mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-13 10:29:43 +00:00
Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model * Add README * Fix README and convert_hf_to_gguf * convert_hf_to_gguf.py: address review comments * Make everything in a single example * Remove model-specific sampling * Remove unused argmax * Remove braced initializers, improve README.md a bit * Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps * Remove adding the mask token * Move add_add_bos_token to set_vocab * use add_bool in gguf_writer.py
This commit is contained in:
parent
11490b3672
commit
8a4a856277
12 changed files with 931 additions and 385 deletions
|
@ -869,6 +869,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
hparams.causal_attn = false;
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
// LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
|
||||
switch (hparams.n_layer) {
|
||||
case 32:
|
||||
type = LLM_TYPE_8B;
|
||||
break;
|
||||
default:
|
||||
type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
// Set non-causal attention for diffusion models
|
||||
hparams.causal_attn = false;
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
|
@ -2149,6 +2164,53 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (output == NULL) {
|
||||
output =
|
||||
create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
// Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
|
||||
layer.wq =
|
||||
create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
// No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
|
||||
layer.wo =
|
||||
create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
|
||||
TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
|
||||
|
||||
// optional MLP bias
|
||||
layer.ffn_gate_b =
|
||||
create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_down_b =
|
||||
create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLAMA4:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
@ -8042,6 +8104,106 @@ struct llm_build_dream : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_llada : public llm_graph_context {
|
||||
llm_build_llada(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context(params) {
|
||||
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// Non-causal attention for diffusion
|
||||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr,
|
||||
1.0f / sqrtf(float(n_embd_head)), il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_qwen2vl : public llm_graph_context {
|
||||
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
@ -17201,6 +17363,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
case LLM_ARCH_DREAM:
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
res = nullptr;
|
||||
} break;
|
||||
|
@ -17367,6 +17530,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
llm = std::make_unique<llm_build_dream>(*this, params);
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_LLADA:
|
||||
{
|
||||
llm = std::make_unique<llm_build_llada>(*this, params);
|
||||
}
|
||||
break;
|
||||
case LLM_ARCH_QWEN2VL:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen2vl>(*this, params);
|
||||
|
@ -17765,6 +17933,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|||
|
||||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_LLADA:
|
||||
case LLM_ARCH_LLAMA4:
|
||||
case LLM_ARCH_DECI:
|
||||
case LLM_ARCH_BAICHUAN:
|
||||
|
@ -17943,6 +18112,10 @@ bool llama_model_is_recurrent(const llama_model * model) {
|
|||
return llm_arch_is_recurrent(model->arch);
|
||||
}
|
||||
|
||||
bool llama_model_is_diffusion(const llama_model * model) {
|
||||
return llm_arch_is_diffusion(model->arch);
|
||||
}
|
||||
|
||||
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
|
||||
return model->tensors_by_name;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue