ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)

* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (#14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (#14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
Sigbjørn Skjæret 2025-06-29 11:04:10 +02:00 committed by GitHub
parent bd9c981d72
commit a0535ffa0d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
26 changed files with 2126 additions and 1153 deletions

View file

@ -437,6 +437,10 @@ struct vk_device_struct {
vk_pipeline pipeline_tanh[2];
vk_pipeline pipeline_sigmoid[2];
vk_pipeline pipeline_geglu[2];
vk_pipeline pipeline_reglu[2];
vk_pipeline pipeline_swiglu[2];
vk_pipeline pipeline_leaky_relu_f32;
vk_pipeline pipeline_silu_back_f32;
vk_pipeline pipeline_diag_mask_inf_f32;
@ -661,6 +665,13 @@ struct vk_op_push_constants {
float param2;
};
struct vk_op_glu_push_constants {
uint32_t N;
uint32_t ne00;
uint32_t ne20;
uint32_t mode; // 0: default, 1: swapped, 2: split
};
struct vk_op_unary_push_constants {
uint32_t ne;
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
@ -2757,6 +2768,15 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_UNARY(sigmoid)
#undef CREATE_UNARY
#define CREATE_GLU(name) \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [0], #name "_f32", name ## _f32_len, name ## _f32_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true); \
ggml_vk_create_pipeline(device, device->pipeline_ ## name [1], #name "_f16", name ## _f16_len, name ## _f16_data, "main", 3, sizeof(vk_op_glu_push_constants), {512, 1, 1}, {}, 1, true);
CREATE_GLU(geglu)
CREATE_GLU(reglu)
CREATE_GLU(swiglu)
#undef CREATE_GLU
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_silu_back_f32, "silu_back_f32", silu_back_f32_len, silu_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
@ -6473,6 +6493,24 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
break;
}
return nullptr;
case GGML_OP_GLU:
if ((src0->type != GGML_TYPE_F32 && src0->type != GGML_TYPE_F16) ||
(dst->type != GGML_TYPE_F32 && dst->type != GGML_TYPE_F16) ||
(src0->type != dst->type)) {
return nullptr;
}
switch (ggml_get_glu_op(dst)) {
case GGML_GLU_OP_GEGLU:
return ctx->device->pipeline_geglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_REGLU:
return ctx->device->pipeline_reglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_SWIGLU:
return ctx->device->pipeline_swiglu[dst->type == GGML_TYPE_F16];
default:
break;
}
return nullptr;
case GGML_OP_DIAG_MASK_INF:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_diag_mask_inf_f32;
@ -6933,6 +6971,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_UNARY:
case GGML_OP_GLU:
case GGML_OP_CONV_2D_DW:
{
uint32_t ne = ggml_nelements(dst);
@ -6973,7 +7012,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
}
if (op == GGML_OP_SOFT_MAX) {
if (op == GGML_OP_SOFT_MAX || op == GGML_OP_GLU) {
// Empty src1 is possible in soft_max, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
@ -7566,6 +7605,25 @@ static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, con
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
}
static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const bool swapped = (bool)dst->op_params[1];
const bool split = src1 != nullptr;
GGML_ASSERT(ggml_is_contiguous(src0));
if (!split) {
GGML_ASSERT(src0->ne[0] / 2 == dst->ne[0]);
} else {
GGML_ASSERT(src0->ne[0] == src1->ne[0]);
GGML_ASSERT(src0->ne[0] == dst->ne[0]);
GGML_ASSERT(src0->type == src1->type);
}
const uint32_t mode = split ? 2 : (swapped ? 1 : 0);
ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GLU, { (uint32_t)ggml_nelements(dst), (uint32_t)src0->ne[0], (uint32_t)dst->ne[0], mode }, dryrun);
}
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
int32_t * op_params = (int32_t *)dst->op_params;
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
@ -8778,6 +8836,16 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(node)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
break;
default:
return false;
}
break;
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
case GGML_OP_GET_ROWS:
@ -8870,6 +8938,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_L2_NORM:
case GGML_OP_UNARY:
case GGML_OP_GLU:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
@ -9013,6 +9082,17 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(node)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
ggml_vk_glu(ctx, compute_ctx, src0, src1, node, dryrun);
break;
default:
return false;
}
break;
case GGML_OP_DIAG_MASK_INF:
ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node, dryrun);
@ -9138,8 +9218,9 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
if (!ok) {
if (node->op == GGML_OP_UNARY) {
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
}
else {
} else if (node->op == GGML_OP_GLU) {
std::cerr << __func__ << ": error: op not supported GLU " << node->name << " (" << ggml_glu_op_name(static_cast<ggml_glu_op>(node->op_params[0])) << ")" << std::endl;
} else {
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
}
}
@ -9218,6 +9299,17 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(tensor)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
buf = tensor->buffer;
break;
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
case GGML_OP_FLASH_ATTN_EXT:
@ -10016,6 +10108,19 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(op)) {
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
return ggml_is_contiguous(op->src[0]) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
(op->src[0]->type == op->type);
default:
return false;
}
break;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
@ -10746,6 +10851,12 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
GGML_ABORT("fatal error");
}
} else if (tensor->op == GGML_OP_GLU) {
if (src_clone[1] == nullptr) {
tensor_clone = ggml_glu(ggml_ctx, src_clone[0], (ggml_glu_op) tensor->op_params[0], tensor->op_params[1]);
} else {
tensor_clone = ggml_glu_split(ggml_ctx, src_clone[0], src_clone[1], (ggml_glu_op) tensor->op_params[0]);
}
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
if (src1 == nullptr) {
tensor_clone = ggml_dup(ggml_ctx, src_clone[0]);