vulkan: use vector loads in scalar flash attention shader

This commit is contained in:
Jeff Bolz 2025-05-07 13:35:13 -05:00
parent 3a8d954e0c
commit 876e6617a7
2 changed files with 45 additions and 32 deletions

View file

@ -1911,7 +1911,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
auto rows_cols = fa_rows_cols(scalar, D, clamp, type, small_rows);
// D_split can't be larger than a subgroup because we use subgroupShuffle to reduce it.
const uint32_t D_split = std::min(device->subgroup_size, 16u);
// D_split can't be larger than the LSB of D divided by 4 due to vectorization in the shader.
const uint32_t D_lsb = D ^ (D & (D-1));
uint32_t D_split = std::min(std::min(device->subgroup_size, 16u), D_lsb / 4);
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((GGML_KQ_MASK_PAD % rows_cols[0]) == 0);

View file

@ -64,8 +64,11 @@ layout (push_constant) uniform parameter {
} p;
layout (binding = 0) readonly buffer Q {float data_q[];};
layout (binding = 0) readonly buffer QV4 {vec4 data_qv4[];};
layout (binding = 1) readonly buffer K {float16_t data_k[];};
layout (binding = 1) readonly buffer KV4 {f16vec4 data_kv4[];};
layout (binding = 2) readonly buffer V {float16_t data_v[];};
layout (binding = 2) readonly buffer VV4 {f16vec4 data_vv4[];};
layout (binding = 3) readonly buffer M {float16_t data_m[];};
layout (binding = 4) writeonly buffer O {D_TYPE data_o[];};
@ -161,19 +164,19 @@ void main() {
uint32_t m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV;
uint32_t q_offset = (iq2*p.nb02+iq3*p.nb03) / 4;
float Qf[Br][D_per_thread];
vec4 Qf[Br][D_per_thread / 4];
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
if (i * Br + r < N) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
Qf[r][d] = float(data_q[q_offset + (i * Br + r) * q_stride + d * D_split + d_tid]) * p.scale;
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
Qf[r][d] = vec4(data_qv4[q_offset / 4 + (i * Br + r) * q_stride / 4 + d * D_split + d_tid]) * p.scale;
}
}
}
float Of[Br][D_per_thread];
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
vec4 Of[Br][D_per_thread / 4];
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Of[r][d] = 0.0;
Of[r][d] = vec4(0.0);
}
}
@ -212,10 +215,10 @@ void main() {
uint32_t k_offset = (ik2*p.nb12 + ik3*p.nb13) / 2;
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
float K_Tf = float(data_k[k_offset + (j * Bc + c * cols_per_iter + col_tid) * k_stride + d * D_split + d_tid]);
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
vec4 K_Tf = vec4(data_kv4[k_offset / 4 + (j * Bc + c * cols_per_iter + col_tid) * k_stride / 4 + d * D_split + d_tid]);
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Sf[r][c] += Qf[r][d] * K_Tf;
Sf[r][c] += dot(Qf[r][d], K_Tf);
}
}
}
@ -275,21 +278,21 @@ void main() {
uint32_t v_offset = (iv2*p.nb22 + iv3*p.nb23) / 2;
float PVf[Br][D_per_thread];
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
vec4 PVf[Br][D_per_thread / 4];
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
PVf[r][d] = 0.0;
PVf[r][d] = vec4(0.0);
}
}
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
float Vf = float(data_v[v_offset + (j * Bc + c * cols_per_iter + col_tid) * v_stride + d * D_split + d_tid]);
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
vec4 Vf = vec4(data_vv4[v_offset / 4 + (j * Bc + c * cols_per_iter + col_tid) * v_stride / 4 + d * D_split + d_tid]);
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
PVf[r][d] += Pf[r][c] * Vf;
}
}
}
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Of[r][d] = eMf[r] * Of[r][d] + PVf[r][d];
}
@ -337,23 +340,25 @@ void main() {
Lf[r] = tmpsh[d_tid];
barrier();
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
Of[r][d] = eMf * Of[r][d];
tmpsh[tid] = Of[r][d];
[[unroll]] for (uint32_t c = 0; c < 4; ++c) {
tmpsh[tid] = Of[r][d][c];
barrier();
[[unroll]] for (int s = int(gl_WorkGroupSize.x) / 2; s >= D_split; s >>= 1) {
if (tid < s) {
Of[r][d] += tmpsh[tid + s];
tmpsh[tid] = Of[r][d];
Of[r][d][c] += tmpsh[tid + s];
tmpsh[tid] = Of[r][d][c];
}
barrier();
}
Of[r][d] = tmpsh[d_tid];
Of[r][d][c] = tmpsh[d_tid];
barrier();
}
}
}
// If there is split_k, then the split_k resolve shader does the final
@ -363,8 +368,10 @@ void main() {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
if (r < N) {
for (uint32_t d = 0; d < D_per_thread; ++d) {
perElemOpGqaStore(r, d * D_split + d_tid, Of[r][d], o_offset, iq2, N);
for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
perElemOpGqaStore(r, 4*(d * D_split + d_tid) + comp, Of[r][d][comp], o_offset, iq2, N);
}
}
}
}
@ -385,7 +392,7 @@ void main() {
Lfrcp[r] = 1.0 / Lf[r];
}
[[unroll]] for (uint32_t d = 0; d < D_per_thread; ++d) {
[[unroll]] for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Of[r][d] *= Lfrcp[r];
}
@ -396,16 +403,20 @@ void main() {
if (p.gqa_ratio > 1) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
if (r < N) {
for (uint32_t d = 0; d < D_per_thread; ++d) {
perElemOpGqaStore(r, d * D_split + d_tid, Of[r][d], o_offset, iq2, N);
for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
perElemOpGqaStore(r, 4*(d * D_split + d_tid) + comp, Of[r][d][comp], o_offset, iq2, N);
}
}
}
}
} else {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
if (i * Br + r < N) {
for (uint32_t d = 0; d < D_per_thread; ++d) {
data_o[o_offset + iq2 * D + (i * Br + r) * p.ne1 * D + d * D_split + d_tid] = D_TYPE(Of[r][d]);
for (uint32_t d = 0; d < D_per_thread / 4; ++d) {
[[unroll]] for (uint32_t comp = 0; comp < 4; ++comp) {
data_o[o_offset + iq2 * D + (i * Br + r) * p.ne1 * D + 4*(d * D_split + d_tid) + comp] = D_TYPE(Of[r][d][comp]);
}
}
}
}