mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 09:34:37 +00:00
ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops * relax constraints * duplicate shape of source * fix ggml_vec_geglu_f16 * special case gated ops * implement unary REGLU/GEGLU/SWIGLU cuda ops * tighten constraints again * refactor into GGML_GLU_OP * metal : add glu kernels ggml-ci * add CUDA_GLU_BLOCK_SIZE [no ci] * more constraints and use 64bit ints ggml-ci * 64bit multiplication [no ci] * implement swapped variants (cpu/cuda) * update comment [no ci] ggml-ci * Vulkan: Add GLU ops and shaders * SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate * ggml : implement GLU for split up/gate (#14181) * implement GLU for split up/gate * add tests for ggml_glu_split * Vulkan: Implement glu_split logic and shader support * add split to logging [no ci] * SYCL: refactor element_size ops and add split up and gate support to gated kernels * SYCL: switch GEGLU to use tanh approximation --------- Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: Akarshan <akarshan@menlo.ai> * GGML: increase OP count in assertion * Refactor: Optimize SYCL element-wise operations with unary function inlining This commit refactors the SYCL element-wise operations to improve performance by: - Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead. - Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic. - Replacing direct kernel calls with calls to these inlined functions. - Using `__dpct_inline__` to encourage compiler inlining. - Minor code cleanup and consistency improvements. The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices. * vulkan: Increase workgroup size for GLU, for performance (#14345) * vulkan: Increase workgroup size for GLU, for performance * vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup * merge fix * metal : add support for split and swap ggml-ci --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: 0cc4m <picard12@live.de> Co-authored-by: Akarshan <akarshan@menlo.ai> Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
This commit is contained in:
parent
bd9c981d72
commit
a0535ffa0d
26 changed files with 2126 additions and 1153 deletions
|
@ -905,6 +905,60 @@ inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, con
|
|||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_reglu_f32 (const int n, float * y, const float * x, const float * g) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = (x[i] > 0.f) ? x[i] * g[i] : 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_reglu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v * GGML_FP16_TO_FP32(g[i]) : 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_GELU_FP16
|
||||
inline static void ggml_vec_geglu_f32(const int n, float * y, const float * x, const float * g) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if (x[i] <= -10.0f) {
|
||||
y[i] = 0.0f;
|
||||
} else if (x[i] >= 10.0f) {
|
||||
y[i] = x[i] * g[i];
|
||||
} else {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]) * g[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
inline static void ggml_vec_geglu_f32(const int n, float * y, const float * x, const float * g) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_gelu_f32(x[i]) * g[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
inline static void ggml_vec_geglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
|
||||
const uint16_t * i16 = (const uint16_t *) x;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(g[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(ggml_table_gelu_f16[i16[i]]) * v);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * g);
|
||||
|
||||
inline static void ggml_vec_swiglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
float w = GGML_FP16_TO_FP32(g[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v/(1.0f + expf(-v))) * w);
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
|
||||
#ifndef GGML_USE_ACCELERATE
|
||||
ggml_float sum = 0.0;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue