Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/labeler.yml
#	.github/workflows/server.yml
#	.gitignore
#	CMakeLists.txt
#	Makefile
#	README-sycl.md
#	README.md
#	llama.cpp
#	requirements/requirements-convert-hf-to-gguf-update.txt
#	requirements/requirements-convert-hf-to-gguf.txt
#	requirements/requirements-convert-legacy-llama.txt
#	scripts/sync-ggml.last
#	tests/test-tokenizer-random.py
This commit is contained in:
Concedo 2024-06-22 01:33:44 +08:00
commit 92afdfcae4
44 changed files with 10304 additions and 8631 deletions

View file

@ -18,9 +18,10 @@ static std::vector<std::string> split_lines(const std::string & s) {
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
size_t n_tokens = tokens.size();
for (size_t i = 0; i < n_tokens; i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
}
}
@ -41,13 +42,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
float * out = output + batch.seq_id[i][0] * n_embd;
//TODO: I would also add a parameter here to enable normalization or not.
@ -98,6 +93,12 @@ int main(int argc, char ** argv) {
const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
return 1;
}
if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);