added prefix for llava, reverted system role in template as it degreaded gemma3. truncated debug logs

This commit is contained in:
Concedo 2025-04-05 18:06:41 +08:00
parent b3143384b4
commit 93a226d9e4
3 changed files with 54 additions and 24 deletions

View file

@ -2796,11 +2796,12 @@ int GetThreadsToUse(bool blasmode)
}
//this function prepares the clip embds for llava. it's only needed when images change
static void PrepareLlavaEmbds(const int nctx, const std::vector<int> & llava_sep)
static void PrepareLlavaEmbds(const int nctx, const std::vector<int> & llava_sep, const std::vector<int> & llava_intro)
{
if(clp_ctx!=nullptr && clp_img_data!=nullptr)
{
int sepsize = llava_sep.size();
int introsize = llava_intro.size();
last_llava_mem.clear();
for(int i=0;i<llava_images.size();++i)
@ -2829,6 +2830,10 @@ static void PrepareLlavaEmbds(const int nctx, const std::vector<int> & llava_sep
if(llava_images[i].clp_image_tokens>0 && llava_images[i].clp_image_tokens < nctx)
{
int tokcnt = (i==0?(llava_images[i].clp_image_tokens):(llava_images[i].clp_image_tokens+sepsize));
if(i==0)
{
tokcnt += introsize;
}
for(int n=0;n<tokcnt;++n)
{
last_llava_mem.push_back(current_llava_identifier);
@ -3144,6 +3149,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
std::vector<int> embd_inp;
std::vector<int> embd_inp_mem; //for storing added memory
std::vector<int> llava_sep; //to separate between different llava images
std::vector<int> llava_intro; //to separate between different llava images
bool llava_embds_built = false;
int32_t nctx = kcpp_data->n_ctx;
@ -3151,6 +3157,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
TokenizeString(kcpp_data->prompt, embd_inp, file_format, add_bos_token);
bool use_mrope = (file_format == FileFormat::GGUF_GENERIC && file_format_meta.model_architecture == GGUFArch::ARCH_QWEN2VL);
TokenizeString("\n\n", llava_sep, file_format, false);
TokenizeString("\nImages:\n", llava_intro, file_format, false);
if(llava_composite_image_signature=="")
{
@ -3158,7 +3165,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
}
if(llava_images_changed)
{
PrepareLlavaEmbds(nctx, llava_sep);
PrepareLlavaEmbds(nctx, llava_sep, llava_intro);
llava_embds_built = true;
}
@ -3872,7 +3879,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
{
if(!llava_embds_built) //this should never happen! however, handle it anyway
{
PrepareLlavaEmbds(nctx, llava_sep);
PrepareLlavaEmbds(nctx, llava_sep, llava_intro);
llava_embds_built = true;
printf("\nSomehow vision embd was not prepared (maybe no fast forward), rebuilding it...\n");
}
@ -3888,6 +3895,7 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
int llavatokenscounted = 0;
int llavatokensevaled = 0;
int sepsize = llava_sep.size();
int introsize = llava_intro.size();
while(input_consumed < embd_inp.size() && (embd_inp[input_consumed]==LLAVA_TOKEN_IDENTIFIER_A || embd_inp[input_consumed]==LLAVA_TOKEN_IDENTIFIER_B))
{
if (!last_n_tokens.empty())
@ -3902,7 +3910,23 @@ generation_outputs gpttype_generate(const generation_inputs inputs)
for(int i=0;i<llava_images.size();++i)
{
//note: no handling for draft_ctx as we don't support vision for it
if(i>0 && sepsize>0)
if(introsize>0 && i==0)
{
//added at the start of everything
kcpp_embd_batch batch = kcpp_embd_batch(llava_intro, n_past, use_mrope, false);
auto evr = llama_decode(llama_ctx_v4, batch.batch);
if(evr!=0)
{
printf("\nError when appending llava intro: %d\n",evr);
}
else
{
printf("\rProcessing LLaVa Intro (%d tokens)",introsize);
}
n_past += introsize;
llavatokensevaled += introsize;
}
if(sepsize>0 && i>0)
{
//add a separator between each image
kcpp_embd_batch batch = kcpp_embd_batch(llava_sep, n_past, use_mrope, false);

View file

@ -38,8 +38,6 @@
"search": ["System role not supported", "<start_of_turn>"],
"name": "Google Gemma 2.",
"adapter": {
"system_start": "<start_of_turn>user\n",
"system_end": "<end_of_turn>\n",
"user_start": "<start_of_turn>user\n",
"user_end": "<end_of_turn>\n",
"assistant_start": "<start_of_turn>model\n",
@ -49,8 +47,6 @@
"search": ["<start_of_image>", "<start_of_turn>", "<end_of_turn>"],
"name": "Google Gemma 3.",
"adapter": {
"system_start": "<start_of_turn>user\n",
"system_end": "<end_of_turn>\n",
"user_start": "<start_of_turn>user\n",
"user_end": "<end_of_turn>\n",
"assistant_start": "<start_of_turn>model\n",

View file

@ -49,7 +49,7 @@ logit_bias_max = 512
dry_seq_break_max = 128
# global vars
KcppVersion = "1.87.3"
KcppVersion = "1.87.4"
showdebug = True
kcpp_instance = None #global running instance
global_memory = {"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False}
@ -720,6 +720,22 @@ def string_contains_or_overlaps_sequence_substring(inputstr, sequences):
return True
return False
def truncate_long_json(data, max_length):
if isinstance(data, dict):
new_data = {}
for key, value in data.items():
if isinstance(value, str):
new_data[key] = value[:max_length] + "..." if len(value) > max_length else value
else:
new_data[key] = truncate_long_json(value, max_length)
return new_data
elif isinstance(data, list):
return [truncate_long_json(item, max_length) for item in data]
elif isinstance(data, str):
return data[:max_length] + "..." if len(data) > max_length else data
else:
return data
def get_capabilities():
global savedata_obj, has_multiplayer, KcppVersion, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath, ttsmodelpath, embeddingsmodelpath
has_llm = not (friendlymodelname=="inactive")
@ -2745,11 +2761,11 @@ Enter Prompt:<br>
body = None
if contlenstr:
content_length = int(contlenstr)
if content_length > (1024*1024*32): #32mb payload limit
if content_length > (1024*1024*48): #48mb payload limit
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Payload is too big. Max payload size is 32MB.",
"msg": "Payload is too big. Max payload size is 48MB.",
"type": "bad_input",
}}).encode())
return
@ -2765,11 +2781,11 @@ Enter Prompt:<br>
if line:
chunk_length = max(0,int(line, 16))
content_length += chunk_length
if not line or chunklimit > 512 or content_length > (1024*1024*32): #32mb payload limit
if not line or chunklimit > 512 or content_length > (1024*1024*48): #48mb payload limit
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Payload is too big. Max payload size is 32MB.",
"msg": "Payload is too big. Max payload size is 48MB.",
"type": "bad_input",
}}).encode())
return
@ -3178,17 +3194,11 @@ Enter Prompt:<br>
}}).encode())
return
tmpimgs = genparams.get("images", []) # reduce amount of text printed to terminal when dumping large images
if tmpimgs and isinstance(tmpimgs, (list, tuple)) and len(tmpimgs)>0:
printablegenparams = copy.deepcopy(genparams)
outarr = []
for img in tmpimgs:
outarr.append(str(img[:512])+"...")
printablegenparams["images"] = outarr
trunc_len = 8000
if args.debugmode >= 1:
trunc_len = 16000
printablegenparams = truncate_long_json(genparams,trunc_len)
utfprint("\nInput: " + json.dumps(printablegenparams),1)
else:
utfprint("\nInput: " + json.dumps(genparams),1)
if args.foreground:
bring_terminal_to_foreground()