mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops * relax constraints * duplicate shape of source * fix ggml_vec_geglu_f16 * special case gated ops * implement unary REGLU/GEGLU/SWIGLU cuda ops * tighten constraints again * refactor into GGML_GLU_OP * metal : add glu kernels ggml-ci * add CUDA_GLU_BLOCK_SIZE [no ci] * more constraints and use 64bit ints ggml-ci * 64bit multiplication [no ci] * implement swapped variants (cpu/cuda) * update comment [no ci] ggml-ci * Vulkan: Add GLU ops and shaders * SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate * ggml : implement GLU for split up/gate (#14181) * implement GLU for split up/gate * add tests for ggml_glu_split * Vulkan: Implement glu_split logic and shader support * add split to logging [no ci] * SYCL: refactor element_size ops and add split up and gate support to gated kernels * SYCL: switch GEGLU to use tanh approximation --------- Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: Akarshan <akarshan@menlo.ai> * GGML: increase OP count in assertion * Refactor: Optimize SYCL element-wise operations with unary function inlining This commit refactors the SYCL element-wise operations to improve performance by: - Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead. - Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic. - Replacing direct kernel calls with calls to these inlined functions. - Using `__dpct_inline__` to encourage compiler inlining. - Minor code cleanup and consistency improvements. The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices. * vulkan: Increase workgroup size for GLU, for performance (#14345) * vulkan: Increase workgroup size for GLU, for performance * vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup * merge fix * metal : add support for split and swap ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: Akarshan <akarshan@menlo.ai> Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
parent
bd9c981d72
commit
a0535ffa0d
26 changed files with 2126 additions and 1153 deletions
|
@ -1106,6 +1106,107 @@ struct test_unary : public test_case {
|
|||
|
||||
};
|
||||
|
||||
// GGML_OP_GLU
|
||||
struct test_glu : public test_case {
|
||||
const ggml_glu_op op;
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne_a;
|
||||
int v; // view (1 : non-contiguous a)
|
||||
bool swapped;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR4(type, ne_a, v, swapped);
|
||||
}
|
||||
|
||||
test_glu(ggml_glu_op op,
|
||||
ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
|
||||
int v = 0,
|
||||
bool swapped = false)
|
||||
: op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a;
|
||||
if (v & 1) {
|
||||
auto ne = ne_a; ne[0] *= 3;
|
||||
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
ggml_set_name(a, "view_of_a");
|
||||
} else {
|
||||
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_set_name(a, "a");
|
||||
}
|
||||
|
||||
ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
// test extended range of values to check for NaNs in GELU
|
||||
init_tensor_uniform(t, -150.f, 150.f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct test_glu_split : public test_case {
|
||||
const ggml_glu_op op;
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne_a;
|
||||
int v; // view (1 : non-contiguous a)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type, ne_a, v) + ",split";
|
||||
}
|
||||
|
||||
test_glu_split(ggml_glu_op op,
|
||||
ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
|
||||
int v = 0)
|
||||
: op(op), type(type), ne_a(ne_a), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a;
|
||||
ggml_tensor * b;
|
||||
if (v & 1) {
|
||||
auto ne = ne_a; ne[0] *= 3;
|
||||
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
ggml_set_name(a, "view_of_a");
|
||||
|
||||
b = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_set_name(b, "b");
|
||||
|
||||
b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
|
||||
ggml_set_name(a, "view_of_b");
|
||||
} else {
|
||||
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
b = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_set_name(b, "b");
|
||||
}
|
||||
|
||||
ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
// test extended range of values to check for NaNs in GELU
|
||||
init_tensor_uniform(t, -150.f, 150.f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_GET_ROWS
|
||||
struct test_get_rows : public test_case {
|
||||
const ggml_type type;
|
||||
|
@ -4094,6 +4195,21 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
}
|
||||
}
|
||||
|
||||
// glu ops
|
||||
for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
for (int v : {0, 1}) {
|
||||
for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
|
||||
for (bool swapped : {false, true}) {
|
||||
test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
|
||||
test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
|
||||
test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
||||
for (ggml_type type : all_types) {
|
||||
for (int b : {1, 7}) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue