Add LLaDA 8b Diffusion model (#14771)

* Add support for Llada-8b: diffusion model

* Add README

* Fix README and convert_hf_to_gguf

* convert_hf_to_gguf.py: address review comments

* Make everything in a single example

* Remove model-specific sampling

* Remove unused argmax

* Remove braced initializers, improve README.md a bit

* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps

* Remove adding the mask token

* Move add_add_bos_token to set_vocab

* use add_bool in gguf_writer.py
This commit is contained in:
Aman Gupta 2025-07-31 19:49:09 +08:00 committed by GitHub
parent 11490b3672
commit 8a4a856277
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 931 additions and 385 deletions

View file

@ -869,6 +869,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.causal_attn = false;
}
break;
case LLM_ARCH_LLADA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
// LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
switch (hparams.n_layer) {
case 32:
type = LLM_TYPE_8B;
break;
default:
type = LLM_TYPE_UNKNOWN;
}
// Set non-causal attention for diffusion models
hparams.causal_attn = false;
}
break;
case LLM_ARCH_QWEN2MOE:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
@ -2149,6 +2164,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_LLADA:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output =
create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
// Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
layer.wq =
create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
// No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
layer.wo =
create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
// optional MLP bias
layer.ffn_gate_b =
create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
layer.ffn_down_b =
create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
}
}
break;
case LLM_ARCH_LLAMA4:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -8042,6 +8104,106 @@ struct llm_build_dream : public llm_graph_context {
}
};
struct llm_build_llada : public llm_graph_context {
llm_build_llada(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr,
1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
struct llm_build_qwen2vl : public llm_graph_context {
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@ -17201,6 +17363,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
case LLM_ARCH_NEO_BERT:
case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
{
res = nullptr;
} break;
@ -17367,6 +17530,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_dream>(*this, params);
}
break;
case LLM_ARCH_LLADA:
{
llm = std::make_unique<llm_build_llada>(*this, params);
}
break;
case LLM_ARCH_QWEN2VL:
{
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
@ -17765,6 +17933,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLAMA4:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
@ -17943,6 +18112,10 @@ bool llama_model_is_recurrent(const llama_model * model) {
return llm_arch_is_recurrent(model->arch);
}
bool llama_model_is_diffusion(const llama_model * model) {
return llm_arch_is_diffusion(model->arch);
}
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
return model->tensors_by_name;
}