Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/build.yml
#	CMakeLists.txt
#	Makefile
#	ggml-metal.m
This commit is contained in:
Concedo 2024-03-15 10:37:48 +08:00
commit 93d3871056
22 changed files with 341 additions and 198 deletions

126
llama.cpp
View file

@ -282,6 +282,7 @@ enum llm_kv {
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_BLOCK_COUNT,
@ -345,6 +346,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
@ -3288,10 +3290,11 @@ static const char * llama_model_type_name(e_model type) {
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
switch (type) {
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
default: return "unknown";
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
default: return "unknown";
}
}
@ -3323,14 +3326,14 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
// get hparams kv
ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
@ -3692,30 +3695,25 @@ static void llm_load_vocab(
const auto kv = LLM_KV(model.arch);
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
if (token_idx == -1) {
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
}
const float * scores = nullptr;
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
if (score_idx != -1) {
scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
}
const int * toktypes = nullptr;
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
if (toktype_idx != -1) {
toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
}
// determine vocab type
{
std::string tokenizer_name;
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
if (tokenizer_name == "llama") {
if (tokenizer_name == "no_vocab") {
vocab.type = LLAMA_VOCAB_TYPE_NONE;
// default special tokens
vocab.special_bos_id = -1;
vocab.special_eos_id = -1;
vocab.special_unk_id = -1;
vocab.special_sep_id = -1;
vocab.special_pad_id = -1;
vocab.linefeed_id = -1;
return;
} else if (tokenizer_name == "llama") {
vocab.type = LLAMA_VOCAB_TYPE_SPM;
// default special tokens
@ -3790,6 +3788,23 @@ static void llm_load_vocab(
}
}
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
if (token_idx == -1) {
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
}
const float * scores = nullptr;
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
if (score_idx != -1) {
scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
}
const int * toktypes = nullptr;
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
if (toktype_idx != -1) {
toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
}
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
vocab.id_to_token.resize(n_vocab);
@ -3997,7 +4012,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
LLAMA_LOG_INFO("%s: causal attm = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
@ -5095,7 +5110,8 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
llm_load_print_meta(ml, model);
if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
throw std::runtime_error("vocab size mismatch");
}
@ -9108,8 +9124,8 @@ static int llama_decode_internal(
//llama_synchronize(&lctx);
// decide if we need to defrag the kv cache
if (cparams.defrag_thold >= 0.0f) {
const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used + n_tokens_all)/float(kv_self.n) : 0.0f;
if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > cparams.defrag_thold) {
@ -9141,6 +9157,11 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see build_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
// determine which KV cells to move where
//
// cell i moves to ids[i]
@ -9167,15 +9188,6 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
nh++;
}
// each move requires 6*n_layer tensors (see build_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//
if (6*(n_moves + nh)*n_layer >= LLAMA_MAX_NODES) {
// the graph is too big, we cannot move more cells
break;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
@ -9205,11 +9217,19 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
auto & cell1 = kv_self.cells[i1];
if (cell1.is_empty() || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
@ -9236,6 +9256,10 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
@ -9425,26 +9449,32 @@ static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
}
static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
}
static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
}
static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
}
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
}
static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
}
static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
GGML_ASSERT(llama_is_byte_token(vocab, id));
const auto& token_data = vocab.id_to_token.at(id);
switch (llama_vocab_get_type(vocab)) {
@ -9466,6 +9496,7 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
}
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
static const char * hex = "0123456789ABCDEF";
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM: {
@ -10527,6 +10558,8 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
}
}
} break;
case LLAMA_VOCAB_TYPE_NONE:
GGML_ASSERT(false);
}
return output;
@ -12261,7 +12294,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
return new_type;
}
static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
std::mutex mutex;
int counter = 0;
size_t new_size = 0;
@ -13437,7 +13470,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
}
int32_t llama_n_vocab(const struct llama_model * model) {
return model->vocab.id_to_token.size();
return model->hparams.n_vocab;
}
int32_t llama_n_ctx_train(const struct llama_model * model) {
@ -14271,14 +14304,17 @@ float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id
}
const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
return model->vocab.id_to_token[token].text.c_str();
}
float llama_token_get_score(const struct llama_model * model, llama_token token) {
GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
return model->vocab.id_to_token[token].score;
}
llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
return model->vocab.id_to_token[token].type;
}