Add LLaDA 8b Diffusion model (#14771)

* Add support for Llada-8b: diffusion model

* Add README

* Fix README and convert_hf_to_gguf

* convert_hf_to_gguf.py: address review comments

* Make everything in a single example

* Remove model-specific sampling

* Remove unused argmax

* Remove braced initializers, improve README.md a bit

* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps

* Remove adding the mask token

* Move add_add_bos_token to set_vocab

* use add_bool in gguf_writer.py
This commit is contained in:
Aman Gupta 2025-07-31 19:49:09 +08:00 committed by GitHub
parent 11490b3672
commit 8a4a856277
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 931 additions and 385 deletions

View file

@ -3438,28 +3438,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
} }
).set_examples({LLAMA_EXAMPLE_SERVER})); ).set_examples({LLAMA_EXAMPLE_SERVER}));
// diffusion parameters
add_opt(common_arg( add_opt(common_arg(
{ "--diffusion-steps" }, "N", { "--diffusion-steps" }, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps), string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; } [](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg( add_opt(common_arg(
{ "--diffusion-visual" }, { "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)", string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
@ -3467,5 +3450,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) { params.diffusion.visual_mode = true; } [](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION })); ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-block-length" }, "N",
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
[](common_params & params, int value) { params.diffusion.block_length = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-cfg-scale" }, "F",
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-add-gumbel-noise" }, "F",
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
return ctx_arg; return ctx_arg;
} }

View file

@ -220,11 +220,17 @@ struct common_params_vocoder {
}; };
struct common_params_diffusion { struct common_params_diffusion {
int32_t steps = 64; // number of diffusion steps int32_t steps = 128;
float eps = 1e-3f; // epsilon for timesteps bool visual_mode = false;
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
float alg_temp = 0.0f; // algorithm temperature float eps = 0; // epsilon for timesteps
bool visual_mode = false; // show progressive diffusion on screen int32_t block_length = 32; // block length for generation
int32_t algorithm = 4; // default algorithm: low-confidence
float alg_temp = 0.0f; // algorithm temperature
float cfg_scale = 0; // classifier-free guidance scale
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
}; };
enum common_reasoning_format { enum common_reasoning_format {

View file

@ -2904,6 +2904,107 @@ class DreamModel(TextModel):
yield from super().modify_tensors(data_torch, name, bid) yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("LLaDAModelLM")
class LLaDAModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLADA
undo_permute = True
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab_dict = tokenizer.get_vocab()
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
assert max(vocab_dict.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
added_vocab = tokenizer.get_added_vocab()
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
# Check if it's a special token - treat special tokens as CONTROL tokens
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
return tokens, toktypes, tokpre
def set_vocab(self):
self._set_vocab_gpt2()
# LLaDA specific parameters
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
# Add parameters similar to LlamaModel
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if (rope_dim := hparams.get("head_dim")) is None:
n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
self.gguf_writer.add_rope_dimension_count(rope_dim)
# Set context length for LLaDA
context_length = self.hparams.get("max_sequence_length", 4096)
self.gguf_writer.add_context_length(context_length)
# Set embedding length (dimension size)
embedding_length = self.hparams.get("d_model", 4096)
self.gguf_writer.add_embedding_length(embedding_length)
# Set feed forward length (MLP hidden size)
feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
self.gguf_writer.add_feed_forward_length(feed_forward_length)
# LLaDA models use non-causal attention for diffusion, similar to Dream
self.gguf_writer.add_causal_attention(False)
# LLaDA models don't shift their logits
self.gguf_writer.add_diffusion_shift_logits(False)
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
# LLaDA model tensors should be mapped directly since it's the base model
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Ernie4_5_ForCausalLM") @ModelBase.register("Ernie4_5_ForCausalLM")
class Ernie4_5Model(TextModel): class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5 model_arch = gguf.MODEL_ARCH.ERNIE4_5

View file

@ -0,0 +1,13 @@
# Diffusion Text Generation
This directory contains implementations for Diffusion LLMs (DLLMs)
More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`

View file

@ -5,344 +5,128 @@
#include "log.h" #include "log.h"
#include <limits.h> #include <limits.h>
#include <string>
#include <vector>
#include <algorithm> #include <algorithm>
#include <cmath> #include <cmath>
#include <cstring>
#include <limits> #include <limits>
#include <random> #include <random>
#include <string>
#include <vector>
typedef bool (*diffusion_step_callback_t)(int32_t step, enum diffusion_algorithm { ORIGIN = 0, ENTROPY_BASED = 1, MARGIN_BASED = 2, RANDOM = 3, CONFIDENCE_BASED = 4 };
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
enum diffusion_alg { // Unified transfer scheduling methods
DIFFUSION_ALG_ORIGIN = 0, enum transfer_schedule {
DIFFUSION_ALG_MASKGIT_PLUS = 1, TIMESTEP_BASED = 0, // Dream-style: (1.0 - s/t) * remaining
DIFFUSION_ALG_TOPK_MARGIN = 2, BLOCK_BASED = 1, // LLaDA-style: process in blocks with get_num_transfer_tokens
DIFFUSION_ALG_ENTROPY = 3,
}; };
typedef bool (*diffusion_step_callback_t)(int32_t step,
int32_t total_steps,
const llama_token * tokens,
int32_t n_tokens,
void * user_data);
struct diffusion_params { struct diffusion_params {
int32_t steps; int32_t steps = 0;
float eps; float temperature = 0;
float temperature; llama_token mask_token_id = LLAMA_TOKEN_NULL;
float top_p; diffusion_step_callback_t step_callback = nullptr;
int32_t top_k; void * step_callback_user_data = nullptr;
llama_token mask_token_id; int32_t seed = 0;
enum diffusion_alg algorithm; bool visual_mode = false;
float alg_temp; bool shift_logits = false; // Shift logits by -1 after decode
diffusion_step_callback_t step_callback;
void * step_callback_user_data; float top_p = 0.;
int32_t seed; int32_t top_k = 0.;
diffusion_algorithm algorithm = CONFIDENCE_BASED;
transfer_schedule schedule = TIMESTEP_BASED;
float cfg_scale = 0.; // Config scale for classifier-free guidance
float eps = 0.; // Timestep scheduling
int32_t block_length = 0; // Block size (for block scheduling)
float alg_temp = 0; // algorithm temperature (0.0 = deterministic)
bool add_gumbel_noise = false; // Add gumbel noise to the logits if temp > 0.0
int32_t max_length = 0; // Maximum sequence length
}; };
static diffusion_params diffusion_default_params() {
diffusion_params params = {};
params.steps = 64;
params.eps = 1e-3f;
params.temperature = 0.2f;
params.top_p = 0.95f;
params.top_k = 0;
params.mask_token_id = LLAMA_TOKEN_NULL;
params.algorithm = DIFFUSION_ALG_ORIGIN;
params.alg_temp = 0.0f;
params.step_callback = nullptr;
params.step_callback_user_data = nullptr;
params.seed = 0;
return params;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
int32_t max_length,
struct diffusion_params params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
std::vector<float> timesteps(params.steps + 1);
for (int32_t i = 0; i <= params.steps; i++) {
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
}
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(max_length);
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(max_length, 0, 1);
batch.n_tokens = max_length;
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int32_t step = 0; step < params.steps; step++) {
if (params.step_callback) {
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
break;
}
}
for (int32_t i = 0; i < max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
break;
}
float * raw_logits = llama_get_logits(ctx);
if (!raw_logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
mask_positions.push_back(i);
}
}
if (mask_positions.empty()) {
break;
}
float t = timesteps[step];
float s = timesteps[step + 1];
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
/* .data = */ candidates.data(),
/* .size = */ candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float confidence = 0.0f;
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
const float epsilon = 1e-10f;
for (size_t j = 0; j < cur_p.size; j++) {
float prob = cur_p.data[j].p;
confidence += prob * logf(prob + epsilon);
}
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
confidence = cur_p.data[0].p - cur_p.data[1].p;
} else {
confidence = cur_p.data[cur_p.selected].p;
}
sampled_tokens[i] = sampled_token;
confidences.emplace_back(confidence, i);
}
int32_t num_transfer =
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
if (num_transfer > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
} else {
conf_candidates.clear();
for (int32_t pos = 0; pos < max_length; pos++) {
float conf_logit = -std::numeric_limits<float>::infinity();
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
size_t mask_idx = std::distance(mask_positions.begin(), it);
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
}
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
/* .data = */ conf_candidates.data(),
/* .size = */ conf_candidates.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
for (int32_t i = 0; i < num_transfer; i++) {
// Apply distribution sampler to get selected index
llama_sampler_apply(dist_sampler, &conf_array);
int selected_idx = conf_array.selected;
confidences[i].second = conf_candidates[selected_idx].id;
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
if (params.alg_temp == 0.0f) {
// Deterministic - use confidence order
for (int32_t i = 0; i < num_transfer; i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
llama_token token = sampled_tokens[mask_idx];
output_tokens[pos] = token;
}
} else {
for (int32_t i = 0; i < num_transfer; i++) {
int32_t pos = confidences[i].second;
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
if (it != mask_positions.end()) {
int32_t mask_idx = std::distance(mask_positions.begin(), it);
output_tokens[pos] = sampled_tokens[mask_idx];
}
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
inputs.messages.push_back(user_msg);
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
struct callback_data { struct callback_data {
const common_params_diffusion * diff_params; diffusion_params * diff_params;
const llama_vocab * vocab; const llama_vocab * vocab;
int32_t n_input; int32_t n_input;
}; };
static bool diffusion_step_callback(int32_t step, static float calculate_confidence(const llama_token_data_array & cur_p,
int32_t total_steps, diffusion_algorithm algorithm,
std::mt19937 & rng) {
switch (algorithm) {
case CONFIDENCE_BASED:
return cur_p.data[cur_p.selected].p; // Selected token probability
case ENTROPY_BASED:
{
float entropy = 0.0f;
const float epsilon = 1e-10f;
for (size_t i = 0; i < cur_p.size; i++) {
float prob = cur_p.data[i].p;
entropy += prob * logf(prob + epsilon);
}
return -entropy; // Higher entropy = lower confidence
}
case MARGIN_BASED:
return (cur_p.size > 1) ? cur_p.data[0].p - cur_p.data[1].p : cur_p.data[0].p;
case RANDOM:
{
std::uniform_real_distribution<float> uniform(0.0f, 1.0f);
return uniform(rng); // Random confidence
}
case ORIGIN:
return cur_p.data[cur_p.selected].p;
default:
return 0.0f;
}
}
// Unified transfer count calculation function
static int32_t calculate_transfer_count(int32_t step,
int32_t total_steps,
int32_t remaining_masked,
transfer_schedule schedule,
float eps,
const std::vector<int32_t> & num_transfer_tokens = {}) {
switch (schedule) {
case TIMESTEP_BASED:
{
float t = 1.0f - (float) step / total_steps * (1.0f - eps);
float s = 1.0f - (float) (step + 1) / total_steps * (1.0f - eps);
float p_transfer = (step < total_steps - 1) ? (1.0f - s / t) : 1.0f;
return (int32_t) (remaining_masked * p_transfer);
}
case BLOCK_BASED:
if (!num_transfer_tokens.empty() && step < (int32_t) num_transfer_tokens.size()) {
return num_transfer_tokens[step];
}
return remaining_masked / (total_steps - step); // Fallback
default:
return remaining_masked / (total_steps - step);
}
}
static bool diffusion_step_callback(int32_t step,
int32_t total_steps,
const llama_token * tokens, const llama_token * tokens,
int32_t n_tokens, int32_t n_tokens,
void * user_data) { void * user_data) {
(void)user_data; (void) user_data;
callback_data * data = static_cast<callback_data *>(user_data); callback_data * data = static_cast<callback_data *>(user_data);
@ -350,11 +134,11 @@ static bool diffusion_step_callback(int32_t step,
int progress_percent = (step * 100) / total_steps; int progress_percent = (step * 100) / total_steps;
int progress_bars = (step * 50) / total_steps; int progress_bars = (step * 50) / total_steps;
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%", LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
step, step,
total_steps, total_steps,
std::string(progress_bars, '=').c_str(), std::string(progress_bars, '=').c_str(),
std::string(50 - progress_bars, ' ').c_str(), std::string(50 - progress_bars, ' ').c_str(),
progress_percent); progress_percent);
}; };
if (data->diff_params->visual_mode) { if (data->diff_params->visual_mode) {
@ -391,6 +175,360 @@ static bool diffusion_step_callback(int32_t step,
return true; return true;
} }
static void add_gumbel_noise(float * logits, int32_t n_vocab, float temperature, std::mt19937 & rng) {
if (temperature == 0.0f) {
return;
}
std::uniform_real_distribution<double> uniform(0.0, 1.0);
for (int32_t i = 0; i < n_vocab; i++) {
double noise = uniform(rng);
// Prevent log(0)
noise = std::max(noise, 1e-20);
double gumbel_noise = std::pow(-std::log(noise), temperature);
logits[i] = std::exp(logits[i]) / gumbel_noise;
}
}
static std::vector<int32_t> get_num_transfer_tokens(int32_t mask_count, int32_t steps) {
std::vector<int32_t> num_transfer_tokens(steps);
int32_t base = mask_count / steps;
int32_t remainder = mask_count % steps;
for (int32_t i = 0; i < steps; i++) {
num_transfer_tokens[i] = base + (i < remainder ? 1 : 0);
}
return num_transfer_tokens;
}
static void diffusion_generate(llama_context * ctx,
const llama_token * input_tokens,
llama_token * output_tokens,
int32_t n_input,
const diffusion_params & params,
int32_t & n_generated) {
n_generated = 0;
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || params.max_length <= n_input) {
return;
}
const llama_model * model = llama_get_model(ctx);
// Initialize with input and pad with mask tokens
std::copy(input_tokens, input_tokens + n_input, output_tokens);
std::fill(output_tokens + n_input, output_tokens + params.max_length, params.mask_token_id);
std::mt19937 rng(params.seed);
llama_set_causal_attn(ctx, false);
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
std::vector<llama_token_data> candidates(n_vocab);
std::vector<llama_token_data> conf_candidates;
conf_candidates.reserve(params.max_length);
std::vector<int32_t> mask_positions;
mask_positions.reserve(params.max_length);
// Setup sampler chain
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
if (params.top_k > 0) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
}
if (params.top_p < 1.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
}
if (params.temperature > 0.0f) {
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
}
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
llama_batch batch = llama_batch_init(params.max_length, 0, 1);
batch.n_tokens = params.max_length;
// Pre-allocate buffers for CFG if needed
int32_t logits_size = n_vocab * params.max_length;
std::vector<float> cond_logits_buffer;
std::vector<llama_token> un_x_buffer;
if (params.cfg_scale > 0.0f) {
cond_logits_buffer.resize(logits_size);
un_x_buffer.resize(params.max_length);
}
// For block-based processing
std::vector<int32_t> num_transfer_tokens;
int32_t num_blocks = 1;
int32_t steps_per_block = params.steps;
if (params.schedule == BLOCK_BASED) {
GGML_ASSERT(params.max_length % params.block_length == 0);
num_blocks = params.max_length / params.block_length;
GGML_ASSERT(params.steps % num_blocks == 0);
steps_per_block = params.steps / num_blocks;
}
std::vector<float> confidence(params.max_length);
int64_t total_sampling_time = 0;
int64_t total_time = 0;
int64_t time_start = ggml_time_us();
for (int block_num = 0; block_num < num_blocks; block_num++) {
int32_t block_start = (params.schedule == BLOCK_BASED) ? n_input + block_num * params.block_length : 0;
int32_t block_end = (params.schedule == BLOCK_BASED) ?
std::min(n_input + (block_num + 1) * params.block_length, params.max_length) :
params.max_length;
// Count masked tokens in current block for block-based processing
if (params.schedule == BLOCK_BASED) {
int32_t block_mask_count = 0;
for (int i = block_start; i < block_end; i++) {
if (output_tokens[i] == params.mask_token_id) {
block_mask_count++;
}
}
num_transfer_tokens = get_num_transfer_tokens(block_mask_count, steps_per_block);
}
for (int32_t step = 0; step < steps_per_block; step++) {
int32_t global_step = block_num * steps_per_block + step;
if (params.step_callback) {
if (!params.step_callback(
global_step, params.steps, output_tokens, params.max_length, params.step_callback_user_data)) {
break;
}
}
// Setup batch
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = output_tokens[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = 1;
}
float * logits = nullptr;
if (params.cfg_scale > 0.0f) {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate conditional");
break;
}
float * cond_logits_ptr = llama_get_logits(ctx);
std::memcpy(cond_logits_buffer.data(), cond_logits_ptr, logits_size * sizeof(float));
// Unconditional generation (mask input)
std::copy(output_tokens, output_tokens + params.max_length, un_x_buffer.begin());
for (int32_t i = 0; i < n_input; i++) {
un_x_buffer[i] = params.mask_token_id;
}
for (int32_t i = 0; i < params.max_length; i++) {
batch.token[i] = un_x_buffer[i];
}
ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("Failed to generate unconditional");
break;
}
float * uncond_logits = llama_get_logits(ctx);
// Apply CFG
for (int32_t i = 0; i < logits_size; i++) {
cond_logits_buffer[i] =
uncond_logits[i] + (params.cfg_scale + 1.0f) * (cond_logits_buffer[i] - uncond_logits[i]);
}
logits = cond_logits_buffer.data();
} else {
int ret = llama_decode(ctx, batch);
if (ret != 0) {
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, global_step, ret);
break;
}
logits = llama_get_logits(ctx);
}
if (!logits) {
LOG_ERR("%s: failed to get logits at step %d\n", __func__, global_step);
break;
}
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
if (params.shift_logits) {
return pos == 0 ? logits : logits + (pos - 1) * n_vocab;
}
return logits + (pos) *n_vocab;
};
int64_t time_start_sampling = ggml_time_us();
mask_positions.clear();
for (int32_t i = 0; i < params.max_length; i++) {
if (output_tokens[i] == params.mask_token_id) {
// For block-based, only consider current block
if (params.schedule != BLOCK_BASED || (i >= block_start && i < block_end)) {
mask_positions.push_back(i);
}
}
}
if (mask_positions.empty()) {
break;
}
if (params.add_gumbel_noise && params.temperature > 0.0f) {
add_gumbel_noise(logits, n_vocab, params.temperature, rng);
}
if (params.algorithm == ORIGIN) {
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
float p_transfer = (float) transfer_count / mask_positions.size();
for (int32_t pos : mask_positions) {
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].id = token_id;
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
}
llama_token_data_array cur_p = {
candidates.data(),
(size_t) n_vocab,
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
output_tokens[pos] = cur_p.data[cur_p.selected].id;
}
}
} else {
std::vector<std::pair<float, int32_t>> confidences;
std::vector<llama_token> sampled_tokens(mask_positions.size());
for (size_t i = 0; i < mask_positions.size(); i++) {
int32_t pos = mask_positions[i];
const float * pos_logits = get_logits_for_pos(pos);
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
candidates[token_id].logit = pos_logits[token_id];
candidates[token_id].p = 0.0f;
candidates[token_id].id = token_id;
}
llama_token_data_array cur_p = {
candidates.data(),
candidates.size(),
-1,
false,
};
llama_sampler_apply(sampler, &cur_p);
llama_token sampled_token = cur_p.data[cur_p.selected].id;
float conf = calculate_confidence(cur_p, params.algorithm, rng);
sampled_tokens[i] = sampled_token;
confidences.emplace_back(conf, i);
}
int32_t transfer_count = calculate_transfer_count(
step, steps_per_block, mask_positions.size(), params.schedule, params.eps, num_transfer_tokens);
if (transfer_count > 0) {
if (params.alg_temp == 0.0f) {
std::partial_sort(confidences.begin(),
confidences.begin() + std::min(transfer_count, (int32_t) confidences.size()),
confidences.end(),
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
if (a.first != b.first) {
return a.first > b.first;
}
return a.second < b.second;
});
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
int32_t mask_idx = confidences[i].second;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
}
} else {
conf_candidates.clear();
for (size_t i = 0; i < confidences.size(); i++) {
float conf_logit = confidences[i].first / params.alg_temp;
conf_candidates.emplace_back(llama_token_data{ (int32_t) i, conf_logit, 0.0f });
}
llama_token_data_array conf_array = {
conf_candidates.data(),
conf_candidates.size(),
-1,
false,
};
for (int32_t i = 0; i < std::min(transfer_count, (int32_t) confidences.size()); i++) {
llama_sampler_apply(dist_sampler, &conf_array);
int32_t selected_idx = conf_array.selected;
int32_t mask_idx = selected_idx;
int32_t pos = mask_positions[mask_idx];
output_tokens[pos] = sampled_tokens[mask_idx];
conf_candidates[selected_idx].p = 0.0f;
conf_array.selected = -1;
}
}
}
}
int64_t time_end_sampling = ggml_time_us();
total_sampling_time += time_end_sampling - time_start_sampling;
}
}
int64_t time_end = ggml_time_us();
total_time += time_end - time_start;
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
total_time / 1000.0,
total_time / 1000.0 / params.steps,
total_sampling_time / 1000.0 / params.steps);
llama_batch_free(batch);
llama_sampler_free(sampler);
llama_sampler_free(dist_sampler);
n_generated = params.max_length;
}
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
if (!use_chat_template) {
return prompt;
}
auto chat_templates = common_chat_templates_init(model, "");
common_chat_templates_inputs inputs;
common_chat_msg user_msg;
user_msg.role = "user";
user_msg.content = prompt;
inputs.add_generation_prompt = true;
inputs.messages.push_back(user_msg);
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
return result.prompt;
}
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
ggml_time_init(); ggml_time_init();
@ -400,11 +538,6 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
alg_names[params.diffusion.algorithm] :
"UNKNOWN";
common_init(); common_init();
llama_backend_init(); llama_backend_init();
@ -421,6 +554,12 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
if (!llama_model_is_diffusion(model)) {
LOG_ERR("error: unsupported model for diffusion");
llama_model_free(model);
return 1;
}
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = params.n_ctx; ctx_params.n_ctx = params.n_ctx;
ctx_params.n_batch = params.n_batch; ctx_params.n_batch = params.n_batch;
@ -442,10 +581,12 @@ int main(int argc, char ** argv) {
const llama_vocab * vocab = llama_model_get_vocab(model); const llama_vocab * vocab = llama_model_get_vocab(model);
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model); std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt, std::vector<llama_token> input_tokens = common_tokenize(vocab,
formatted_prompt,
/*add special tokens*/ true, /*add special tokens*/ true,
/*parse special*/ true); /*parse special*/ true);
int n_input = input_tokens.size();
int n_input = input_tokens.size();
if (n_input >= params.n_ctx) { if (n_input >= params.n_ctx) {
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx); LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
@ -454,44 +595,79 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
struct diffusion_params ldiff_params = diffusion_default_params();
ldiff_params.steps = params.diffusion.steps;
ldiff_params.eps = params.diffusion.eps;
ldiff_params.temperature = params.sampling.temp;
ldiff_params.top_p = params.sampling.top_p;
ldiff_params.top_k = params.sampling.top_k;
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
ldiff_params.alg_temp = params.diffusion.alg_temp;
ldiff_params.seed = params.sampling.seed;
llama_token mask_token_id = llama_vocab_mask(vocab); llama_token mask_token_id = llama_vocab_mask(vocab);
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL); GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id); bool visual_mode = params.diffusion.visual_mode;
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
alg_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
ldiff_params.mask_token_id = mask_token_id;
callback_data cb_data = { &params.diffusion, vocab, n_input };
ldiff_params.step_callback = diffusion_step_callback;
ldiff_params.step_callback_user_data = &cb_data;
int32_t n_generated = 0;
int32_t n_generated = 0;
std::vector<llama_token> output_tokens(params.n_ubatch); std::vector<llama_token> output_tokens(params.n_ubatch);
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
ldiff_params, n_generated); struct diffusion_params diff_params;
char shift_logits_str[8];
if (llama_model_meta_val_str(model, "diffusion.shift_logits", shift_logits_str, sizeof(shift_logits_str)) >= 0) {
diff_params.shift_logits = (strcmp(shift_logits_str, "true") == 0);
} else {
diff_params.shift_logits = true;
}
//Use either eps or block length, but not both
GGML_ASSERT((params.diffusion.eps == 0) ^ (params.diffusion.block_length == 0));
if (params.diffusion.eps) {
diff_params.schedule = TIMESTEP_BASED;
diff_params.eps = params.diffusion.eps;
} else if (params.diffusion.block_length) {
diff_params.schedule = BLOCK_BASED;
diff_params.block_length = params.diffusion.block_length;
}
diff_params.mask_token_id = mask_token_id;
diff_params.seed = params.sampling.seed;
diff_params.temperature = params.sampling.temp;
diff_params.steps = params.diffusion.steps;
diff_params.algorithm = static_cast<diffusion_algorithm>(params.diffusion.algorithm);
diff_params.max_length = params.n_ubatch;
diff_params.top_p = params.sampling.top_p;
diff_params.top_k = params.sampling.top_k;
diff_params.visual_mode = params.diffusion.visual_mode;
diff_params.add_gumbel_noise = params.diffusion.add_gumbel_noise;
diff_params.step_callback = diffusion_step_callback;
callback_data cb_data = { &diff_params, vocab, n_input };
diff_params.step_callback_user_data = &cb_data;
const char * alg_names[] = { "ORIGIN", "ENTROPY_BASED", "MARGIN_BASED", "RANDOM", "CONFIDENCE_BASED" };
const char * sched_names[] = { "TIMESTEP_BASED", "BLOCK_BASED" };
const char * alg_name =
(diff_params.algorithm >= 0 && diff_params.algorithm <= 4) ? alg_names[diff_params.algorithm] : "UNKNOWN";
const char * sched_name =
(diff_params.schedule >= 0 && diff_params.schedule <= 1) ? sched_names[diff_params.schedule] : "UNKNOWN";
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", diff_params.steps);
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "max_length", diff_params.max_length);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "algorithm", diff_params.algorithm, alg_name);
LOG_INF("diffusion_params: - %-25s enum = %d (%s)\n", "schedule", diff_params.schedule, sched_name);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "temperature", diff_params.temperature);
if (diff_params.schedule == TIMESTEP_BASED) {
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", diff_params.eps);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", diff_params.alg_temp);
}
if (diff_params.schedule == BLOCK_BASED) {
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "block_length", diff_params.block_length);
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "cfg_scale", diff_params.cfg_scale);
}
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, diff_params, n_generated);
if (n_generated > 0) { if (n_generated > 0) {
if (params.diffusion.visual_mode) { if (visual_mode) {
//clear screen and move cursor to top-left //clear screen and move cursor to top-left
LOG_INF("\033[2J\033[H"); LOG_INF("\033[2J\033[H");
} }
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input); output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
std::string output_data = common_detokenize(vocab, output_tokens, false); std::string output_data = common_detokenize(vocab, output_tokens, false);
LOG_INF("\n%s\n", output_data.c_str()); LOG_INF("\n%s\n", output_data.c_str());

View file

@ -279,6 +279,9 @@ class Keys:
class Projector: class Projector:
STACK_FACTOR = "clip.audio.projector.stack_factor" STACK_FACTOR = "clip.audio.projector.stack_factor"
class Diffusion:
SHIFT_LOGITS = "diffusion.shift_logits"
# #
# recommended mapping of model tensor names for storage in gguf # recommended mapping of model tensor names for storage in gguf
# #
@ -377,6 +380,7 @@ class MODEL_ARCH(IntEnum):
LFM2 = auto() LFM2 = auto()
DREAM = auto() DREAM = auto()
SMALLTHINKER = auto() SMALLTHINKER = auto()
LLADA = auto()
class VISION_PROJECTOR_TYPE(IntEnum): class VISION_PROJECTOR_TYPE(IntEnum):
@ -697,6 +701,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LFM2: "lfm2", MODEL_ARCH.LFM2: "lfm2",
MODEL_ARCH.DREAM: "dream", MODEL_ARCH.DREAM: "dream",
MODEL_ARCH.SMALLTHINKER: "smallthinker", MODEL_ARCH.SMALLTHINKER: "smallthinker",
MODEL_ARCH.LLADA: "llada",
} }
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@ -1318,6 +1323,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.LLADA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.QWEN2VL: [ MODEL_ARCH.QWEN2VL: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,

View file

@ -1047,6 +1047,11 @@ class GGUFWriter:
def add_audio_stack_factor(self, value: int) -> None: def add_audio_stack_factor(self, value: int) -> None:
self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value) self.add_uint32(Keys.ClipAudio.Projector.STACK_FACTOR, value)
# diffusion models
def add_diffusion_shift_logits(self, value: bool) -> None:
self.add_bool(Keys.Diffusion.SHIFT_LOGITS, value)
def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes: def _pack(self, fmt: str, value: Any, skip_pack_prefix: bool = False) -> bytes:
pack_prefix = '' pack_prefix = ''
if not skip_pack_prefix: if not skip_pack_prefix:

View file

@ -32,6 +32,7 @@ class TensorNameMap:
"model.word_embeddings", # bailingmoe "model.word_embeddings", # bailingmoe
"language_model.model.embed_tokens", # llama4 "language_model.model.embed_tokens", # llama4
"encoder", # neobert "encoder", # neobert
"model.transformer.wte", # llada
), ),
# Token type embeddings # Token type embeddings
@ -71,6 +72,7 @@ class TensorNameMap:
"head", # rwkv "head", # rwkv
"head.out", # wavtokenizer "head.out", # wavtokenizer
"lm_head", # llama4 "lm_head", # llama4
"model.transformer.ff_out", # llada
), ),
# Output norm # Output norm
@ -94,6 +96,7 @@ class TensorNameMap:
"model.ln_out", # rwkv7 "model.ln_out", # rwkv7
"backbone.final_layer_norm", # wavtokenizer "backbone.final_layer_norm", # wavtokenizer
"model.norm", # llama4 "model.norm", # llama4
"model.transformer.ln_f", # llada
), ),
# Rope frequencies # Rope frequencies
@ -139,6 +142,7 @@ class TensorNameMap:
"model.layers.{bid}.input_layernorm", # llama4 "model.layers.{bid}.input_layernorm", # llama4
"transformer_encoder.{bid}.attention_norm", # neobert "transformer_encoder.{bid}.attention_norm", # neobert
"model.layers.{bid}.operator_norm", # lfm2 "model.layers.{bid}.operator_norm", # lfm2
"model.transformer.blocks.{bid}.attn_norm", # llada
), ),
# Attention norm 2 # Attention norm 2
@ -183,6 +187,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
"transformer.h.{bid}.attn.attention.q_proj", # exaone "transformer.h.{bid}.attn.attention.q_proj", # exaone
"model.layers.{bid}.self_attn.q_proj", # llama4 "model.layers.{bid}.self_attn.q_proj", # llama4
"model.transformer.blocks.{bid}.q_proj", # llada
), ),
# Attention key # Attention key
@ -199,6 +204,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
"transformer.h.{bid}.attn.attention.k_proj", # exaone "transformer.h.{bid}.attn.attention.k_proj", # exaone
"model.layers.{bid}.self_attn.k_proj", # llama4 "model.layers.{bid}.self_attn.k_proj", # llama4
"model.transformer.blocks.{bid}.k_proj", # llada
), ),
# Attention value # Attention value
@ -214,6 +220,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
"transformer.h.{bid}.attn.attention.v_proj", # exaone "transformer.h.{bid}.attn.attention.v_proj", # exaone
"model.layers.{bid}.self_attn.v_proj", # llama4 "model.layers.{bid}.self_attn.v_proj", # llama4
"model.transformer.blocks.{bid}.v_proj", # llada
), ),
# Attention output # Attention output
@ -246,6 +253,7 @@ class TensorNameMap:
"transformer.h.{bid}.attn.attention.out_proj", # exaone "transformer.h.{bid}.attn.attention.out_proj", # exaone
"model.layers.{bid}.self_attn.o_proj", # llama4 "model.layers.{bid}.self_attn.o_proj", # llama4
"transformer_encoder.{bid}.wo", # neobert "transformer_encoder.{bid}.wo", # neobert
"model.transformer.blocks.{bid}.attn_out", # llada
), ),
# Attention output norm # Attention output norm
@ -291,6 +299,7 @@ class TensorNameMap:
"model.layers.{bid}.post_attention_layernorm", # llama4 "model.layers.{bid}.post_attention_layernorm", # llama4
"transformer_encoder.{bid}.ffn_norm", # neobert "transformer_encoder.{bid}.ffn_norm", # neobert
"model.layers.layers.{bid}.pre_mlp_norm", # plamo2 "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
"model.transformer.blocks.{bid}.ff_norm", # llada
), ),
# Post feed-forward norm # Post feed-forward norm
@ -364,6 +373,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w12", # neobert "transformer_encoder.{bid}.ffn.w12", # neobert
"model.layers.{bid}.block_sparse_moe.up", # smallthinker "model.layers.{bid}.block_sparse_moe.up", # smallthinker
"model.transformer.blocks.{bid}.up_proj", # llada
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -405,6 +415,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.c_fc_0", # exaone "transformer.h.{bid}.mlp.c_fc_0", # exaone
"model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
"model.layers.{bid}.block_sparse_moe.gate", # smallthinker "model.layers.{bid}.block_sparse_moe.gate", # smallthinker
"model.transformer.blocks.{bid}.ff_proj", # llada
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -454,6 +465,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
"transformer_encoder.{bid}.ffn.w3", # neobert "transformer_encoder.{bid}.ffn.w3", # neobert
"model.layers.{bid}.block_sparse_moe.down", # smallthinker "model.layers.{bid}.block_sparse_moe.down", # smallthinker
"model.transformer.blocks.{bid}.ff_out", # llada
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (

View file

@ -537,6 +537,9 @@ extern "C" {
// Returns true if the model is recurrent (like Mamba, RWKV, etc.) // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model); LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
// Returns true if the model is diffusion-based (like LLaDA, Dream, etc.)
LLAMA_API bool llama_model_is_diffusion(const struct llama_model * model);
// Returns 0 on success // Returns 0 on success
LLAMA_API uint32_t llama_model_quantize( LLAMA_API uint32_t llama_model_quantize(
const char * fname_inp, const char * fname_inp,

View file

@ -89,6 +89,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LFM2, "lfm2" }, { LLM_ARCH_LFM2, "lfm2" },
{ LLM_ARCH_DREAM, "dream" }, { LLM_ARCH_DREAM, "dream" },
{ LLM_ARCH_SMALLTHINKER, "smallthinker" }, { LLM_ARCH_SMALLTHINKER, "smallthinker" },
{ LLM_ARCH_LLADA, "llada" },
{ LLM_ARCH_UNKNOWN, "(unknown)" }, { LLM_ARCH_UNKNOWN, "(unknown)" },
}; };
@ -1972,6 +1973,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
}, },
}, },
{
LLM_ARCH_LLADA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2224,6 +2242,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
bool llm_arch_is_diffusion(const llm_arch & arch) { bool llm_arch_is_diffusion(const llm_arch & arch) {
switch (arch) { switch (arch) {
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
return true; return true;
default: default:
return false; return false;

View file

@ -93,6 +93,7 @@ enum llm_arch {
LLM_ARCH_LFM2, LLM_ARCH_LFM2,
LLM_ARCH_DREAM, LLM_ARCH_DREAM,
LLM_ARCH_SMALLTHINKER, LLM_ARCH_SMALLTHINKER,
LLM_ARCH_LLADA,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };

View file

@ -869,6 +869,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.causal_attn = false; hparams.causal_attn = false;
} }
break; break;
case LLM_ARCH_LLADA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
// LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
switch (hparams.n_layer) {
case 32:
type = LLM_TYPE_8B;
break;
default:
type = LLM_TYPE_UNKNOWN;
}
// Set non-causal attention for diffusion models
hparams.causal_attn = false;
}
break;
case LLM_ARCH_QWEN2MOE: case LLM_ARCH_QWEN2MOE:
{ {
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false); ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
@ -2149,6 +2164,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
} }
} }
} break; } break;
case LLM_ARCH_LLADA:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output =
create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
// Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
layer.wq =
create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
// No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
layer.wo =
create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
// optional MLP bias
layer.ffn_gate_b =
create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
layer.ffn_down_b =
create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
}
}
break;
case LLM_ARCH_LLAMA4: case LLM_ARCH_LLAMA4:
{ {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -8042,6 +8104,106 @@ struct llm_build_dream : public llm_graph_context {
} }
}; };
struct llm_build_llada : public llm_graph_context {
llm_build_llada(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr,
1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_qwen2vl : public llm_graph_context { struct llm_build_qwen2vl : public llm_graph_context {
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
@ -17201,6 +17363,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
case LLM_ARCH_NEO_BERT: case LLM_ARCH_NEO_BERT:
case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_DREAM: case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
{ {
res = nullptr; res = nullptr;
} break; } break;
@ -17367,6 +17530,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_dream>(*this, params); llm = std::make_unique<llm_build_dream>(*this, params);
} }
break; break;
case LLM_ARCH_LLADA:
{
llm = std::make_unique<llm_build_llada>(*this, params);
}
break;
case LLM_ARCH_QWEN2VL: case LLM_ARCH_QWEN2VL:
{ {
llm = std::make_unique<llm_build_qwen2vl>(*this, params); llm = std::make_unique<llm_build_qwen2vl>(*this, params);
@ -17765,6 +17933,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values // use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLAMA4: case LLM_ARCH_LLAMA4:
case LLM_ARCH_DECI: case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN: case LLM_ARCH_BAICHUAN:
@ -17943,6 +18112,10 @@ bool llama_model_is_recurrent(const llama_model * model) {
return llm_arch_is_recurrent(model->arch); return llm_arch_is_recurrent(model->arch);
} }
bool llama_model_is_diffusion(const llama_model * model) {
return llm_arch_is_diffusion(model->arch);
}
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) { const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
return model->tensors_by_name; return model->tensors_by_name;
} }