Merge branch 'master' into concedo_experimental

# Conflicts:
#	CMakeLists.txt
#	Makefile
#	README.md
#	ci/run.sh
#	tests/test-tokenizer-0-falcon.cpp
#	tests/test-tokenizer-0-llama.cpp
#	tests/test-tokenizer-1-bpe.cpp
#	tests/test-tokenizer-1-llama.cpp
This commit is contained in:
Concedo 2024-02-17 15:22:05 +08:00
commit 8d5e25008f
60 changed files with 2568 additions and 735 deletions

View file

@ -342,7 +342,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
const auto sampler_names = string_split(argv[i], ';');
sparams.samplers_sequence = sampler_types_from_names(sampler_names);
sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
} else if (arg == "--sampling-seq") {
if (++i >= argc) {
invalid_param = true;
@ -672,7 +672,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--numa") {
params.numa = true;
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
} else if (arg == "--verbose-prompt") {
params.verbose_prompt = true;
} else if (arg == "--no-display-prompt") {
@ -936,7 +944,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -tb N, --threads-batch N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" -td N, --threads-draft N");
printf(" number of threads to use during generation (default: same as --threads)");
printf(" number of threads to use during generation (default: same as --threads)\n");
printf(" -tbd N, --threads-batch-draft N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
printf(" -p PROMPT, --prompt PROMPT\n");
@ -957,7 +965,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\' (default: %s)\n", sampler_type_names.c_str());
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
printf(" (default: %s)\n", sampler_type_names.c_str());
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
@ -1006,7 +1015,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base");
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
@ -1023,7 +1032,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided by numactl\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
if (llama_supports_gpu_offload()) {
@ -1123,34 +1135,50 @@ std::vector<std::string> string_split(std::string input, char separator) {
return parts;
}
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names) {
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_name_map {
{"top_k", llama_sampler_type::TOP_K},
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMP},
{"temperature", llama_sampler_type::TEMP}
{"temp", llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto& name : names) {
const auto sampler_item = sampler_name_map.find(name);
if (sampler_item != sampler_name_map.end()) {
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
@ -1162,7 +1190,7 @@ std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & nam
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMP}
{'t', llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
@ -1178,12 +1206,12 @@ std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & nam
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMP: return "temp";
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
@ -1690,7 +1718,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);