mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-12 01:54:37 +00:00
Merge branch 'upstream' into concedo_experimental
# Conflicts: # .github/labeler.yml # .github/workflows/server.yml # .gitignore # CMakeLists.txt # Makefile # README-sycl.md # README.md # llama.cpp # requirements/requirements-convert-hf-to-gguf-update.txt # requirements/requirements-convert-hf-to-gguf.txt # requirements/requirements-convert-legacy-llama.txt # scripts/sync-ggml.last # tests/test-tokenizer-random.py
This commit is contained in:
commit
92afdfcae4
44 changed files with 10304 additions and 8631 deletions
533
llama.cpp
533
llama.cpp
|
@ -2321,6 +2321,8 @@ struct llama_vocab {
|
|||
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
||||
enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
||||
int max_token_len = 0; // used for optimizing longest token search
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
|
||||
|
@ -2338,21 +2340,23 @@ struct llama_vocab {
|
|||
id special_cls_id = -1;
|
||||
id special_mask_id = -1;
|
||||
|
||||
int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
|
||||
|
||||
id linefeed_id = 13;
|
||||
id special_prefix_id = -1;
|
||||
id special_suffix_id = -1;
|
||||
id special_middle_id = -1;
|
||||
id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
|
||||
|
||||
bool add_space_prefix = true;
|
||||
// tokenizer flags
|
||||
bool tokenizer_add_space_prefix = true;
|
||||
bool tokenizer_add_bos = false;
|
||||
bool tokenizer_add_eos = false;
|
||||
bool tokenizer_ignore_merges = false;
|
||||
|
||||
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
||||
// GGML_ASSERT(token_left.find(" ") == std::string::npos);
|
||||
// GGML_ASSERT(token_left.find("\n") == std::string::npos);
|
||||
// GGML_ASSERT(token_right.find(" ") == std::string::npos);
|
||||
// GGML_ASSERT(token_right.find("\n") == std::string::npos);
|
||||
//GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
||||
//GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
||||
//GGML_ASSERT(token_right.find(' ') == std::string::npos);
|
||||
//GGML_ASSERT(token_right.find('\n') == std::string::npos);
|
||||
//the above breaks gguf v1 falcons
|
||||
replace_all(token_left, " ", "\u0120");
|
||||
replace_all(token_left, "\n", "\u010A");
|
||||
|
@ -4823,7 +4827,7 @@ static void llm_load_vocab(
|
|||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
} // The default value of add_space_prefix is true.
|
||||
} else if (tokenizer_model == "bert") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_WPM;
|
||||
|
@ -4836,13 +4840,13 @@ static void llm_load_vocab(
|
|||
vocab.special_pad_id = 0;
|
||||
vocab.special_cls_id = 101;
|
||||
vocab.special_mask_id = 103;
|
||||
vocab.add_space_prefix = false;
|
||||
vocab.tokenizer_add_space_prefix = false;
|
||||
} else if (tokenizer_model == "gpt2") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
||||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
}
|
||||
|
||||
// read bpe merges and populate bpe ranks
|
||||
|
@ -4909,6 +4913,8 @@ static void llm_load_vocab(
|
|||
tokenizer_pre == "llama-v3" ||
|
||||
tokenizer_pre == "llama-bpe") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||||
vocab.tokenizer_ignore_merges = true;
|
||||
vocab.tokenizer_add_bos = true;
|
||||
} else if (
|
||||
tokenizer_pre == "deepseek-llm") {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
||||
|
@ -4959,6 +4965,14 @@ static void llm_load_vocab(
|
|||
} else {
|
||||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
}
|
||||
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
vocab.tokenizer_add_bos = true;
|
||||
vocab.tokenizer_add_eos = false;
|
||||
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
vocab.tokenizer_add_bos = true;
|
||||
vocab.tokenizer_add_eos = false;
|
||||
} else {
|
||||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
}
|
||||
|
@ -4999,6 +5013,7 @@ static void llm_load_vocab(
|
|||
}
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
|
||||
|
||||
auto & token_data = vocab.id_to_token[i];
|
||||
token_data.text = std::move(word);
|
||||
|
@ -5112,10 +5127,10 @@ static void llm_load_vocab(
|
|||
bool temp = true;
|
||||
|
||||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
|
||||
vocab.special_add_bos = int(temp);
|
||||
vocab.tokenizer_add_bos = temp;
|
||||
}
|
||||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
||||
vocab.special_add_eos = int(temp);
|
||||
vocab.tokenizer_add_eos = temp;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -5215,7 +5230,7 @@ static void llm_load_vocab(
|
|||
);
|
||||
|
||||
// set attributes by model/tokenizer name
|
||||
if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
|
||||
if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
|
||||
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
||||
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
||||
for (auto id : vocab.cache_special_tokens) {
|
||||
|
@ -5309,6 +5324,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
|
||||
if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
|
||||
|
||||
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
|
||||
|
||||
if (model.arch == LLM_ARCH_DEEPSEEK2) {
|
||||
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
|
||||
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
|
||||
|
@ -7716,6 +7733,50 @@ struct llm_build_context {
|
|||
return lctx.inp_s_seq;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
|
||||
// find result_norm tensor for input
|
||||
struct ggml_tensor * inp = nullptr;
|
||||
for (int i = gf->n_nodes - 1; i >= 0; --i) {
|
||||
inp = gf->nodes[i];
|
||||
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
||||
break;
|
||||
} else {
|
||||
inp = nullptr;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
switch (pooling_type) {
|
||||
case LLAMA_POOLING_TYPE_MEAN:
|
||||
{
|
||||
struct ggml_tensor * inp_mean = build_inp_mean();
|
||||
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_CLS:
|
||||
case LLAMA_POOLING_TYPE_LAST:
|
||||
{
|
||||
struct ggml_tensor * inp_cls = build_inp_cls();
|
||||
cur = ggml_get_rows(ctx0, inp, inp_cls);
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_NONE:
|
||||
{
|
||||
cur = inp;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false && "unknown pooling type");
|
||||
} break;
|
||||
}
|
||||
|
||||
cb(cur, "result_embd_pooled", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
|
@ -8696,8 +8757,6 @@ struct llm_build_context {
|
|||
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
|
||||
inp_pos = build_inp_pos();
|
||||
}
|
||||
struct ggml_tensor * inp_mean = build_inp_mean();
|
||||
struct ggml_tensor * inp_cls = build_inp_cls();
|
||||
|
||||
// construct input embeddings (token, type, position)
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
@ -8872,28 +8931,6 @@ struct llm_build_context {
|
|||
cur = inpL;
|
||||
cb(cur, "result_embd", -1);
|
||||
|
||||
// pooling layer
|
||||
switch (pooling_type) {
|
||||
case LLAMA_POOLING_TYPE_NONE:
|
||||
{
|
||||
// nop
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_MEAN:
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
|
||||
cb(cur, "result_embd_pooled", -1);
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_CLS:
|
||||
{
|
||||
cur = ggml_get_rows(ctx0, cur, inp_cls);
|
||||
cb(cur, "result_embd_pooled", -1);
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
||||
{
|
||||
GGML_ASSERT(false && "Invalid pooling type");
|
||||
} break;
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
|
@ -11978,6 +12015,11 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
// add on pooling layer
|
||||
if (lctx.cparams.embeddings) {
|
||||
result = llm.append_pooling(result);
|
||||
}
|
||||
|
||||
llm.free();
|
||||
|
||||
return result;
|
||||
|
@ -12067,7 +12109,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||
// (!a || b) is a logical implication (a -> b)
|
||||
// !hparams.causal_attn -> !cparams.causal_attn
|
||||
(hparams.causal_attn || !cparams.causal_attn) &&
|
||||
"causal attention with embedding models is not supported"
|
||||
"causal attention is not supported by this model"
|
||||
);
|
||||
|
||||
if (lctx.inp_KQ_mask) {
|
||||
|
@ -12199,6 +12241,37 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||
}
|
||||
}
|
||||
|
||||
if (cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
GGML_ASSERT(lctx.inp_cls);
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||
|
||||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||||
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||||
|
||||
std::vector<int> last_pos(n_tokens, -1);
|
||||
std::vector<int> last_row(n_tokens, -1);
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const llama_seq_id seq_id = batch.seq_id[i][0];
|
||||
const llama_pos pos = batch.pos[i];
|
||||
|
||||
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
|
||||
|
||||
if (pos >= last_pos[seq_id]) {
|
||||
last_pos[seq_id] = pos;
|
||||
last_row[seq_id] = i;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
if (last_row[i] >= 0) {
|
||||
data[i] = last_row[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (kv_self.recurrent) {
|
||||
const int64_t n_kv = kv_self.n;
|
||||
|
||||
|
@ -12260,8 +12333,8 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
|||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
const bool has_logits = cparams.causal_attn;
|
||||
const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
||||
const bool has_logits = !cparams.embeddings;
|
||||
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
||||
|
||||
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
||||
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
|
||||
|
@ -12391,11 +12464,13 @@ static int llama_decode_internal(
|
|||
std::vector<std::vector<llama_seq_id>> seq_id;
|
||||
|
||||
// count outputs
|
||||
if (batch_all.logits) {
|
||||
if (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE) {
|
||||
n_outputs = n_tokens_all;
|
||||
} else if (batch_all.logits) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
n_outputs += batch_all.logits[i] != 0;
|
||||
}
|
||||
} else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
|
||||
} else if (lctx.logits_all) {
|
||||
n_outputs = n_tokens_all;
|
||||
} else {
|
||||
// keep last output only
|
||||
|
@ -12526,30 +12601,13 @@ static int llama_decode_internal(
|
|||
// no output
|
||||
res = nullptr;
|
||||
embd = nullptr;
|
||||
} else if (!hparams.causal_attn) {
|
||||
res = nullptr; // do not extract logits for embedding models such as BERT
|
||||
|
||||
// token or sequence embeddings
|
||||
embd = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
|
||||
} else if (cparams.embeddings) {
|
||||
// the embeddings could be in the second to last tensor, or any of the previous tensors
|
||||
int i_embd = gf->n_nodes - 2;
|
||||
for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
|
||||
i_embd = gf->n_nodes - i;
|
||||
if (i_embd < 0) { break; }
|
||||
embd = gf->nodes[i_embd];
|
||||
}
|
||||
GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
|
||||
|
||||
// TODO: use a per-batch flag to know when to skip logits while keeping embeddings
|
||||
if (!cparams.causal_attn) {
|
||||
res = nullptr; // do not extract logits when not needed
|
||||
// skip computing logits
|
||||
// TODO: is this safe?
|
||||
gf->n_nodes = i_embd + 1;
|
||||
res = nullptr; // do not extract logits for embedding case
|
||||
embd = gf->nodes[gf->n_nodes - 1];
|
||||
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
||||
embd = gf->nodes[gf->n_nodes - 2];
|
||||
}
|
||||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
||||
} else {
|
||||
embd = nullptr; // do not extract embeddings when not needed
|
||||
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
|
||||
|
@ -12618,11 +12676,10 @@ static int llama_decode_internal(
|
|||
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
|
||||
}
|
||||
} break;
|
||||
case LLAMA_POOLING_TYPE_CLS:
|
||||
case LLAMA_POOLING_TYPE_MEAN:
|
||||
case LLAMA_POOLING_TYPE_CLS:
|
||||
case LLAMA_POOLING_TYPE_LAST:
|
||||
{
|
||||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
|
||||
|
||||
// extract sequence embeddings
|
||||
auto & embd_seq_out = lctx.embd_seq;
|
||||
embd_seq_out.clear();
|
||||
|
@ -13457,112 +13514,142 @@ private:
|
|||
///// end legacy functions for Falcon //////
|
||||
|
||||
struct llm_tokenizer_bpe {
|
||||
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
|
||||
llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
|
||||
GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
|
||||
switch (vocab.type_pre) {
|
||||
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
//"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
|
||||
// adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DBRX:
|
||||
case LLAMA_VOCAB_PRE_TYPE_SMAUG:
|
||||
regex_exprs = {
|
||||
// same as llama3
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
"\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
"\\p{N}+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
"\\s?\\p{L}+",
|
||||
"\\s?\\p{P}+",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
"\\p{N}",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
||||
regex_exprs = {
|
||||
"[\\p{P}\\$\\+<=>\\^~\\|`]+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
"[0-9][0-9][0-9]",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_MPT:
|
||||
// TODO: MPT pre-tokenization regexes are unknown
|
||||
// the following are close, but not exact. run the following:
|
||||
// ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
|
||||
GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
|
||||
regex_exprs = {
|
||||
"\\s?\\p{L}+",
|
||||
"\\s?\\p{P}+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
||||
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
||||
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
||||
regex_exprs = {
|
||||
"\\p{N}",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
||||
regex_exprs = {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_PORO:
|
||||
regex_exprs = {
|
||||
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
||||
};
|
||||
break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
regex_exprs = {
|
||||
"[\\p{P}\\$\\+<=>\\^~\\|]+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
"\\p{N}+",
|
||||
"[0-9][0-9][0-9]",
|
||||
};
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
|
||||
output.push_back(token_id);
|
||||
}
|
||||
|
||||
bool append_bos(std::vector<llama_vocab::id> & output) const {
|
||||
if (vocab.tokenizer_add_bos) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool append_eos(std::vector<llama_vocab::id> & output) const {
|
||||
if (vocab.tokenizer_add_eos) {
|
||||
GGML_ASSERT(vocab.special_eos_id != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
|
||||
if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
LLAMA_LOG_WARN(
|
||||
"%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
"Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
|
||||
LLAMA_LOG_WARN(
|
||||
"%s: Added a EOS token to the prompt as specified by the model but the prompt "
|
||||
"also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
|
||||
"Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
||||
int final_prev_index = -1;
|
||||
bool ignore_merges = false;
|
||||
|
||||
std::vector<std::string> word_collection;
|
||||
switch (vocab.type) {
|
||||
case LLAMA_VOCAB_TYPE_BPE:
|
||||
switch (vocab.type_pre) {
|
||||
case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
|
||||
ignore_merges = true;
|
||||
word_collection = unicode_regex_split(text, {
|
||||
// original regex from tokenizer.json
|
||||
//"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
|
||||
// adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DBRX:
|
||||
case LLAMA_VOCAB_PRE_TYPE_SMAUG:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
// same as llama3
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"[\r\n]",
|
||||
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||||
"\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
"\\p{N}+",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"[\r\n]",
|
||||
"\\s?\\p{L}+",
|
||||
"\\s?\\p{P}+",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
"\\p{N}",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_FALCON:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"[\\p{P}\\$\\+<=>\\^~\\|]+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
"[0-9][0-9][0-9]",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_MPT:
|
||||
// TODO: MPT pre-tokenization regexes are unknown
|
||||
// the following are close, but not exact. run the following:
|
||||
// ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
|
||||
GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"\\s?\\p{L}+",
|
||||
"\\s?\\p{P}+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
|
||||
case LLAMA_VOCAB_PRE_TYPE_REFACT:
|
||||
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"\\p{N}",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_GPT2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_OLMO:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
});
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_PORO:
|
||||
word_collection = unicode_regex_split(text, {
|
||||
" ?[^(\\s|.,!?…。,、।۔،)]+",
|
||||
});
|
||||
break;
|
||||
default:
|
||||
// default regex for BPE tokenization pre-processing
|
||||
word_collection = unicode_regex_split(text, {
|
||||
"[\\p{P}\\$\\+<=>\\^~\\|]+",
|
||||
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
|
||||
"\\p{N}+",
|
||||
"[0-9][0-9][0-9]",
|
||||
});
|
||||
break;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
const auto word_collection = unicode_regex_split(text, regex_exprs);
|
||||
|
||||
symbols_final.clear();
|
||||
|
||||
|
@ -13573,7 +13660,7 @@ struct llm_tokenizer_bpe {
|
|||
int index = 0;
|
||||
size_t offset = 0;
|
||||
|
||||
if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
||||
if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
|
||||
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
|
||||
offset = word.size();
|
||||
}
|
||||
|
@ -13654,10 +13741,9 @@ struct llm_tokenizer_bpe {
|
|||
for (auto j = str.begin(); j != str.end(); ++j) {
|
||||
std::string byte_str(1, *j);
|
||||
auto token_multibyte = vocab.token_to_id.find(byte_str);
|
||||
if (token_multibyte == vocab.token_to_id.end()) {
|
||||
throw std::runtime_error("ERROR: byte not found in vocab");
|
||||
if (token_multibyte != vocab.token_to_id.end()) {
|
||||
output.push_back(token_multibyte->second);
|
||||
}
|
||||
output.push_back((*token_multibyte).second);
|
||||
}
|
||||
} else {
|
||||
output.push_back((*token).second);
|
||||
|
@ -13696,6 +13782,8 @@ private:
|
|||
|
||||
const llama_vocab & vocab;
|
||||
|
||||
std::vector<std::string> regex_exprs;
|
||||
|
||||
std::vector<llm_symbol> symbols;
|
||||
std::vector<llm_symbol> symbols_final;
|
||||
|
||||
|
@ -13705,7 +13793,7 @@ private:
|
|||
struct llm_tokenizer_wpm {
|
||||
llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
|
||||
|
||||
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
||||
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
|
||||
const auto & token_map = vocab.token_to_id;
|
||||
|
||||
// normalize and split by whitespace
|
||||
|
@ -13714,7 +13802,7 @@ struct llm_tokenizer_wpm {
|
|||
// bos token prepended already
|
||||
|
||||
// find the longest tokens that form the words
|
||||
for (const std::string &word : words) {
|
||||
for (const std::string & word : words) {
|
||||
// skip empty words
|
||||
if (word.size() == 0) {
|
||||
continue;
|
||||
|
@ -13731,7 +13819,7 @@ struct llm_tokenizer_wpm {
|
|||
for (int i = 0; i < n; ++i) {
|
||||
// loop through possible match length
|
||||
bool match = false;
|
||||
for (int j = n; j > i; j--) {
|
||||
for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
|
||||
auto it = token_map.find(word1.substr(i, j - i));
|
||||
if (it != token_map.end()) {
|
||||
output.push_back(it->second);
|
||||
|
@ -13754,7 +13842,8 @@ struct llm_tokenizer_wpm {
|
|||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> preprocess(const std::string & text) {
|
||||
// TODO: reduce string copies by using cpts_offs array
|
||||
std::vector<std::string> preprocess(const std::string & text) const {
|
||||
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
|
||||
std::vector<std::string> words(1, "");
|
||||
|
||||
|
@ -13976,7 +14065,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
|
||||
bool is_prev_special = false;
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0) {
|
||||
if (add_special && vocab.tokenizer_add_bos) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
is_prev_special = true;
|
||||
|
@ -13986,7 +14075,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
|
||||
if (vocab.add_space_prefix) {
|
||||
if (vocab.tokenizer_add_space_prefix) {
|
||||
if (!output.size() || is_prev_special) { // prefix with space if first token
|
||||
raw_text = " " + raw_text;
|
||||
}
|
||||
|
@ -14004,23 +14093,51 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
}
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
// LLAMA_LOG_WARN(
|
||||
// "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
// "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
// "Are you sure this is what you want?\n", __FUNCTION__);
|
||||
if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
// LLAMA_LOG_WARN(
|
||||
// "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
// "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
// "Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_eos == 1) {
|
||||
if (add_special && vocab.tokenizer_add_eos) {
|
||||
GGML_ASSERT(vocab.special_eos_id != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
}
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_BPE:
|
||||
{
|
||||
if (add_special && vocab.special_add_bos != 0) {
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
if (OldBPETokenizerMode)
|
||||
{
|
||||
if (add_special && vocab.tokenizer_add_bos != 0)
|
||||
{
|
||||
GGML_ASSERT(vocab.special_bos_id != -1);
|
||||
output.push_back(vocab.special_bos_id);
|
||||
}
|
||||
for (const auto &fragment : fragment_buffer)
|
||||
{
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
|
||||
{
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
llm_tokenizer_bpe_old tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
}
|
||||
else
|
||||
{
|
||||
output.push_back(fragment.token);
|
||||
}
|
||||
}
|
||||
if (add_special && vocab.tokenizer_add_eos == 1)
|
||||
{
|
||||
output.push_back(vocab.special_eos_id);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
llm_tokenizer_bpe tokenizer(vocab);
|
||||
|
||||
if (add_special) {
|
||||
tokenizer.append_bos(output);
|
||||
}
|
||||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
|
@ -14031,32 +14148,15 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
#endif
|
||||
|
||||
if(OldBPETokenizerMode)
|
||||
{
|
||||
llm_tokenizer_bpe_old tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
}
|
||||
else
|
||||
{
|
||||
llm_tokenizer_bpe tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
}
|
||||
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
||||
output.push_back(fragment.token);
|
||||
tokenizer.append(fragment.token, output);
|
||||
}
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
|
||||
// LLAMA_LOG_WARN(
|
||||
// "%s: Added a BOS token to the prompt as specified by the model but the prompt "
|
||||
// "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
|
||||
// "Are you sure this is what you want?\n", __FUNCTION__);
|
||||
}
|
||||
|
||||
if (add_special && vocab.special_add_eos == 1) {
|
||||
GGML_ASSERT(vocab.special_add_eos != -1);
|
||||
output.push_back(vocab.special_eos_id);
|
||||
if (add_special) {
|
||||
tokenizer.append_eos(output);
|
||||
tokenizer.check_double_bos_eos(output);
|
||||
}
|
||||
} break;
|
||||
case LLAMA_VOCAB_TYPE_WPM:
|
||||
|
@ -14066,6 +14166,8 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
output.push_back(vocab.special_cls_id);
|
||||
}
|
||||
|
||||
llm_tokenizer_wpm tokenizer(vocab);
|
||||
|
||||
for (const auto & fragment : fragment_buffer) {
|
||||
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
|
@ -14073,7 +14175,6 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
#ifdef PRETOKENIZERDEBUG
|
||||
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
|
||||
#endif
|
||||
llm_tokenizer_wpm tokenizer(vocab);
|
||||
tokenizer.tokenize(raw_text, output);
|
||||
} else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
|
||||
output.push_back(fragment.token);
|
||||
|
@ -18399,6 +18500,10 @@ void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)
|
|||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
|
||||
ctx->cparams.embeddings = embeddings;
|
||||
}
|
||||
|
||||
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||||
ctx->cparams.causal_attn = causal_attn;
|
||||
}
|
||||
|
@ -18642,11 +18747,11 @@ llama_token llama_token_nl(const struct llama_model * model) {
|
|||
}
|
||||
|
||||
int32_t llama_add_bos_token(const struct llama_model * model) {
|
||||
return model->vocab.special_add_bos;
|
||||
return model->vocab.tokenizer_add_bos;
|
||||
}
|
||||
|
||||
int32_t llama_add_eos_token(const struct llama_model * model) {
|
||||
return model->vocab.special_add_eos;
|
||||
return model->vocab.tokenizer_add_eos;
|
||||
}
|
||||
|
||||
llama_token llama_token_prefix(const struct llama_model * model) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue