mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
llama : Add support for DeepSeek V3 (#11049)
* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type * vocab : add DeepSeek V3 pre-tokenizer regexes * unicode : handle ACCENT_MARK and SYMBOL categories in regex * llama : add DeepSeek V3 chat template, handle new model parameters and tensor types --------- Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
This commit is contained in:
parent
f922a9c542
commit
9394bbd484
16 changed files with 162 additions and 5 deletions
|
@ -1857,6 +1857,7 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
} else {
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
||||
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (n_expert == 0) {
|
||||
throw std::runtime_error("n_expert must be > 0");
|
||||
|
@ -2837,12 +2838,14 @@ static struct ggml_tensor * llm_build_moe_ffn(
|
|||
struct ggml_tensor * up_exps,
|
||||
struct ggml_tensor * gate_exps,
|
||||
struct ggml_tensor * down_exps,
|
||||
struct ggml_tensor * exp_probs_b,
|
||||
int64_t n_expert,
|
||||
int64_t n_expert_used,
|
||||
llm_ffn_op_type type_op,
|
||||
bool norm_w,
|
||||
bool scale_w,
|
||||
float w_scale,
|
||||
llama_expert_gating_func_type gating_op,
|
||||
const llm_build_cb & cb,
|
||||
int il) {
|
||||
int64_t n_embd = cur->ne[0];
|
||||
|
@ -2851,11 +2854,31 @@ static struct ggml_tensor * llm_build_moe_ffn(
|
|||
ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
|
||||
cb(logits, "ffn_moe_logits", il);
|
||||
|
||||
ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
|
||||
ggml_tensor * probs = nullptr;
|
||||
switch (gating_op) {
|
||||
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
|
||||
{
|
||||
probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
|
||||
} break;
|
||||
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
|
||||
{
|
||||
probs = ggml_sigmoid(ctx, logits); // [n_expert, n_tokens]
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
cb(probs, "ffn_moe_probs", il);
|
||||
|
||||
// add experts selection bias - introduced in DeepSeek V3
|
||||
// leave probs unbiased as it's later used to get expert weights
|
||||
ggml_tensor * selection_probs = probs;
|
||||
if (exp_probs_b != nullptr) {
|
||||
selection_probs = ggml_add(ctx, probs, exp_probs_b);
|
||||
cb(selection_probs, "ffn_moe_probs_biased", il);
|
||||
}
|
||||
|
||||
// select experts
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
ggml_tensor * selected_experts = ggml_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||
cb(selected_experts, "ffn_moe_topk", il);
|
||||
|
||||
|
@ -3976,9 +3999,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
@ -4628,9 +4653,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_GELU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
|
@ -4769,9 +4796,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
|
@ -6017,9 +6046,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
|
@ -8142,9 +8173,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
|
@ -8539,9 +8572,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
|
||||
|
@ -8680,9 +8715,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
false, hparams.expert_weights_scale,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
cb, il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
|
@ -8909,9 +8946,11 @@ struct llm_build_context {
|
|||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
LLM_FFN_SILU, hparams.expert_weights_norm,
|
||||
true, hparams.expert_weights_scale,
|
||||
(enum llama_expert_gating_func_type) hparams.expert_gating_func,
|
||||
cb, il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue