) tensor->op_params[0]);
} else if (tensor->op == GGML_OP_SCALE) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_scale(ggml_ctx, src_clone[0], params[0]);

View file

@ -995,23 +995,18 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"UNARY",
"MAP_UNARY",
"MAP_BINARY",
"MAP_CUSTOM1_F32",
"MAP_CUSTOM2_F32",
"MAP_CUSTOM3_F32",
"MAP_CUSTOM1",
"MAP_CUSTOM2",
"MAP_CUSTOM3",
"CUSTOM",
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1094,23 +1089,18 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"unary(x)",
"f(x)",
"f(x,y)",
"custom_f32(x)",
"custom_f32(x,y)",
"custom_f32(x,y,z)",
"map_custom(x)",
"map_custom(x,y)",
"map_custom(x,y,z)",
"custom(x)",
"custom(x,y)",
"custom(x,y,z)",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4197,7 +4187,8 @@ static struct ggml_tensor * ggml_upscale_impl(
int ne0,
int ne1,
int ne2,
int ne3) {
int ne3,
enum ggml_scale_mode mode) {
GGML_ASSERT(a->ne[0] <= ne0);
GGML_ASSERT(a->ne[1] <= ne1);
GGML_ASSERT(a->ne[2] <= ne2);
@ -4205,6 +4196,8 @@ static struct ggml_tensor * ggml_upscale_impl(
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
ggml_set_op_params_i32(result, 0, mode);
result->op = GGML_OP_UPSCALE;
result->src[0] = a;
@ -4214,8 +4207,9 @@ static struct ggml_tensor * ggml_upscale_impl(
struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
int scale_factor,
enum ggml_scale_mode mode) {
return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3], mode);
}
struct ggml_tensor * ggml_upscale_ext(
@ -4224,8 +4218,9 @@ struct ggml_tensor * ggml_upscale_ext(
int ne0,
int ne1,
int ne2,
int ne3) {
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
int ne3,
enum ggml_scale_mode mode) {
return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3, mode);
}
// ggml_pad
@ -4855,179 +4850,6 @@ struct ggml_tensor * ggml_unary_inplace(
return ggml_unary_impl(ctx, a, op, true);
}
// ggml_map_unary
static struct ggml_tensor * ggml_map_unary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_UNARY;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
static struct ggml_tensor * ggml_map_binary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_BINARY;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom1_f32
static struct ggml_tensor * ggml_map_custom1_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM1_F32;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
// ggml_map_custom2_f32
static struct ggml_tensor * ggml_map_custom2_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM2_F32;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom3_f32
static struct ggml_tensor * ggml_map_custom3_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM3_F32;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
// ggml_map_custom1
static struct ggml_tensor * ggml_map_custom1_impl(
@ -5046,7 +4868,7 @@ static struct ggml_tensor * ggml_map_custom1_impl(
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM1;
result->src[0] = a;
@ -5091,7 +4913,7 @@ static struct ggml_tensor * ggml_map_custom2_impl(
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM2;
result->src[0] = a;
@ -5140,7 +4962,7 @@ static struct ggml_tensor * ggml_map_custom3_impl(
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM3;
result->src[0] = a;
@ -5172,6 +4994,66 @@ struct ggml_tensor * ggml_map_custom3_inplace(
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
struct ggml_tensor * ggml_custom_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata) {
GGML_ASSERT(n_args < GGML_MAX_SRC);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
struct ggml_custom_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_CUSTOM;
for (int i = 0; i < n_args; i++) {
result->src[i] = args[i];
}
return result;
}
struct ggml_tensor * ggml_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor ** args,
int n_args,
ggml_custom_op_t fun,
int n_tasks,
void * userdata) {
GGML_ASSERT(n_args < GGML_MAX_SRC - 1);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
struct ggml_custom_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, &params, sizeof(params));
result->op = GGML_OP_CUSTOM;
result->src[0] = a;
for (int i = 0; i < n_args; i++) {
result->src[i + 1] = args[i];
}
return result;
}
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(

View file

@ -280,6 +280,7 @@ class MODEL_ARCH(IntEnum):
DEEPSEEK = auto()
DEEPSEEK2 = auto()
CHATGLM = auto()
GLM4 = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
@ -487,6 +488,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DEEPSEEK: "deepseek",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4: "glm4",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
@ -1561,6 +1563,23 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GLM4 : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.ATTN_POST_NORM,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,

View file

@ -13,7 +13,7 @@ class TensorNameMap:
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
"transformer.word_embeddings", # falcon
"word_embeddings", # bloom
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
"model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert nomic-bert
"language_model.embedding.word_embeddings", # persimmon
@ -30,6 +30,7 @@ class TensorNameMap:
"rwkv.embeddings", # rwkv6
"model.embeddings", # rwkv7
"model.word_embeddings", # bailingmoe
"language_model.model.embed_tokens", # llama4
),
# Token type embeddings
@ -67,6 +68,7 @@ class TensorNameMap:
"output_layer", # chatglm
"head", # rwkv
"head.out", # wavtokenizer
"language_model.lm_head", # llama4
),
# Output norm
@ -89,6 +91,7 @@ class TensorNameMap:
"rwkv.ln_out", # rwkv6
"model.ln_out", # rwkv7
"backbone.final_layer_norm", # wavtokenizer
"language_model.model.norm", # llama4
),
# Rope frequencies
@ -130,6 +133,7 @@ class TensorNameMap:
"transformer.layers.{bid}.attn_norm", # openelm
"rwkv.blocks.{bid}.ln1", # rwkv6
"model.layers.{bid}.ln1", # rwkv7
"language_model.model.layers.{bid}.input_layernorm", # llama4
),
# Attention norm 2
@ -169,6 +173,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
"transformer.h.{bid}.attn.attention.q_proj", # exaone
"language_model.model.layers.{bid}.self_attn.q_proj", # llama4
),
# Attention key
@ -183,6 +188,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
"transformer.h.{bid}.attn.attention.k_proj", # exaone
"language_model.model.layers.{bid}.self_attn.k_proj", # llama4
),
# Attention value
@ -196,6 +202,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wv", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
"transformer.h.{bid}.attn.attention.v_proj", # exaone
"language_model.model.layers.{bid}.self_attn.v_proj", # llama4
),
# Attention output
@ -222,6 +229,7 @@ class TensorNameMap:
"encoder.layers.{bid}.self_attention.dense", # chatglm
"transformer.layers.{bid}.attn.out_proj", # openelm
"transformer.h.{bid}.attn.attention.out_proj", # exaone
"language_model.model.layers.{bid}.self_attn.o_proj", # llama4
),
# Attention output norm
@ -233,7 +241,8 @@ class TensorNameMap:
),
MODEL_TENSOR.ATTN_POST_NORM: (
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
"model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
"model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
),
# Rotary embeddings
@ -259,6 +268,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
"language_model.model.layers.{bid}.post_attention_layernorm", # llama4
),
# Post feed-forward norm
@ -269,6 +279,7 @@ class TensorNameMap:
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
"model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
"model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
),
MODEL_TENSOR.FFN_GATE_INP: (
@ -278,6 +289,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.router", # Grok
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
"model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
"language_model.model.layers.{bid}.feed_forward.router", # llama4
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@ -306,7 +318,7 @@ class TensorNameMap:
"h.{bid}.mlp.c_fc", # gpt2
"transformer.h.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.gate_up_proj", # phi3
"model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
"model.layers.layers.{bid}.mlp.up_proj", # plamo
"model.layers.{bid}.feed_forward.w3", # internlm2
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
@ -315,6 +327,7 @@ class TensorNameMap:
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
"transformer.h.{bid}.mlp.c_fc_1", # exaone
"language_model.model.layers.{bid}.feed_forward.up_proj", # llama4
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -323,11 +336,13 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
"model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
"language_model.model.layers.{bid}.feed_forward.experts.up_proj", # llama4
),
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
"language_model.model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
),
# AWQ-activation gate
@ -348,6 +363,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
"transformer.h.{bid}.mlp.c_fc_0", # exaone
"language_model.model.layers.{bid}.feed_forward.gate_proj", # llama4
),
MODEL_TENSOR.FFN_GATE_EXP: (
@ -356,11 +372,13 @@ class TensorNameMap:
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
"model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
"language_model.model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
"language_model.model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
),
# Feed-forward down
@ -389,6 +407,7 @@ class TensorNameMap:
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
"model.layers.h.{bid}.mlp.c_proj", # exaone
"language_model.model.layers.{bid}.feed_forward.down_proj", # llama4
),
MODEL_TENSOR.FFN_DOWN_EXP: (
@ -398,11 +417,13 @@ class TensorNameMap:
"model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
"language_model.model.layers.{bid}.feed_forward.experts.down_proj", # llama4
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
"language_model.model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
),
MODEL_TENSOR.ATTN_Q_NORM: (

View file

@ -54,6 +54,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_DEEPSEEK, "deepseek" },
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_GLM4, "glm4" },
{ LLM_ARCH_BITNET, "bitnet" },
{ LLM_ARCH_T5, "t5" },
{ LLM_ARCH_T5ENCODER, "t5encoder" },
@ -1152,6 +1153,25 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
},
},
{
LLM_ARCH_GLM4,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
{
LLM_ARCH_BITNET,
{

View file

@ -58,6 +58,7 @@ enum llm_arch {
LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_GLM4,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
@ -256,6 +257,8 @@ enum llm_tensor {
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
LLM_TENSOR_POST_ATTN_NORM,
LLM_TENSOR_POST_MLP_NORM,
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,

View file

@ -1210,6 +1210,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GLM4:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: type = LLM_TYPE_9B; break;
case 61: type = LLM_TYPE_32B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -3571,6 +3580,45 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
}
} break;
case LLM_ARCH_GLM4:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_NEMOTRON:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -4543,8 +4591,8 @@ struct llm_build_llama : public llm_graph_context {
if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, 1e-6);
Kcur = ggml_rms_norm(ctx0, Kcur, 1e-6);
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
@ -10957,6 +11005,157 @@ struct llm_build_chatglm : public llm_graph_context {
}
};
struct llm_build_glm4 : public llm_graph_context {
llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL,
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv == nullptr) {
Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
} else {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Post-attention norm (new!)
cur = build_norm(cur,
model.layers[il].attn_post_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Add the input (residual connection after post-attention norm)
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
// Pre-MLP norm
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MLP
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
// Post-MLP norm
cur = build_norm(cur,
model.layers[il].ffn_post_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "post_mlp_norm", il);
}
// Add residual connection after post-MLP norm
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
// Final norm
cur = build_norm(inpL,
model.output_norm,
NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// Output projection
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -12838,6 +13037,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
} break;
case LLM_ARCH_GLM4:
{
llm = std::make_unique<llm_build_glm4>(*this, params, gf);
} break;
case LLM_ARCH_BITNET:
{
llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
@ -13035,6 +13238,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_PLM:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GLM4:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:

View file

@ -1807,6 +1807,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
pre_type = LLAMA_VOCAB_PRE_TYPE_PORO;
clean_spaces = false;
} else if (
tokenizer_pre == "glm4" ||
tokenizer_pre == "chatglm-bpe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
special_bos_id = LLAMA_TOKEN_NULL;