mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
parent
ad5c975c2d
commit
9ebebef62f
16 changed files with 32 additions and 440 deletions
|
@ -2254,9 +2254,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
add_opt(common_arg(
|
||||
{"-dt", "--defrag-thold"}, "N",
|
||||
string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
|
||||
string_format("KV cache defragmentation threshold (DEPRECATED)"),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.defrag_thold = std::stof(value);
|
||||
GGML_UNUSED(params);
|
||||
GGML_UNUSED(value);
|
||||
LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
|
||||
}
|
||||
).set_env("LLAMA_ARG_DEFRAG_THOLD"));
|
||||
add_opt(common_arg(
|
||||
|
|
|
@ -1152,7 +1152,6 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
|||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.pooling_type = params.pooling_type;
|
||||
cparams.attention_type = params.attention_type;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.cb_eval = params.cb_eval;
|
||||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
|
|
@ -288,7 +288,6 @@ struct common_params {
|
|||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
// offload params
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
"
|
||||
" start the llama.cpp server with a FIM-compatible model. for example:
|
||||
"
|
||||
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
||||
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
||||
"
|
||||
" --batch-size [512, model max context]
|
||||
"
|
||||
|
|
|
@ -312,7 +312,7 @@ extern "C" {
|
|||
float yarn_beta_fast; // YaRN low correction dim
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
float defrag_thold; // defragment the KV cache if holes/size > thold, <= 0 disabled (default)
|
||||
float defrag_thold; // [DEPRECATED] defragment the KV cache if holes/size > thold, <= 0 disabled (default)
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval;
|
||||
void * cb_eval_user_data;
|
||||
|
|
|
@ -28,7 +28,6 @@ LLAMA_BENCH_DB_FIELDS = [
|
|||
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
||||
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
||||
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
|
||||
"defrag_thold",
|
||||
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
|
||||
"test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
|
||||
]
|
||||
|
|
|
@ -39,7 +39,6 @@ llama_context::llama_context(
|
|||
cparams.yarn_attn_factor = params.yarn_attn_factor;
|
||||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||||
cparams.defrag_thold = params.defrag_thold;
|
||||
cparams.embeddings = params.embeddings;
|
||||
cparams.offload_kqv = params.offload_kqv;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
@ -978,7 +977,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
|||
|
||||
bool did_optimize = false;
|
||||
|
||||
// handle any pending defrags/shifts
|
||||
// handle any pending shifts/copies
|
||||
memory_update(false);
|
||||
|
||||
llama_memory_context_ptr mctx;
|
||||
|
|
|
@ -24,7 +24,6 @@ struct llama_cparams {
|
|||
float yarn_attn_factor;
|
||||
float yarn_beta_fast;
|
||||
float yarn_beta_slow;
|
||||
float defrag_thold;
|
||||
|
||||
bool embeddings;
|
||||
bool causal_attn;
|
||||
|
|
|
@ -525,39 +525,11 @@ llama_memory_context_ptr llama_kv_cache::init_full() {
|
|||
}
|
||||
|
||||
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
|
||||
GGML_UNUSED(optimize);
|
||||
|
||||
bool do_shift = get_has_shift();
|
||||
|
||||
defrag_info dinfo;
|
||||
|
||||
// see if we need to defrag
|
||||
if (n_stream == 1) {
|
||||
// note : for now do not consider defrag for n_stream > 1
|
||||
const auto & cells = v_cells[seq_to_stream[0]];
|
||||
|
||||
bool do_defrag = optimize;
|
||||
|
||||
const auto thold = lctx->get_cparams().defrag_thold;
|
||||
|
||||
if (!do_defrag && thold > 0.0f) {
|
||||
const auto n_kv = cells.used_max_p1();
|
||||
|
||||
// - do not defrag small contexts (i.e. < 2048 tokens)
|
||||
// - count the padding towards the number of used tokens
|
||||
const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f;
|
||||
|
||||
if (fragmentation > thold) {
|
||||
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
||||
|
||||
do_defrag = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (do_defrag) {
|
||||
dinfo = defrag_prepare(lctx->graph_max_nodes());
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(dinfo), std::move(sc_info));
|
||||
return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
|
||||
}
|
||||
|
||||
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
|
||||
|
@ -629,7 +601,7 @@ llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_
|
|||
return res;
|
||||
}
|
||||
|
||||
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info) {
|
||||
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
|
||||
bool updated = false;
|
||||
|
||||
auto * sched = lctx->get_sched();
|
||||
|
@ -699,53 +671,6 @@ bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const defrag_in
|
|||
}
|
||||
}
|
||||
|
||||
if (!dinfo.empty()) {
|
||||
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
||||
|
||||
// note: for now do not consider defrag for n_stream > 1
|
||||
auto & cells = v_cells[seq_to_stream[0]];
|
||||
auto & head = v_heads[seq_to_stream[0]];
|
||||
|
||||
// apply moves:
|
||||
{
|
||||
const auto n_kv = dinfo.ids.size();
|
||||
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
assert(dinfo.ids[i] <= n_kv);
|
||||
|
||||
if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) {
|
||||
continue;
|
||||
}
|
||||
|
||||
cells.mv(i, dinfo.ids[i]);
|
||||
}
|
||||
|
||||
// reset the head so we can find the first free slot during the next ubatch
|
||||
head = 0;
|
||||
}
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
auto * res = lctx->get_gf_res_reserve();
|
||||
|
||||
res->reset();
|
||||
|
||||
auto * gf = build_graph_defrag(res, lctx, dinfo);
|
||||
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__);
|
||||
return updated;
|
||||
}
|
||||
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
|
||||
LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__);
|
||||
return updated;
|
||||
}
|
||||
|
||||
updated = true;
|
||||
}
|
||||
|
||||
return updated;
|
||||
}
|
||||
|
||||
|
@ -1525,283 +1450,6 @@ ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_co
|
|||
return gf;
|
||||
}
|
||||
|
||||
ggml_cgraph * llama_kv_cache::build_graph_defrag(
|
||||
llm_graph_result * res,
|
||||
llama_context * lctx,
|
||||
const defrag_info & dinfo) const {
|
||||
auto * ctx = res->get_ctx();
|
||||
auto * gf = res->get_gf();
|
||||
|
||||
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
|
||||
|
||||
const auto & cells = v_cells[0];
|
||||
|
||||
const auto & ids = dinfo.ids;
|
||||
|
||||
const auto & cparams = lctx->get_cparams();
|
||||
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
// TODO: optimizations are possible:
|
||||
// - multiple threads
|
||||
// - avoid copying to the host memory when already there
|
||||
//
|
||||
// likely not worth the effort, as we have ggml_graph based defrag
|
||||
//
|
||||
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
const uint32_t kv_size = size;
|
||||
|
||||
std::vector<uint8_t> buf_k;
|
||||
std::vector<uint8_t> buf_v;
|
||||
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
||||
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
||||
|
||||
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
||||
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
||||
|
||||
buf_k.resize(k_size);
|
||||
buf_v.resize(v_size);
|
||||
|
||||
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
|
||||
// batch move [i, i+nm) to [id, id+nm)
|
||||
// note: cells can move only to a lower index
|
||||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
// move keys
|
||||
{
|
||||
const int64_t os = i*k_size_row;
|
||||
const int64_t od = id*k_size_row;
|
||||
|
||||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
||||
}
|
||||
|
||||
// move values (note: they are transposed)
|
||||
{
|
||||
const int64_t os = i;
|
||||
const int64_t od = id;
|
||||
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
||||
}
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
const uint32_t id = ids[i];
|
||||
|
||||
if (i == id || id == ids.size()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t nm = 1;
|
||||
|
||||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||||
nm++;
|
||||
}
|
||||
|
||||
for (const auto & layer : layers) {
|
||||
const uint32_t il = layer.il;
|
||||
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
|
||||
ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(layer.k->type, n_embd_k_gqa),
|
||||
ggml_row_size(layer.k->type, n_embd_k_gqa*i));
|
||||
|
||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
|
||||
n_embd_k_gqa, nm,
|
||||
ggml_row_size(layer.k->type, n_embd_k_gqa),
|
||||
ggml_row_size(layer.k->type, n_embd_k_gqa*id));
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
|
||||
if (cparams.flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx, layer.v,
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(layer.v->type, n_embd_v_gqa),
|
||||
ggml_row_size(layer.v->type, n_embd_v_gqa*i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx, layer.v,
|
||||
n_embd_v_gqa, nm,
|
||||
ggml_row_size(layer.v->type, n_embd_v_gqa),
|
||||
ggml_row_size(layer.v->type, n_embd_v_gqa*id));
|
||||
} else {
|
||||
view_v_src = ggml_view_2d(ctx, layer.v,
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(layer.v->type, cells.size()),
|
||||
ggml_row_size(layer.v->type, i));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx, layer.v,
|
||||
nm, n_embd_v_gqa,
|
||||
ggml_row_size(layer.v->type, cells.size()),
|
||||
ggml_row_size(layer.v->type, id));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
|
||||
}
|
||||
|
||||
i += nm - 1;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
#endif
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
llama_kv_cache::defrag_info llama_kv_cache::defrag_prepare(int32_t n_max_nodes) const {
|
||||
GGML_ASSERT(n_stream == 1 && "n_stream > 1 does not support defrag");
|
||||
|
||||
const auto & cells = v_cells[0];
|
||||
|
||||
const uint32_t n_layer = layers.size();
|
||||
|
||||
const uint32_t n_kv = cells.used_max_p1();
|
||||
const uint32_t n_used = cells.get_used();
|
||||
|
||||
assert(n_used <= n_kv);
|
||||
|
||||
//const int64_t t_start = ggml_time_us();
|
||||
|
||||
// number of cells moved
|
||||
uint32_t n_moves = 0;
|
||||
|
||||
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
|
||||
// - source view, destination view, copy operation
|
||||
// - x2 for keys and values
|
||||
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
||||
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||||
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
||||
|
||||
// determine which KV cells to move where
|
||||
defrag_info res;
|
||||
auto & ids = res.ids;
|
||||
|
||||
ids.resize(n_kv, n_kv);
|
||||
|
||||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||||
if (!cells.is_empty(i0)) {
|
||||
ids[i0] = i0;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// found a hole - fill it with data from the end of the cache
|
||||
|
||||
uint32_t nh = 1;
|
||||
|
||||
// determine the size of the hole
|
||||
while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
|
||||
nh++;
|
||||
}
|
||||
|
||||
uint32_t nf = 0;
|
||||
uint32_t is = n_kv - 1;
|
||||
|
||||
// starting from the end, find nh non-empty cells
|
||||
for (; is > i0; --is) {
|
||||
if (cells.is_empty(is) || ids[is] != n_kv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// non-empty cell which is not yet moved
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// this can only happen if `n_used` is not accurate, which would be a bug
|
||||
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
|
||||
|
||||
nf = 0;
|
||||
|
||||
uint32_t i1 = is;
|
||||
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
// should we stop searching for the next move?
|
||||
bool stop = false;
|
||||
|
||||
// go back and move the nf cells to the hole
|
||||
for (; i1 < n_kv; ++i1) {
|
||||
if (cells.is_empty(i1) || ids[i1] != n_kv) {
|
||||
if (n_moves == max_moves) {
|
||||
stop = true;
|
||||
break;
|
||||
}
|
||||
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
// this cell goes to (i0 + nf)
|
||||
ids[i1] = i0 + nf;
|
||||
|
||||
if (!cont) {
|
||||
n_moves++;
|
||||
cont = true;
|
||||
}
|
||||
|
||||
nf++;
|
||||
|
||||
if (nf == nh) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (stop || n_moves == max_moves) {
|
||||
break;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
||||
|
||||
i0 += nh - 1;
|
||||
}
|
||||
|
||||
if (n_moves == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
|
||||
assert(p0 >= 0 && p1 >= 0);
|
||||
|
||||
|
@ -2300,9 +1948,8 @@ llama_kv_cache_context::llama_kv_cache_context(
|
|||
llama_kv_cache * kv,
|
||||
llama_context * lctx,
|
||||
bool do_shift,
|
||||
defrag_info dinfo,
|
||||
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)), sc_info(std::move(sc_info)) {
|
||||
if (!do_shift && this->dinfo.empty() && this->sc_info.empty()) {
|
||||
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
|
||||
if (!do_shift && this->sc_info.empty()) {
|
||||
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
|
||||
}
|
||||
}
|
||||
|
@ -2330,7 +1977,7 @@ bool llama_kv_cache_context::apply() {
|
|||
|
||||
// no ubatches -> this is a KV cache update
|
||||
if (ubatches.empty()) {
|
||||
kv->update(lctx, do_shift, dinfo, sc_info);
|
||||
kv->update(lctx, do_shift, sc_info);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -24,17 +24,6 @@ public:
|
|||
// this callback is used to filter out layers that should not be included in the cache
|
||||
using layer_filter_cb = std::function<bool(int32_t il)>;
|
||||
|
||||
struct defrag_info {
|
||||
bool empty() const {
|
||||
return ids.empty();
|
||||
}
|
||||
|
||||
// contains information about which cell moves where:
|
||||
// - cell i moves to ids[i]
|
||||
// - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved
|
||||
std::vector<uint32_t> ids;
|
||||
};
|
||||
|
||||
struct stream_copy_info {
|
||||
bool empty() const {
|
||||
assert(ssrc.size() == sdst.size());
|
||||
|
@ -173,7 +162,7 @@ public:
|
|||
// return empty vector on failure
|
||||
slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches);
|
||||
|
||||
bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info);
|
||||
bool update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info);
|
||||
|
||||
// find a slot of kv cells that can hold the ubatch
|
||||
// if cont == true, then the slot must be continuous
|
||||
|
@ -254,9 +243,6 @@ private:
|
|||
// model layer id -> KV cache layer id
|
||||
std::unordered_map<int32_t, int32_t> map_layer_ids;
|
||||
|
||||
// return non-empty vector if cells have been moved
|
||||
defrag_info defrag_prepare(int32_t n_max_nodes) const;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
size_t size_k_bytes() const;
|
||||
|
@ -277,11 +263,6 @@ private:
|
|||
llm_graph_result * res,
|
||||
llama_context * lctx) const;
|
||||
|
||||
ggml_cgraph * build_graph_defrag(
|
||||
llm_graph_result * res,
|
||||
llama_context * lctx,
|
||||
const defrag_info & dinfo) const;
|
||||
|
||||
struct cell_ranges_t {
|
||||
uint32_t strm;
|
||||
|
||||
|
@ -299,7 +280,6 @@ class llama_kv_cache_context : public llama_memory_context_i {
|
|||
public:
|
||||
// some shorthands
|
||||
using slot_info_vec_t = llama_kv_cache::slot_info_vec_t;
|
||||
using defrag_info = llama_kv_cache::defrag_info;
|
||||
using stream_copy_info = llama_kv_cache::stream_copy_info;
|
||||
|
||||
// used for errors
|
||||
|
@ -314,7 +294,6 @@ public:
|
|||
llama_kv_cache * kv,
|
||||
llama_context * lctx,
|
||||
bool do_shift,
|
||||
defrag_info dinfo,
|
||||
stream_copy_info sc_info);
|
||||
|
||||
// used to create a batch procesing context from a batch
|
||||
|
@ -374,8 +353,6 @@ private:
|
|||
|
||||
bool do_shift = false;
|
||||
|
||||
defrag_info dinfo;
|
||||
|
||||
stream_copy_info sc_info;
|
||||
|
||||
//
|
||||
|
|
|
@ -77,24 +77,24 @@ public:
|
|||
}
|
||||
|
||||
// move cell isrc to idst (used during defrag)
|
||||
void mv(uint32_t isrc, uint32_t idst) {
|
||||
assert(isrc < pos.size());
|
||||
assert(idst < pos.size());
|
||||
//void mv(uint32_t isrc, uint32_t idst) {
|
||||
// assert(isrc < pos.size());
|
||||
// assert(idst < pos.size());
|
||||
|
||||
assert(pos[idst] == -1);
|
||||
assert(pos[isrc] != -1);
|
||||
// assert(pos[idst] == -1);
|
||||
// assert(pos[isrc] != -1);
|
||||
|
||||
pos [idst] = pos [isrc];
|
||||
shift[idst] = shift[isrc];
|
||||
seq [idst] = seq [isrc];
|
||||
// pos [idst] = pos [isrc];
|
||||
// shift[idst] = shift[isrc];
|
||||
// seq [idst] = seq [isrc];
|
||||
|
||||
pos [isrc] = -1;
|
||||
shift[isrc] = 0;
|
||||
seq [isrc].reset();
|
||||
// pos [isrc] = -1;
|
||||
// shift[isrc] = 0;
|
||||
// seq [isrc].reset();
|
||||
|
||||
used.erase (isrc);
|
||||
used.insert(idst);
|
||||
}
|
||||
// used.erase (isrc);
|
||||
// used.insert(idst);
|
||||
//}
|
||||
|
||||
// copy the state of cells [i, i + n) (used for save/restore the state of the cells)
|
||||
llama_kv_cells cp(uint32_t i, uint32_t n) const {
|
||||
|
|
|
@ -77,7 +77,7 @@ struct llama_memory_i {
|
|||
// simulate full cache, used for allocating worst-case compute buffers
|
||||
virtual llama_memory_context_ptr init_full() = 0;
|
||||
|
||||
// prepare for any pending memory updates, such as shifts, defrags, etc.
|
||||
// prepare for any pending memory updates, such as shifts, copies, etc.
|
||||
// status == LLAMA_MEMORY_STATUS_NO_UPDATE if there is nothing to update
|
||||
virtual llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) = 0;
|
||||
|
||||
|
|
|
@ -43,7 +43,6 @@ test parameters:
|
|||
-ub, --ubatch-size <n> (default: 512)
|
||||
-ctk, --cache-type-k <t> (default: f16)
|
||||
-ctv, --cache-type-v <t> (default: f16)
|
||||
-dt, --defrag-thold <f> (default: -1)
|
||||
-t, --threads <n> (default: system dependent)
|
||||
-C, --cpu-mask <hex,hex> (default: 0x0)
|
||||
--cpu-strict <0|1> (default: 0)
|
||||
|
|
|
@ -245,7 +245,6 @@ struct cmd_params {
|
|||
std::vector<int> n_ubatch;
|
||||
std::vector<ggml_type> type_k;
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<float> defrag_thold;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<std::string> cpu_mask;
|
||||
std::vector<bool> cpu_strict;
|
||||
|
@ -282,7 +281,6 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* n_ubatch */ { 512 },
|
||||
/* type_k */ { GGML_TYPE_F16 },
|
||||
/* type_v */ { GGML_TYPE_F16 },
|
||||
/* defrag_thold */ { -1.0f },
|
||||
/* n_threads */ { cpu_get_num_math() },
|
||||
/* cpu_mask */ { "0x0" },
|
||||
/* cpu_strict */ { false },
|
||||
|
@ -346,8 +344,6 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
|
||||
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -dt, --defrag-thold <f> (default: %s)\n",
|
||||
join(cmd_params_defaults.defrag_thold, ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n",
|
||||
join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
|
||||
|
@ -533,13 +529,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
break;
|
||||
}
|
||||
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
|
||||
} else if (arg == "-dt" || arg == "--defrag-thold") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = string_split<float>(argv[i], split_delim);
|
||||
params.defrag_thold.insert(params.defrag_thold.end(), p.begin(), p.end());
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -849,9 +838,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
if (params.type_v.empty()) {
|
||||
params.type_v = cmd_params_defaults.type_v;
|
||||
}
|
||||
if (params.defrag_thold.empty()) {
|
||||
params.defrag_thold = cmd_params_defaults.defrag_thold;
|
||||
}
|
||||
if (params.n_gpu_layers.empty()) {
|
||||
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
|
||||
}
|
||||
|
@ -910,7 +896,6 @@ struct cmd_params_instance {
|
|||
int n_ubatch;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
float defrag_thold;
|
||||
int n_threads;
|
||||
std::string cpu_mask;
|
||||
bool cpu_strict;
|
||||
|
@ -1007,7 +992,6 @@ struct cmd_params_instance {
|
|||
cparams.n_ubatch = n_ubatch;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.defrag_thold = defrag_thold;
|
||||
cparams.offload_kqv = !no_kv_offload;
|
||||
cparams.flash_attn = flash_attn;
|
||||
cparams.embeddings = embeddings;
|
||||
|
@ -1037,7 +1021,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
for (const auto & nub : params.n_ubatch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & defrag_thold : params.defrag_thold)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
for (const auto & fa : params.flash_attn)
|
||||
for (const auto & nt : params.n_threads)
|
||||
|
@ -1058,7 +1041,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .defrag_thold = */ defrag_thold,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
|
@ -1091,7 +1073,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .defrag_thold = */ defrag_thold,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
|
@ -1124,7 +1105,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .defrag_thold = */ defrag_thold,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
|
@ -1166,7 +1146,6 @@ struct test {
|
|||
int poll;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
float defrag_thold;
|
||||
int n_gpu_layers;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
|
@ -1201,7 +1180,6 @@ struct test {
|
|||
poll = inst.poll;
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
defrag_thold = inst.defrag_thold;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
split_mode = inst.split_mode;
|
||||
main_gpu = inst.main_gpu;
|
||||
|
@ -1257,7 +1235,6 @@ struct test {
|
|||
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
|
||||
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
|
||||
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
|
||||
"defrag_thold",
|
||||
"use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
|
||||
"avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
|
||||
};
|
||||
|
@ -1277,7 +1254,7 @@ struct test {
|
|||
field == "use_mmap" || field == "embeddings") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts" || field == "defrag_thold") {
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
return FLOAT;
|
||||
}
|
||||
return STRING;
|
||||
|
@ -1344,7 +1321,6 @@ struct test {
|
|||
std::to_string(flash_attn),
|
||||
tensor_split_str,
|
||||
tensor_buft_overrides_str,
|
||||
std::to_string(defrag_thold),
|
||||
std::to_string(use_mmap),
|
||||
std::to_string(embeddings),
|
||||
std::to_string(no_op_offload),
|
||||
|
@ -1611,9 +1587,6 @@ struct markdown_printer : public printer {
|
|||
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
|
||||
fields.emplace_back("type_v");
|
||||
}
|
||||
if (params.defrag_thold.size() > 1 || params.defrag_thold != cmd_params_defaults.defrag_thold) {
|
||||
fields.emplace_back("defrag_thold");
|
||||
}
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.emplace_back("main_gpu");
|
||||
}
|
||||
|
|
|
@ -66,7 +66,7 @@ The project is under active development, and we are [looking for feedback and co
|
|||
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
|
||||
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
|
||||
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (DEPRECATED)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
|
||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
||||
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
|
||||
|
|
|
@ -274,7 +274,6 @@ def start_server_background(args):
|
|||
server_args.extend(['--batch-size', args.batch_size])
|
||||
server_args.extend(['--ubatch-size', args.ubatch_size])
|
||||
server_args.extend(['--n-predict', args.max_tokens * 2])
|
||||
server_args.extend(['--defrag-thold', "0.1"])
|
||||
server_args.append('--cont-batching')
|
||||
server_args.append('--metrics')
|
||||
server_args.append('--flash-attn')
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue