Merge branch 'upstream' into concedo_experimental

# Conflicts:
#	.github/workflows/docker.yml
#	examples/cvector-generator/mean.hpp
#	examples/cvector-generator/pca.hpp
#	examples/export-lora/export-lora.cpp
#	examples/rpc/rpc-server.cpp
#	examples/run/README.md
#	examples/run/run.cpp
#	examples/server/CMakeLists.txt
#	examples/server/README.md
#	ggml/src/CMakeLists.txt
#	ggml/src/ggml-cpu/CMakeLists.txt
#	ggml/src/ggml-vulkan/ggml-vulkan.cpp
#	scripts/compare-llama-bench.py
#	scripts/hf.sh
#	tests/test-chat-template.cpp
This commit is contained in:
Concedo 2024-12-28 12:48:34 +08:00
commit 7c671f289e
27 changed files with 26062 additions and 13566 deletions

View file

@ -529,9 +529,19 @@ class Model:
else: else:
token: str = reverse_vocab[i] token: str = reverse_vocab[i]
if token in added_vocab: if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not tokenizer.added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL) toktypes.append(gguf.TokenType.CONTROL)
else: else:
# NOTE: this was added for Gemma.
# Encoding and decoding the tokens above isn't sufficient for this case.
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes.append(gguf.TokenType.USER_DEFINED) toktypes.append(gguf.TokenType.USER_DEFINED)
else: else:
@ -575,6 +585,9 @@ class Model:
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b # ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon" res = "falcon"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5 # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge" res = "bert-bge"
@ -671,6 +684,9 @@ class Model:
if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb": if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
# ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
res = "gigachat" res = "gigachat"
if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
# ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
res = "megrez"
if res is None: if res is None:
logger.warning("\n") logger.warning("\n")
@ -1679,6 +1695,184 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}") raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeciLMForCausalLM")
class DeciModel(Model):
model_arch = gguf.MODEL_ARCH.DECI
@staticmethod
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
# DeciLM-specific code
intermediate_size = int(2 * ffn_mult * n_embd / 3)
return DeciModel._find_multiple(intermediate_size, 256)
@staticmethod
def _find_multiple(n: int, k: int) -> int:
# DeciLM-specific code
if n % k == 0:
return n
return n + k - (n % k)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
_block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
assert self.block_count == len(_block_configs)
self._num_kv_heads = list()
self._num_heads = list()
_ffn_multipliers = list()
# ***linear attention layer***
# if n_heads_in_group is None and replace_with_linear is True
# then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
# ***attention-free layer***
# if n_heads_in_group is None and replace_with_linear is False
# then _num_kv_heads[il] is 0 and _num_heads[il] is 0
# ***normal attention-layer***
# if n_heads_in_group is not None, then
# _num_kv_heads[il] is num_attention_head // n_heads_in_group and
# _num_heads[il] is num_attention_head
for il in range(len(_block_configs)):
if _block_configs[il]["attention"]["n_heads_in_group"] is None:
if _block_configs[il]["attention"]["replace_with_linear"] is True:
self._num_kv_heads.append(0)
self._num_heads.append(self.hparams["num_attention_heads"])
else:
self._num_kv_heads.append(0)
self._num_heads.append(0)
else:
self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
self._num_heads.append(self.hparams["num_attention_heads"])
_ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(_ffn_multipliers)
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
self._ffn_dims: list[int] = [
DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
for multiplier in _ffn_multipliers
]
def set_vocab(self):
# Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
# eos_token from '|eot_id|' to '|end_of_text|'
if self.hparams.get("vocab_size", 128256) == 128256:
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(
self.dir_model, load_merges=True,
special_token_types = ['bos', 'eos', 'eom', 'eot']
)
special_vocab._set_special_token("bos", 128000)
special_vocab._set_special_token("eos", 128001)
special_vocab._set_special_token("eom", 128008)
special_vocab._set_special_token("eot", 128009)
special_vocab.add_to_gguf(self.gguf_writer)
else:
# DeciLM-7B
self._set_vocab_llama_hf()
# self._set_vocab_gpt2()
def set_gguf_parameters(self):
if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(self._ffn_dims)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
self.gguf_writer.add_head_count(self._num_heads)
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_file_type(self.ftype)
else: # DeciLM-7B
super().set_gguf_parameters()
if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
assert self.block_count == len(self._num_kv_heads)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
if bid is not None:
if "num_key_value_heads_per_layer" in self.hparams:
n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
elif "block_configs" in self.hparams:
n_kv_head = self._num_kv_heads[bid]
n_head = self._num_heads[bid]
else:
n_kv_head = self.hparams.get("num_key_value_heads")
else:
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = DeciModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
rope_factors = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
rope_factors.append(1)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
def prepare_tensors(self):
super().prepare_tensors()
@Model.register("BitnetForCausalLM") @Model.register("BitnetForCausalLM")
class BitnetModel(Model): class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET model_arch = gguf.MODEL_ARCH.BITNET
@ -2628,7 +2822,7 @@ class InternLM2Model(Model):
return [(self.map_tensor_name(name), data_torch)] return [(self.map_tensor_name(name), data_torch)]
@Model.register("BertModel", "CamembertModel") @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
class BertModel(Model): class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT model_arch = gguf.MODEL_ARCH.BERT
@ -2694,10 +2888,25 @@ class BertModel(Model):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused del bid # unused
if name.startswith("bert."):
name = name[5:]
if name.endswith(".gamma"):
name = name[:-6] + ".weight"
if name.endswith(".beta"):
name = name[:-5] + ".bias"
# we are only using BERT for embeddings so we don't need the pooling layer # we are only using BERT for embeddings so we don't need the pooling layer
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
return [] # we don't need these return [] # we don't need these
if name.startswith("cls.predictions"):
return []
if name.startswith("cls.seq_relationship"):
return []
return [(self.map_tensor_name(name), data_torch)] return [(self.map_tensor_name(name), data_torch)]

View file

@ -72,6 +72,7 @@ models = [
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, {"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
@ -105,6 +106,7 @@ models = [
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
] ]

View file

@ -92,6 +92,7 @@ struct slot_params {
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
std::vector<std::string> antiprompt; std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false; bool timings_per_token = false;
bool post_sampling_probs = false; bool post_sampling_probs = false;
bool ignore_eos = false; bool ignore_eos = false;
@ -209,6 +210,7 @@ struct server_task {
params.n_discard = json_value(data, "n_discard", defaults.n_discard); params.n_discard = json_value(data, "n_discard", defaults.n_discard);
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
@ -522,6 +524,7 @@ struct server_task_result_cmpl_final : server_task_result {
bool post_sampling_probs; bool post_sampling_probs;
std::vector<completion_token_output> probs_output; std::vector<completion_token_output> probs_output;
std::vector<std::string> response_fields;
slot_params generation_params; slot_params generation_params;
@ -568,7 +571,7 @@ struct server_task_result_cmpl_final : server_task_result {
if (!stream && !probs_output.empty()) { if (!stream && !probs_output.empty()) {
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
} }
return res; return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
} }
json to_json_oaicompat_chat() { json to_json_oaicompat_chat() {
@ -598,6 +601,7 @@ struct server_task_result_cmpl_final : server_task_result {
{"choices", json::array({choice})}, {"choices", json::array({choice})},
{"created", t}, {"created", t},
{"model", oaicompat_model}, {"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion"}, {"object", "chat.completion"},
{"usage", json { {"usage", json {
{"completion_tokens", n_decoded}, {"completion_tokens", n_decoded},
@ -636,6 +640,7 @@ struct server_task_result_cmpl_final : server_task_result {
{"created", t}, {"created", t},
{"id", oaicompat_cmpl_id}, {"id", oaicompat_cmpl_id},
{"model", oaicompat_model}, {"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"}, {"object", "chat.completion.chunk"},
{"usage", json { {"usage", json {
{"completion_tokens", n_decoded}, {"completion_tokens", n_decoded},
@ -765,6 +770,7 @@ struct server_task_result_cmpl_partial : server_task_result {
{"created", t}, {"created", t},
{"id", oaicompat_cmpl_id}, {"id", oaicompat_cmpl_id},
{"model", oaicompat_model}, {"model", oaicompat_model},
{"system_fingerprint", build_info},
{"object", "chat.completion.chunk"} {"object", "chat.completion.chunk"}
}; };
@ -2063,6 +2069,7 @@ struct server_context {
res->tokens = slot.generated_tokens; res->tokens = slot.generated_tokens;
res->timings = slot.get_timings(); res->timings = slot.get_timings();
res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
res->response_fields = slot.params.response_fields;
res->truncated = slot.truncated; res->truncated = slot.truncated;
res->n_decoded = slot.n_decoded; res->n_decoded = slot.n_decoded;
@ -3476,6 +3483,7 @@ int main(int argc, char ** argv) {
{ "total_slots", ctx_server.params_base.n_parallel }, { "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model }, { "model_path", ctx_server.params_base.model },
{ "chat_template", llama_get_chat_template(ctx_server.model) }, { "chat_template", llama_get_chat_template(ctx_server.model) },
{ "build_info", build_info },
}; };
res_ok(res, data); res_ok(res, data);
@ -3697,7 +3705,7 @@ int main(int argc, char ** argv) {
{"object", "list"}, {"object", "list"},
{"data", { {"data", {
{ {
{"id", params.model_alias}, {"id", params.model_alias.empty() ? params.model : params.model_alias},
{"object", "model"}, {"object", "model"},
{"created", std::time(0)}, {"created", std::time(0)},
{"owned_by", "llamacpp"}, {"owned_by", "llamacpp"},
@ -3782,6 +3790,17 @@ int main(int argc, char ** argv) {
return; return;
} }
bool use_base64 = false;
if (body.count("encoding_format") != 0) {
const std::string& format = body.at("encoding_format");
if (format == "base64") {
use_base64 = true;
} else if (format != "float") {
res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
return;
}
}
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
for (const auto & tokens : tokenized_prompts) { for (const auto & tokens : tokenized_prompts) {
// this check is necessary for models that do not add BOS token to the input // this check is necessary for models that do not add BOS token to the input
@ -3833,7 +3852,7 @@ int main(int argc, char ** argv) {
} }
// write JSON response // write JSON response
json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses); json root = oaicompat ? format_embeddings_response_oaicompat(body, responses, use_base64) : json(responses);
res_ok(res, root); res_ok(res, root);
}; };

View file

@ -31,6 +31,7 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte
}) })
assert res.status_code == 200 assert res.status_code == 200
assert "cmpl" in res.body["id"] # make sure the completion id has the expected format assert "cmpl" in res.body["id"] # make sure the completion id has the expected format
assert res.body["system_fingerprint"].startswith("b")
assert res.body["model"] == model if model is not None else server.model_alias assert res.body["model"] == model if model is not None else server.model_alias
assert res.body["usage"]["prompt_tokens"] == n_prompt assert res.body["usage"]["prompt_tokens"] == n_prompt
assert res.body["usage"]["completion_tokens"] == n_predicted assert res.body["usage"]["completion_tokens"] == n_predicted
@ -63,6 +64,7 @@ def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_conte
last_cmpl_id = None last_cmpl_id = None
for data in res: for data in res:
choice = data["choices"][0] choice = data["choices"][0]
assert data["system_fingerprint"].startswith("b")
assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future
if last_cmpl_id is None: if last_cmpl_id is None:
last_cmpl_id = data["id"] last_cmpl_id = data["id"]
@ -92,6 +94,7 @@ def test_chat_completion_with_openai_library():
seed=42, seed=42,
temperature=0.8, temperature=0.8,
) )
assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b")
assert res.choices[0].finish_reason == "length" assert res.choices[0].finish_reason == "length"
assert res.choices[0].message.content is not None assert res.choices[0].message.content is not None
assert match_regex("(Suddenly)+", res.choices[0].message.content) assert match_regex("(Suddenly)+", res.choices[0].message.content)

View file

@ -95,7 +95,7 @@ def test_consistent_result_same_seed(n_slots: int):
res = server.make_request("POST", "/completion", data={ res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is", "prompt": "I believe the meaning of life is",
"seed": 42, "seed": 42,
"temperature": 1.0, "temperature": 0.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
}) })
if last_res is not None: if last_res is not None:
@ -120,9 +120,10 @@ def test_different_result_different_seed(n_slots: int):
assert res.body["content"] != last_res.body["content"] assert res.body["content"] != last_res.body["content"]
last_res = res last_res = res
# TODO figure why it don't work with temperature = 1
# @pytest.mark.parametrize("temperature", [0.0, 1.0])
@pytest.mark.parametrize("n_batch", [16, 32]) @pytest.mark.parametrize("n_batch", [16, 32])
@pytest.mark.parametrize("temperature", [0.0, 1.0]) @pytest.mark.parametrize("temperature", [0.0])
def test_consistent_result_different_batch_size(n_batch: int, temperature: float): def test_consistent_result_different_batch_size(n_batch: int, temperature: float):
global server global server
server.n_batch = n_batch server.n_batch = n_batch
@ -257,6 +258,40 @@ def test_completion_parallel_slots(n_slots: int, n_requests: int):
# assert match_regex(re_content, res.body["content"]) # assert match_regex(re_content, res.body["content"])
@pytest.mark.parametrize(
"prompt,n_predict,response_fields",
[
("I believe the meaning of life is", 8, []),
("I believe the meaning of life is", 32, ["content", "generation_settings/n_predict", "prompt"]),
],
)
def test_completion_response_fields(
prompt: str, n_predict: int, response_fields: list[str]
):
global server
server.start()
res = server.make_request(
"POST",
"/completion",
data={
"n_predict": n_predict,
"prompt": prompt,
"response_fields": response_fields,
},
)
assert res.status_code == 200
assert "content" in res.body
assert len(res.body["content"])
if len(response_fields):
assert res.body["generation_settings/n_predict"] == n_predict
assert res.body["prompt"] == "<s> " + prompt
assert isinstance(res.body["content"], str)
assert len(res.body) == len(response_fields)
else:
assert len(res.body)
assert "generation_settings" in res.body
def test_n_probs(): def test_n_probs():
global server global server
server.start() server.start()

View file

@ -1,3 +1,5 @@
import base64
import struct
import pytest import pytest
from openai import OpenAI from openai import OpenAI
from utils import * from utils import *
@ -194,3 +196,42 @@ def test_embedding_usage_multiple():
assert res.status_code == 200 assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == 2 * 9 assert res.body['usage']['prompt_tokens'] == 2 * 9
def test_embedding_openai_library_base64():
server.start()
test_input = "Test base64 embedding output"
# get embedding in default format
res = server.make_request("POST", "/v1/embeddings", data={
"input": test_input
})
assert res.status_code == 200
vec0 = res.body["data"][0]["embedding"]
# get embedding in base64 format
res = server.make_request("POST", "/v1/embeddings", data={
"input": test_input,
"encoding_format": "base64"
})
assert res.status_code == 200
assert "data" in res.body
assert len(res.body["data"]) == 1
embedding_data = res.body["data"][0]
assert "embedding" in embedding_data
assert isinstance(embedding_data["embedding"], str)
# Verify embedding is valid base64
decoded = base64.b64decode(embedding_data["embedding"])
# Verify decoded data can be converted back to float array
float_count = len(decoded) // 4 # 4 bytes per float
floats = struct.unpack(f'{float_count}f', decoded)
assert len(floats) > 0
assert all(isinstance(x, float) for x in floats)
assert len(floats) == len(vec0)
# make sure the decoded data is the same as the original
for x, y in zip(floats, vec0):
assert abs(x - y) < EPSILON

View file

@ -3,6 +3,7 @@
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include "llama.h" #include "llama.h"
#include "common/base64.hpp"
#ifndef NDEBUG #ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error // crash the server in debug mode, otherwise send an http 500 error
@ -56,6 +57,8 @@ static T json_value(const json & body, const std::string & key, const T & defaul
} }
} }
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
// //
// tokenizer and input processing utils // tokenizer and input processing utils
// //
@ -88,6 +91,28 @@ static bool json_is_array_of_mixed_numbers_strings(const json & data) {
return false; return false;
} }
// get value by path(key1 / key2)
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
json result = json::object();
for (const std::string & path : paths) {
json current = js;
const auto keys = string_split<std::string>(path, /*separator*/ '/');
bool valid_path = true;
for (const std::string & k : keys) {
if (valid_path && current.is_object() && current.contains(k)) {
current = current[k];
} else {
valid_path = false;
}
}
if (valid_path) {
result[path] = current;
}
}
return result;
}
/** /**
* this handles 2 cases: * this handles 2 cases:
* - only string, example: "string" * - only string, example: "string"
@ -589,16 +614,31 @@ static json oaicompat_completion_params_parse(
return llama_params; return llama_params;
} }
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
json data = json::array(); json data = json::array();
int32_t n_tokens = 0; int32_t n_tokens = 0;
int i = 0; int i = 0;
for (const auto & elem : embeddings) { for (const auto & elem : embeddings) {
data.push_back(json{ json embedding_obj;
if (use_base64) {
const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
const char* data_ptr = reinterpret_cast<const char*>(vec.data());
size_t data_size = vec.size() * sizeof(float);
embedding_obj = {
{"embedding", base64::encode(data_ptr, data_size)},
{"index", i++},
{"object", "embedding"},
{"encoding_format", "base64"}
};
} else {
embedding_obj = {
{"embedding", json_value(elem, "embedding", json::array())}, {"embedding", json_value(elem, "embedding", json::array())},
{"index", i++}, {"index", i++},
{"object", "embedding"} {"object", "embedding"}
}); };
}
data.push_back(embedding_obj);
n_tokens += json_value(elem, "tokens_evaluated", 0); n_tokens += json_value(elem, "tokens_evaluated", 0);
} }

View file

@ -66,6 +66,26 @@
#include "ggml-kompute.h" #include "ggml-kompute.h"
#endif #endif
// disable C++17 deprecation warning for std::codecvt_utf8
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
static std::wstring utf8_to_utf16(const std::string & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.from_bytes(str);
}
static std::string utf16_to_utf8(const std::wstring & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.to_bytes(str);
}
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
#ifdef _WIN32 #ifdef _WIN32
using dl_handle = std::remove_pointer_t<HMODULE>; using dl_handle = std::remove_pointer_t<HMODULE>;
@ -88,11 +108,6 @@ static dl_handle * dl_load_library(const std::wstring & path) {
return handle; return handle;
} }
static dl_handle * dl_load_library(const std::string & path) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return dl_load_library(converter.from_bytes(path));
}
static void * dl_get_sym(dl_handle * handle, const char * name) { static void * dl_get_sym(dl_handle * handle, const char * name) {
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS); DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS); SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
@ -114,8 +129,8 @@ struct dl_handle_deleter {
} }
}; };
static void * dl_load_library(const std::string & path) { static void * dl_load_library(const std::wstring & path) {
dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL); dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
return handle; return handle;
} }
@ -202,11 +217,11 @@ struct ggml_backend_registry {
devices.push_back(device); devices.push_back(device);
} }
ggml_backend_reg_t load_backend(const char * path, bool silent) { ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
dl_handle_ptr handle { dl_load_library(path) }; dl_handle_ptr handle { dl_load_library(path) };
if (!handle) { if (!handle) {
if (!silent) { if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path); GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
} }
return nullptr; return nullptr;
} }
@ -214,7 +229,7 @@ struct ggml_backend_registry {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn && score_fn() == 0) { if (score_fn && score_fn() == 0) {
if (!silent) { if (!silent) {
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path); GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
} }
return nullptr; return nullptr;
} }
@ -222,7 +237,7 @@ struct ggml_backend_registry {
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init"); auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
if (!backend_init_fn) { if (!backend_init_fn) {
if (!silent) { if (!silent) {
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path); GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
} }
return nullptr; return nullptr;
} }
@ -231,16 +246,16 @@ struct ggml_backend_registry {
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) { if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
if (!silent) { if (!silent) {
if (!reg) { if (!reg) {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path); GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
} else { } else {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n", GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
__func__, path, reg->api_version, GGML_BACKEND_API_VERSION); __func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
} }
} }
return nullptr; return nullptr;
} }
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path); GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
register_backend(reg, std::move(handle)); register_backend(reg, std::move(handle));
@ -376,14 +391,14 @@ ggml_backend_t ggml_backend_init_best(void) {
// Dynamic loading // Dynamic loading
ggml_backend_reg_t ggml_backend_load(const char * path) { ggml_backend_reg_t ggml_backend_load(const char * path) {
return get_reg().load_backend(path, false); return get_reg().load_backend(utf8_to_utf16(path), false);
} }
void ggml_backend_unload(ggml_backend_reg_t reg) { void ggml_backend_unload(ggml_backend_reg_t reg) {
get_reg().unload_backend(reg, true); get_reg().unload_backend(reg, true);
} }
static std::string get_executable_path() { static std::wstring get_executable_path() {
#if defined(__APPLE__) #if defined(__APPLE__)
// get executable path // get executable path
std::vector<char> path; std::vector<char> path;
@ -401,13 +416,17 @@ static std::string get_executable_path() {
if (last_slash != std::string::npos) { if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash); base_path = base_path.substr(0, last_slash);
} }
return base_path + "/"; return utf8_to_utf16(base_path + "/");
#elif defined(__linux__) #elif defined(__linux__) || defined(__FreeBSD__)
std::string base_path = "."; std::string base_path = ".";
std::vector<char> path(1024); std::vector<char> path(1024);
while (true) { while (true) {
// get executable path // get executable path
# if defined(__linux__)
ssize_t len = readlink("/proc/self/exe", path.data(), path.size()); ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
# elif defined(__FreeBSD__)
ssize_t len = readlink("/proc/curproc/file", path.data(), path.size());
# endif
if (len == -1) { if (len == -1) {
break; break;
} }
@ -423,58 +442,64 @@ static std::string get_executable_path() {
path.resize(path.size() * 2); path.resize(path.size() * 2);
} }
return base_path + "/"; return utf8_to_utf16(base_path + "/");
#elif defined(_WIN32) #elif defined(_WIN32)
std::vector<char> path(MAX_PATH); std::vector<wchar_t> path(MAX_PATH);
DWORD len = GetModuleFileNameA(NULL, path.data(), path.size()); DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
if (len == 0) { if (len == 0) {
return ""; return {};
} }
std::string base_path(path.data(), len); std::wstring base_path(path.data(), len);
// remove executable name // remove executable name
auto last_slash = base_path.find_last_of('\\'); auto last_slash = base_path.find_last_of('\\');
if (last_slash != std::string::npos) { if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash); base_path = base_path.substr(0, last_slash);
} }
return base_path + "\\"; return base_path + L"\\";
#else
return {};
#endif #endif
return ""; //fix for freebsd compile return L""; //fix for freebsd compile
} }
static std::string backend_filename_prefix() { static std::wstring backend_filename_prefix() {
#ifdef _WIN32 #ifdef _WIN32
return "ggml-"; return L"ggml-";
#else #else
return "libggml-"; return L"libggml-";
#endif #endif
} }
static std::string backend_filename_suffix() { static std::wstring backend_filename_suffix() {
#ifdef _WIN32 #ifdef _WIN32
return ".dll"; return L".dll";
#else #else
return ".so"; return L".so";
#endif
}
static std::wstring path_separator() {
#ifdef _WIN32
return L"\\";
#else
return L"/";
#endif #endif
} }
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) { static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths // enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths // TODO: search system paths
std::string file_prefix = backend_filename_prefix() + name + "-"; std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
std::vector<std::string> search_paths; std::vector<std::wstring> search_paths;
if (user_search_path == nullptr) { if (user_search_path == nullptr) {
search_paths.push_back("./"); search_paths.push_back(L"." + path_separator());
search_paths.push_back(get_executable_path()); search_paths.push_back(get_executable_path());
} else { } else {
#if defined(_WIN32) search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
search_paths.push_back(std::string(user_search_path) + "\\");
#else
search_paths.push_back(std::string(user_search_path) + "/");
#endif
} }
int best_score = 0; int best_score = 0;
std::string best_path; std::wstring best_path;
namespace fs = std::filesystem; namespace fs = std::filesystem;
for (const auto & search_path : search_paths) { for (const auto & search_path : search_paths) {
@ -484,27 +509,27 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied); fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) { for (const auto & entry : dir_it) {
if (entry.is_regular_file()) { if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string(); std::wstring filename = entry.path().filename().wstring();
std::string ext = entry.path().extension().string(); std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) { if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().c_str()) }; dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
if (!handle && !silent) { if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str()); GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
} }
if (handle) { if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn) { if (score_fn) {
int s = score_fn(); int s = score_fn();
#ifndef NDEBUG #ifndef NDEBUG
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s); GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
#endif #endif
if (s > best_score) { if (s > best_score) {
best_score = s; best_score = s;
best_path = entry.path().string(); best_path = entry.path().wstring();
} }
} else { } else {
if (!silent) { if (!silent) {
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str()); GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
} }
} }
} }
@ -516,15 +541,15 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) { if (best_score == 0) {
// try to load the base backend // try to load the base backend
for (const auto & search_path : search_paths) { for (const auto & search_path : search_paths) {
std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix(); std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
if (fs::exists(path)) { if (fs::exists(path)) {
return get_reg().load_backend(path.c_str(), silent); return get_reg().load_backend(path, silent);
} }
} }
return nullptr; return nullptr;
} }
return get_reg().load_backend(best_path.c_str(), silent); return get_reg().load_backend(best_path, silent);
} }
void ggml_backend_load_all() { void ggml_backend_load_all() {

View file

@ -989,7 +989,7 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
#define GGML_F16_STEP 32 #define GGML_F16_STEP 32
#define GGML_F16_EPR 4 #define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
float tmp[4]; float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]); tmp[0] = GGML_FP16_TO_FP32(x[0]);
@ -1000,7 +1000,7 @@ static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
return _mm_loadu_ps(tmp); return _mm_loadu_ps(tmp);
} }
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4]; float arr[4];
_mm_storeu_ps(arr, y); _mm_storeu_ps(arr, y);
@ -7456,14 +7456,14 @@ static void ggml_compute_forward_mul_mat(
if (src1_cont) { if (src1_cont) {
for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++) for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), if (!llamafile_sgemm(params,
ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type), nb01/ggml_type_size(src0->type),
(const char *)src1->data + i12*nb12 + i13*nb13, (const char *)src1->data + i12*nb12 + i13*nb13,
nb11/ggml_type_size(src1->type), nb11/ggml_type_size(src1->type),
(char *)dst->data + i12*nb2 + i13*nb3, (char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type), nb1/ggml_type_size(dst->type),
ith, nth,
src0->type, src0->type,
src1->type, src1->type,
dst->type)) dst->type))
@ -7508,14 +7508,14 @@ UseGgmlGemm1:;
for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i13 = 0; i13 < ne13; i13++)
for (int64_t i12 = 0; i12 < ne12; i12++) for (int64_t i12 = 0; i12 < ne12; i12++)
if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), if (!llamafile_sgemm(params,
ne01, ne11, ne00/ggml_blck_size(src0->type),
(const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
nb01/ggml_type_size(src0->type), nb01/ggml_type_size(src0->type),
(const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
row_size/ggml_type_size(vec_dot_type), row_size/ggml_type_size(vec_dot_type),
(char *)dst->data + i12*nb2 + i13*nb3, (char *)dst->data + i12*nb2 + i13*nb3,
nb1/ggml_type_size(dst->type), nb1/ggml_type_size(dst->type),
ith, nth,
src0->type, src0->type,
vec_dot_type, vec_dot_type,
dst->type)) dst->type))

View file

@ -53,6 +53,8 @@
#include "ggml-cpu-impl.h" #include "ggml-cpu-impl.h"
#include "ggml-quants.h" #include "ggml-quants.h"
#include <atomic>
#ifdef _MSC_VER #ifdef _MSC_VER
#define NOINLINE __declspec(noinline) #define NOINLINE __declspec(noinline)
#else #else
@ -134,6 +136,16 @@ inline __m512 madd(__m512 a, __m512 b, __m512 c) {
return _mm512_fmadd_ps(a, b, c); return _mm512_fmadd_ps(a, b, c);
} }
#endif #endif
#if defined(__AVX512BF16__)
template <>
inline __m512 madd(__m512bh a, __m512bh b, __m512 c) {
return _mm512_dpbf16_ps(c, a, b);
}
template <>
inline __m256 madd(__m256bh a, __m256bh b, __m256 c) {
return _mm256_dpbf16_ps(c, a, b);
}
#endif
#endif #endif
#if defined(__ARM_FEATURE_FMA) #if defined(__ARM_FEATURE_FMA)
@ -226,6 +238,13 @@ template <> inline __m256 load(const float *p) {
} }
#endif // __AVX__ #endif // __AVX__
#if defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m256 load(const ggml_bf16_t *p) {
return _mm256_castsi256_ps(
_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)p)), 16));
}
#endif // __AVX2__
#if defined(__F16C__) #if defined(__F16C__)
template <> inline __m256 load(const ggml_fp16_t *p) { template <> inline __m256 load(const ggml_fp16_t *p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p)); return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
@ -239,8 +258,27 @@ template <> inline __m512 load(const float *p) {
template <> inline __m512 load(const ggml_fp16_t *p) { template <> inline __m512 load(const ggml_fp16_t *p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
} }
template <> inline __m512 load(const ggml_bf16_t *p) {
return _mm512_castsi512_ps(
_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16));
}
#endif // __AVX512F__ #endif // __AVX512F__
#if defined(__AVX512BF16__)
template <> inline __m512bh load(const ggml_bf16_t *p) {
return (__m512bh)_mm512_loadu_ps((const float *)p);
}
template <> inline __m256bh load(const ggml_bf16_t *p) {
return (__m256bh)_mm256_loadu_ps((const float *)p);
}
template <> inline __m512bh load(const float *p) {
return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p));
}
template <> inline __m256bh load(const float *p) {
return _mm512_cvtneps_pbh(_mm512_loadu_ps(p));
}
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS // CONSTANTS
@ -252,199 +290,170 @@ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION // FLOATING POINT MATRIX MULTIPLICATION
template <int M>
static inline int64_t BLOCK_SIZE(size_t m) {
const int64_t NB_BLOC_M = (m + M - 1) / M;
return (m % NB_BLOC_M == 0) ? m / NB_BLOC_M : (m / NB_BLOC_M) + 1;
}
static constexpr inline int64_t BLOC_POS(int64_t ib, int64_t ibN, int64_t bloc_size) {
return ib < ibN ? ib * bloc_size : ibN * bloc_size + (ib - ibN) * (bloc_size - 1);
}
template <int KN, typename D, typename V, typename TA, typename TB, typename TC> template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS { class tinyBLAS {
public: public:
tinyBLAS(int64_t k, tinyBLAS(const ggml_compute_params * params, int64_t k,
const TA *A, int64_t lda, const TA *A, int64_t lda,
const TB *B, int64_t ldb, const TB *B, int64_t ldb,
TC *C, int64_t ldc, TC *C, int64_t ldc)
int ith, int nth) : params(params), A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc) {
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
} }
void matmul(int64_t m, int64_t n) { bool matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n); if (k % KN != 0)
return false;
// compute RM for only need tile with size RM&RM-1
#if VECTOR_REGISTERS == 32
if (m % 16 == 0 && (m/16 >= params->nth)) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 4>(m, n, SIZE_N, 12);
return true;
}
if (m % 8 == 0 ) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 2>(m, n, SIZE_N, 12);
return true;
}
if (m % 4 == 0) {
const int64_t SIZE_N = BLOCK_SIZE<6>(n);
mnpack<4, 6, 1>(m, n, SIZE_N, 12);
return true;
}
#else // VECTOR_REGISTERS == 16
if (m % 16 == 0 && (m/16 >= params->nth)) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 4>(m, n, SIZE_N, 24);
return true;
}
if (m % 8 == 0 ) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 2>(m, n, SIZE_N, 24);
return true;
}
if (m % 4 == 0) {
const int64_t SIZE_N = BLOCK_SIZE<3>(n);
mnpack<4, 3, 1>(m, n, SIZE_N, 24);
return true;
}
#endif
return false;
} }
private: private:
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { template <int RM, int RN, int BM>
int64_t mc, nc, mp, np; inline void mnpack(int64_t m, int64_t n, int64_t SIZE_N, int64_t BN) {
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) { if (SIZE_N == RN) {
#if VECTOR_REGISTERS == 32 return gemm<RM, RN, BM>(m, n, BN);
case 0x55: }
mc = 5; if constexpr (RN > 1) {
nc = 5; return mnpack<RM, RN-1, BM>(m, n, SIZE_N, BN);
gemm<5, 5>(m0, m, n0, n); } else {
break; GGML_LOG_ERROR("mnpack<%d, %d> bloc size not supported\n", RM, (int)SIZE_N);
case 0x45: GGML_ASSERT(false); // we have miss something.
mc = 4;
nc = 5;
gemm<4, 5>(m0, m, n0, n);
break;
case 0x54:
mc = 5;
nc = 4;
gemm<5, 4>(m0, m, n0, n);
break;
case 0x44:
mc = 4;
nc = 4;
gemm<4, 4>(m0, m, n0, n);
break;
case 0x53:
mc = 5;
nc = 3;
gemm<5, 3>(m0, m, n0, n);
break;
case 0x35:
mc = 3;
nc = 5;
gemm<3, 5>(m0, m, n0, n);
break;
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
#else
case 0x55:
case 0x54:
case 0x53:
case 0x45:
case 0x44:
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
case 0x35:
#endif
case 0x34:
mc = 3;
nc = 4;
gemm<3, 4>(m0, m, n0, n);
break;
case 0x52:
mc = 5;
nc = 2;
gemm<5, 2>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3>(m0, m, n0, n);
break;
case 0x25:
mc = 2;
nc = 5;
gemm<2, 5>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm<4, 2>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm<2, 4>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3>(m0, m, n0, n);
break;
case 0x51:
mc = 5;
nc = 1;
gemm<5, 1>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm<4, 1>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2>(m0, m, n0, n);
break;
case 0x15:
mc = 1;
nc = 5;
gemm<1, 5>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm<1, 4>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm<3, 1>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm<1, 3>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1>(m0, m, n0, n);
break;
default:
return;
} }
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
} }
template <int RM, int RN> template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { inline void gemm_bloc(int64_t ii, int64_t jj) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
D Cv[RN][RM] = {}; D Cv[RN][RM] = {};
for (int64_t l = 0; l < k; l += KN) for (int64_t l = 0; l < k; l += KN) {
for (int64_t j = 0; j < RN; ++j) // help compiler for op order.
for (int64_t i = 0; i < RM; ++i) if constexpr (RM <= RN) {
Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l), V Av[RM];
load<V>(B + ldb * (jj + j) + l), for (int64_t i = 0; i < RM; ++i) {
Cv[j][i]); Av[i] = load<V>(A + lda * (ii + i) + l);
}
for (int64_t j = 0; j < RN; ++j) {
V Bv = load<V>(B + ldb * (jj + j) + l);
for (int64_t i = 0; i < RM; ++i) {
Cv[j][i] = madd(Av[i], Bv, Cv[j][i]);
}
}
} else {
V Bv[RN];
for (int64_t j = 0; j < RN; ++j) {
Bv[j] = load<V>(B + ldb * (jj + j) + l);
}
for (int64_t i = 0; i < RM; ++i) {
V Av = load<V>(A + lda * (ii + i) + l);
for (int64_t j = 0; j < RN; ++j) {
Cv[j][i] = madd(Av, Bv[j], Cv[j][i]);
}
}
}
}
for (int64_t j = 0; j < RN; ++j) for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i) for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
} }
template <int RM, int RN, int BM>
NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) {
static std::atomic<int64_t> current_chunk;
GGML_ASSERT(m % (RM * BM) == 0);
const int64_t ytiles = m / (RM * BM);
const int64_t xtiles = (n + RN -1) / RN;
const int64_t jj_RN = (xtiles - (xtiles * RN - n));
// "round" bloc_size to "nearest" BN
const int64_t NB_BN = xtiles < BN ? 1 : (xtiles + BN / 2) / BN;
const int64_t SIZE_BN = xtiles % NB_BN == 0 ? xtiles / NB_BN : xtiles / NB_BN + 1;
const int64_t jj_BN = (NB_BN - (NB_BN * SIZE_BN - xtiles));
const int64_t nb_job = ytiles * NB_BN;
if (params->ith == 0) {
GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles);
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
std::atomic_store_explicit(&current_chunk, (int64_t)params->nth, std::memory_order_relaxed);
} }
ggml_barrier(params->threadpool);
int64_t job = params->ith;
while (job < nb_job) {
const int64_t ii = (job % ytiles) * RM * BM;
const int64_t jb = job / ytiles;
const int64_t jr0 = BLOC_POS(jb , jj_BN, SIZE_BN);
const int64_t jrN = BLOC_POS(jb+1, jj_BN, SIZE_BN);
const int64_t jj0 = BLOC_POS(jr0, jj_RN, RN);
const int64_t jj2 = BLOC_POS(jrN, jj_RN, RN);
const int64_t jj1 = jj2 < jj_RN * RN ? jj2 : jj_RN * RN;
for (int64_t bi = 0; bi < BM * RM; bi += RM) {
int64_t jj = jj0;
for (; jj < jj1; jj += RN) {
gemm_bloc<RM, RN>(ii + bi, jj);
}
if constexpr (RN > 1) {
for (; jj < jj2; jj += RN - 1) {
gemm_bloc<RM, RN-1>(ii + bi, jj);
}
}
GGML_ASSERT(jj == jj2);
}
// next step.
job = std::atomic_fetch_add_explicit(&current_chunk, (int64_t)1, std::memory_order_relaxed);
}
ggml_barrier(params->threadpool);
return;
}
const ggml_compute_params * params;
const TA *const A; const TA *const A;
const TB *const B; const TB *const B;
TC *const C; TC *const C;
@ -452,8 +461,6 @@ class tinyBLAS {
const int64_t lda; const int64_t lda;
const int64_t ldb; const int64_t ldb;
const int64_t ldc; const int64_t ldc;
const int ith;
const int nth;
}; };
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
@ -1657,8 +1664,9 @@ class tinyBLAS_PPC {
* @param Ctype is GGML data type of `C` * @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request * @return true if this function was able to service the matmul request
*/ */
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) { const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int Atype, int Btype, int Ctype) {
assert(m >= 0); assert(m >= 0);
assert(n >= 0); assert(n >= 0);
@ -1666,8 +1674,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
assert(lda >= k); assert(lda >= k);
assert(ldb >= k); assert(ldb >= k);
assert(ldc >= m); assert(ldc >= m);
assert(nth > 0); assert(params->nth > 0);
assert(ith < nth); assert(params->ith < params->nth);
// only enable sgemm for prompt processing // only enable sgemm for prompt processing
if (n < 2) if (n < 2)
@ -1682,37 +1690,25 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
if (Btype != GGML_TYPE_F32) if (Btype != GGML_TYPE_F32)
return false; return false;
#if defined(__AVX512F__) #if defined(__AVX512F__)
if (k % 16) tinyBLAS<16, __m512, __m512, float, float, float> tb{ params,
return false;
tinyBLAS<16, __m512, __m512, float, float, float> tb{
k, (const float *)A, lda, k, (const float *)A, lda,
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc};
ith, nth}; return tb.matmul(m, n);
tb.matmul(m, n);
return true;
#elif defined(__AVX__) || defined(__AVX2__) #elif defined(__AVX__) || defined(__AVX2__)
if (k % 8) tinyBLAS<8, __m256, __m256, float, float, float> tb{ params,
return false;
tinyBLAS<8, __m256, __m256, float, float, float> tb{
k, (const float *)A, lda, k, (const float *)A, lda,
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc};
ith, nth}; return tb.matmul(m, n);
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON) #elif defined(__ARM_NEON)
if (n < 4) if (n < 4)
return false; return false;
if (k % 4) tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params,
return false;
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
k, (const float *)A, lda, k, (const float *)A, lda,
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc};
ith, nth}; return tb.matmul(m, n);
tb.matmul(m, n);
return true;
#elif defined(__MMA__) #elif defined(__MMA__)
if (k % 8) if (k % 8)
return false; return false;
@ -1720,7 +1716,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const float *)A, lda, k, (const float *)A, lda,
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#else #else
@ -1728,60 +1724,71 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
#endif #endif
} }
case GGML_TYPE_BF16: {
#if defined(__AVX512BF16__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__AVX512F__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__AVX2__)
if (Btype == GGML_TYPE_BF16) {
tinyBLAS<8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc};
return tb.matmul(m, n);
}
#endif
return false;
}
case GGML_TYPE_F16: { case GGML_TYPE_F16: {
#if defined(__AVX512F__) #if defined(__AVX512F__)
if (k % 16) if (Btype == GGML_TYPE_F16) {
return false; tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k,
if (Btype != GGML_TYPE_F32) (const ggml_fp16_t *)A, lda,
return false; (const ggml_fp16_t *)B, ldb,
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{ (float *)C, ldc};
k, (const ggml_fp16_t *)A, lda, return tb.matmul(m, n);
(const float *)B, ldb, }
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8) if (Btype == GGML_TYPE_F16) {
return false; tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k,
if (Btype != GGML_TYPE_F32) (const ggml_fp16_t *)A, lda,
return false; (const ggml_fp16_t *)B, ldb,
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{ (float *)C, ldc};
k, (const ggml_fp16_t *)A, lda, return tb.matmul(m, n);
(const float *)B, ldb, }
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8) if (n < 8)
return false; return false;
if (k % 8) if (Btype == GGML_TYPE_F16) {
return false; tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params,
if (Btype != GGML_TYPE_F16)
return false;
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
k, (const ggml_fp16_t *)A, lda, k, (const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb, (const ggml_fp16_t *)B, ldb,
(float *)C, ldc, (float *)C, ldc};
ith, nth}; return tb.matmul(m, n);
tb.matmul(m, n); }
return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER) #elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4) if (Btype == GGML_TYPE_F32) {
return false; tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ params,
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda, k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb, (const float *)B, ldb,
(float *)C, ldc, (float *)C, ldc};
ith, nth}; return tb.matmul(m, n);
tb.matmul(m, n); }
return true;
#else
return false;
#endif #endif
return false;
} }
case GGML_TYPE_Q8_0: { case GGML_TYPE_Q8_0: {
@ -1792,7 +1799,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q8_0 *)A, lda, k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_FEATURE_DOTPROD) #elif defined(__ARM_FEATURE_DOTPROD)
@ -1800,7 +1807,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q8_0 *)A, lda, k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#else #else
@ -1816,7 +1823,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q4_0 *)A, lda, k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#elif defined(__ARM_FEATURE_DOTPROD) #elif defined(__ARM_FEATURE_DOTPROD)
@ -1824,7 +1831,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q4_0 *)A, lda, k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#else #else
@ -1840,7 +1847,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_q5_0 *)A, lda, k, (const block_q5_0 *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#else #else
@ -1856,7 +1863,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
k, (const block_iq4_nl *)A, lda, k, (const block_iq4_nl *)A, lda,
(const block_q8_0 *)B, ldb, (const block_q8_0 *)B, ldb,
(float *)C, ldc, (float *)C, ldc,
ith, nth}; params->ith, params->nth};
tb.matmul(m, n); tb.matmul(m, n);
return true; return true;
#else #else
@ -1868,6 +1875,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
return false; return false;
} }
(void)params;
(void)m; (void)m;
(void)n; (void)n;
(void)k; (void)k;
@ -1877,8 +1885,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda
(void)ldb; (void)ldb;
(void)C; (void)C;
(void)ldc; (void)ldc;
(void)ith;
(void)nth;
(void)Atype; (void)Atype;
(void)Btype; (void)Btype;
(void)Ctype; (void)Ctype;

View file

@ -5,8 +5,8 @@
extern "C" { extern "C" {
#endif #endif
bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t, bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t, int64_t, int64_t,
const void *, int64_t, void *, int64_t, int, int, const void *, int64_t, const void *, int64_t, void *, int64_t,
int, int, int); int, int, int);
#ifdef __cplusplus #ifdef __cplusplus

File diff suppressed because it is too large Load diff

View file

@ -1683,62 +1683,62 @@ const uint64_t get_rows_q8_0_len = 3704;
extern unsigned char get_rows_q8_0_f32_data[3688]; extern unsigned char get_rows_q8_0_f32_data[3688];
const uint64_t get_rows_q8_0_f32_len = 3688; const uint64_t get_rows_q8_0_f32_len = 3688;
extern unsigned char mul_mat_vec_q2_k_f32_f32_data[9516]; extern unsigned char mul_mat_vec_q2_k_f32_f32_data[17732];
const uint64_t mul_mat_vec_q2_k_f32_f32_len = 9516; const uint64_t mul_mat_vec_q2_k_f32_f32_len = 17732;
extern unsigned char mul_mat_vec_q2_k_f16_f32_data[9740]; extern unsigned char mul_mat_vec_q2_k_f16_f32_data[18212];
const uint64_t mul_mat_vec_q2_k_f16_f32_len = 9740; const uint64_t mul_mat_vec_q2_k_f16_f32_len = 18212;
extern unsigned char mul_mat_vec_id_q2_k_f32_data[9300]; extern unsigned char mul_mat_vec_id_q2_k_f32_data[17228];
const uint64_t mul_mat_vec_id_q2_k_f32_len = 9300; const uint64_t mul_mat_vec_id_q2_k_f32_len = 17228;
extern unsigned char dequant_q2_k_data[3960]; extern unsigned char dequant_q2_k_data[3960];
const uint64_t dequant_q2_k_len = 3960; const uint64_t dequant_q2_k_len = 3960;
extern unsigned char mul_mat_vec_q3_k_f32_f32_data[13056]; extern unsigned char mul_mat_vec_q3_k_f32_f32_data[25020];
const uint64_t mul_mat_vec_q3_k_f32_f32_len = 13056; const uint64_t mul_mat_vec_q3_k_f32_f32_len = 25020;
extern unsigned char mul_mat_vec_q3_k_f16_f32_data[13320]; extern unsigned char mul_mat_vec_q3_k_f16_f32_data[25540];
const uint64_t mul_mat_vec_q3_k_f16_f32_len = 13320; const uint64_t mul_mat_vec_q3_k_f16_f32_len = 25540;
extern unsigned char mul_mat_vec_id_q3_k_f32_data[12856]; extern unsigned char mul_mat_vec_id_q3_k_f32_data[24532];
const uint64_t mul_mat_vec_id_q3_k_f32_len = 12856; const uint64_t mul_mat_vec_id_q3_k_f32_len = 24532;
extern unsigned char dequant_q3_k_data[4828]; extern unsigned char dequant_q3_k_data[4828];
const uint64_t dequant_q3_k_len = 4828; const uint64_t dequant_q3_k_len = 4828;
extern unsigned char mul_mat_vec_q4_k_f32_f32_data[8948]; extern unsigned char mul_mat_vec_q4_k_f32_f32_data[16620];
const uint64_t mul_mat_vec_q4_k_f32_f32_len = 8948; const uint64_t mul_mat_vec_q4_k_f32_f32_len = 16620;
extern unsigned char mul_mat_vec_q4_k_f16_f32_data[9204]; extern unsigned char mul_mat_vec_q4_k_f16_f32_data[17132];
const uint64_t mul_mat_vec_q4_k_f16_f32_len = 9204; const uint64_t mul_mat_vec_q4_k_f16_f32_len = 17132;
extern unsigned char mul_mat_vec_id_q4_k_f32_data[8716]; extern unsigned char mul_mat_vec_id_q4_k_f32_data[16100];
const uint64_t mul_mat_vec_id_q4_k_f32_len = 8716; const uint64_t mul_mat_vec_id_q4_k_f32_len = 16100;
extern unsigned char dequant_q4_k_data[5984]; extern unsigned char dequant_q4_k_data[5984];
const uint64_t dequant_q4_k_len = 5984; const uint64_t dequant_q4_k_len = 5984;
extern unsigned char mul_mat_vec_q5_k_f32_f32_data[9680]; extern unsigned char mul_mat_vec_q5_k_f32_f32_data[18180];
const uint64_t mul_mat_vec_q5_k_f32_f32_len = 9680; const uint64_t mul_mat_vec_q5_k_f32_f32_len = 18180;
extern unsigned char mul_mat_vec_q5_k_f16_f32_data[9904]; extern unsigned char mul_mat_vec_q5_k_f16_f32_data[18660];
const uint64_t mul_mat_vec_q5_k_f16_f32_len = 9904; const uint64_t mul_mat_vec_q5_k_f16_f32_len = 18660;
extern unsigned char mul_mat_vec_id_q5_k_f32_data[9448]; extern unsigned char mul_mat_vec_id_q5_k_f32_data[17660];
const uint64_t mul_mat_vec_id_q5_k_f32_len = 9448; const uint64_t mul_mat_vec_id_q5_k_f32_len = 17660;
extern unsigned char dequant_q5_k_data[6032]; extern unsigned char dequant_q5_k_data[6032];
const uint64_t dequant_q5_k_len = 6032; const uint64_t dequant_q5_k_len = 6032;
extern unsigned char mul_mat_vec_q6_k_f32_f32_data[9520]; extern unsigned char mul_mat_vec_q6_k_f32_f32_data[17924];
const uint64_t mul_mat_vec_q6_k_f32_f32_len = 9520; const uint64_t mul_mat_vec_q6_k_f32_f32_len = 17924;
extern unsigned char mul_mat_vec_q6_k_f16_f32_data[9784]; extern unsigned char mul_mat_vec_q6_k_f16_f32_data[18444];
const uint64_t mul_mat_vec_q6_k_f16_f32_len = 9784; const uint64_t mul_mat_vec_q6_k_f16_f32_len = 18444;
extern unsigned char mul_mat_vec_id_q6_k_f32_data[9288]; extern unsigned char mul_mat_vec_id_q6_k_f32_data[17404];
const uint64_t mul_mat_vec_id_q6_k_f32_len = 9288; const uint64_t mul_mat_vec_id_q6_k_f32_len = 17404;
extern unsigned char dequant_q6_k_data[4264]; extern unsigned char dequant_q6_k_data[4264];
const uint64_t dequant_q6_k_len = 4264; const uint64_t dequant_q6_k_len = 4264;

View file

@ -1855,53 +1855,58 @@ static void ggml_vk_load_shaders(vk_device& device) {
// mul mat vec // mul mat vec
// AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled // the number of rows computed per shader depends on GPU model and quant
uint32_t rm = 1; uint32_t rm_stdq = 1;
if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL) uint32_t rm_kq = 2;
rm = 2; if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN
rm_stdq = 2;
rm_kq = 4;
}
} else if (device->vendor_id == VK_VENDOR_ID_INTEL)
rm_stdq = 2;
// computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
// dequant shaders // dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
@ -3205,8 +3210,8 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
// Check if src is pinned memory // Check if src is pinned memory
vk_buffer buf; vk_buffer buf = nullptr;
size_t buf_offset; size_t buf_offset = 0;
ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset); ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset);
const uint64_t ne0 = tensor->ne[0]; const uint64_t ne0 = tensor->ne[0];
@ -3269,7 +3274,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont
VkBufferCopy buf_copy{ 0, offset, copy_size }; VkBufferCopy buf_copy{ 0, offset, copy_size };
ggml_vk_sync_buffers(subctx); ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(static_cast<VkCommandBuffer>(subctx->s->buffer), static_cast<VkBuffer>(staging->buffer), static_cast<VkBuffer>(dst->buffer), 1, &buf_copy); vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i3 = 0; i3 < ne3; i3++) {
for (uint64_t i2 = 0; i2 < ne2; i2++) { for (uint64_t i2 = 0; i2 < ne2; i2++) {
@ -3302,7 +3307,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz
} }
// Check if src is pinned memory // Check if src is pinned memory
vk_buffer buf = nullptr; vk_buffer buf = nullptr;
size_t buf_offset; size_t buf_offset = 0;
ggml_vk_host_get(dst->device, src, buf, buf_offset); ggml_vk_host_get(dst->device, src, buf, buf_offset);
if (buf != nullptr) { if (buf != nullptr) {
@ -3344,7 +3349,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz
copy_size}; copy_size};
ggml_vk_sync_buffers(subctx); ggml_vk_sync_buffers(subctx);
vkCmdCopyBuffer(subctx->s->buffer, staging_buffer->buffer, dst->buffer, 1, &buf_copy); vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy);
if (width == spitch) { if (width == spitch) {
deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys); deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys);
@ -3400,7 +3405,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size
// Check if dst is pinned memory // Check if dst is pinned memory
vk_buffer buf = nullptr; vk_buffer buf = nullptr;
size_t buf_offset; size_t buf_offset = 0;
ggml_vk_host_get(src->device, dst, buf, buf_offset); ggml_vk_host_get(src->device, dst, buf, buf_offset);
std::vector<vk::BufferCopy> slices(1); std::vector<vk::BufferCopy> slices(1);
@ -3480,7 +3485,7 @@ static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t ds
VkBufferCopy bc{ src_offset, dst_offset, size }; VkBufferCopy bc{ src_offset, dst_offset, size };
vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc); vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc);
} }
static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
@ -3732,9 +3737,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx; vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0; size_t qx_buf_offset = 0;
vk_buffer d_Qy; vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0; size_t qy_buf_offset = 0;
bool src0_uma = false; bool src0_uma = false;
@ -3934,9 +3939,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qx; vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0; size_t qx_buf_offset = 0;
vk_buffer d_Qy; vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0; size_t qy_buf_offset = 0;
bool src0_uma = false; bool src0_uma = false;
@ -4112,7 +4117,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
vk_buffer d_Qy; vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0; size_t qy_buf_offset = 0;
bool src1_uma = false; bool src1_uma = false;
@ -4300,11 +4305,11 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx; vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0; size_t qx_buf_offset = 0;
vk_buffer d_Qy; vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0; size_t qy_buf_offset = 0;
vk_buffer d_ids; vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0; size_t ids_buf_offset = 0;
bool src0_uma = false; bool src0_uma = false;
@ -4505,11 +4510,11 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
vk_buffer d_Qx; vk_buffer d_Qx = nullptr;
size_t qx_buf_offset = 0; size_t qx_buf_offset = 0;
vk_buffer d_Qy; vk_buffer d_Qy = nullptr;
size_t qy_buf_offset = 0; size_t qy_buf_offset = 0;
vk_buffer d_ids; vk_buffer d_ids = nullptr;
size_t ids_buf_offset = 0; size_t ids_buf_offset = 0;
bool src0_uma = false; bool src0_uma = false;
@ -4768,8 +4773,8 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
ggml_vk_sync_buffers(subctx); ggml_vk_sync_buffers(subctx);
vk_buffer d_Q, d_K, d_V, d_D, d_M; vk_buffer d_Q = nullptr, d_K = nullptr, d_V = nullptr, d_D = nullptr, d_M = nullptr;
uint64_t q_buf_offset, k_buf_offset, v_buf_offset, d_buf_offset, m_buf_offset; size_t q_buf_offset = 0, k_buf_offset = 0, v_buf_offset = 0, d_buf_offset = 0, m_buf_offset = 0;
bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false; bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false;
@ -5474,8 +5479,8 @@ static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subc
ggml_vk_sync_buffers(subctx); ggml_vk_sync_buffers(subctx);
vk_buffer d_D, d_K, d_V, d_R, d_TF, d_TD, d_State; vk_buffer d_D = nullptr, d_K = nullptr, d_V = nullptr, d_R = nullptr, d_TF = nullptr, d_TD = nullptr, d_State = nullptr;
uint64_t k_offset, v_offset, r_offset, tf_offset, td_offset, state_offset, dst_offset; size_t k_offset = 0, v_offset = 0, r_offset = 0, tf_offset = 0, td_offset = 0, state_offset = 0, dst_offset = 0;
bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false; bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false;
if (ctx->device->uma) { if (ctx->device->uma) {

View file

@ -10,9 +10,10 @@ float16_t dequantFuncQ4_0(const in decodeBufQ4_0 bl, const in uint blockCoords[2
const float16_t d = bl.block.d; const float16_t d = bl.block.d;
const uint idx = coordInBlock[1]; const uint idx = coordInBlock[1];
const uint shift = (idx & 0x10) >> 2; const uint shift = (idx & 0x10) >> 2;
uint32_t qs = unpack8(uint32_t(bl.block.qs[(idx & 0xE) >> 1]))[idx & 1]; uint32_t qs = uint32_t(bl.block.qs[(idx & 0xE) >> 1]);
qs >>= shift; qs >>= shift;
qs &= 0xF; qs &= 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = (float16_t(qs) - float16_t(8)) * d; float16_t ret = (float16_t(qs) - float16_t(8)) * d;
return ret; return ret;
} }
@ -152,15 +153,17 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4
block_q4_K block; block_q4_K block;
}; };
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4_K_packed16 {
block_q4_K_packed16 block;
};
float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{ {
decodeBufQ4_K_packed16 bl16 = decodeBufQ4_K_packed16(bl);
const uint idx = coordInBlock[1]; const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 64; // 0,1,2,3 const uint b = (idx & 0x20) >> 5; // 0,1
const uint b = (iqs % 64) / 32; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7 const uint is = (idx & 0xE0) >> 5; // 0..7
const uint qsi = n * 32 + (iqs % 32); // 0..127
const f16vec2 loadd = bl.block.d; const f16vec2 loadd = bl.block.d;
@ -184,9 +187,11 @@ float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2
const float16_t d = loadd.x * float16_t(sc); const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte); const float16_t m = loadd.y * float16_t(mbyte);
uint32_t dmask = 0xF << (b * 4); uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = d * float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) - m; float16_t ret = d * float16_t(qs) - m;
return ret; return ret;
} }
@ -195,18 +200,19 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5
block_q5_K block; block_q5_K block;
}; };
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5_K_packed16 {
block_q5_K_packed16 block;
};
float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{ {
decodeBufQ5_K_packed16 bl16 = decodeBufQ5_K_packed16(bl);
const uint idx = coordInBlock[1]; const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 64; // 0,1,2,3 const uint b = (idx & 0x20) >> 5; // 0,1
const uint b = (iqs % 64) / 32; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7 const uint is = (idx & 0xE0) >> 5; // 0..7
const uint qsi = n * 32 + (iqs % 32); // 0..127
const uint qhi = (iqs % 32); // 0..31
const uint8_t hm = uint8_t(1 << (iqs / 32)); const uint32_t hm = 0x0101 << is;
const f16vec2 loadd = bl.block.d; const f16vec2 loadd = bl.block.d;
@ -230,9 +236,15 @@ float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2
const float16_t d = loadd.x * float16_t(sc); const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte); const float16_t m = loadd.y * float16_t(mbyte);
uint32_t dmask = 0xF << (b * 4); uint qh = uint32_t(bl16.block.qh[(idx & 0x1E) >> 1]);
qh = qh & hm;
qh = unpack8(qh)[idx & 1];
float16_t ret = d * (float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) + float16_t((bl.block.qh[qhi ] & hm) != 0 ? 16 : 0)) - m; uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
float16_t ret = d * (float16_t(qs) + (qh != 0 ? float16_t(16) : float16_t(0))) - m;
return ret; return ret;
} }
@ -241,22 +253,30 @@ layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ6_
block_q6_K block; block_q6_K block;
}; };
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ6_K_packed16 {
block_q6_K_packed16 block;
};
float16_t dequantFuncQ6_K(const in decodeBufQ6_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) float16_t dequantFuncQ6_K(const in decodeBufQ6_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{ {
decodeBufQ6_K_packed16 bl16 = decodeBufQ6_K_packed16(bl);
const uint idx = coordInBlock[1]; const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint n = iqs / 128; // 0,1 const uint b = (idx & 0x40) >> 6; // 0,1
const uint b = (iqs % 128) / 64; // 0,1 const uint qhshift = (idx & 0x60) >> 4; // 0,2,4,6
const uint is_b = (iqs % 32) / 16; // 0,1 const uint is = (idx & 0xF0) >> 4; // 0..15
const uint qhshift = ((iqs % 128) / 32) * 2;// 0,2,4,6
const uint is = 8 * n + qhshift + is_b; // 0..15
const uint qsi = n * 64 + (iqs % 64); // 0..127
const uint qhi = n * 32 + (iqs % 32); // 0..63
const float16_t dscale = bl.block.d * float16_t(bl.block.scales[is]); const float16_t dscale = bl.block.d * float16_t(bl.block.scales[is]);
float16_t ret = dscale * float16_t(int8_t(((bl.block.ql[qsi ] >> (b * 4)) & 0xF) | (((bl.block.qh[qhi ] >> qhshift) & 3) << 4)) - 32); uint ql = uint32_t(bl16.block.ql[((idx & 0x80) >> 2) + ((idx & 0x3E) >> 1)]);
ql = (ql >> (b * 4)) & 0x0F0F;
uint qh = uint32_t(bl16.block.qh[((idx & 0x80) >> 3) + ((idx & 0x1E) >> 1)]);
qh = ((qh >> qhshift) & 0x0303) << 4;
int q = unpack8(ql | qh)[idx & 1];
float16_t ret = dscale * float16_t(q - 32);
return ret; return ret;
} }

View file

@ -6,21 +6,15 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K; const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block // 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16; const uint it_size = gl_WorkGroupSize.x/16;
@ -38,15 +32,15 @@ void main() {
const uint s_offset = 8*v_im; const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0; const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp FLOAT_TYPE temp[NUM_ROWS];
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset; const uint y_idx = i * QUANT_K + y_offset;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = d.x;
const FLOAT_TYPE dmin = d.y;
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
@ -56,6 +50,12 @@ void main() {
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = d.x;
const FLOAT_TYPE dmin = d.y;
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
@ -94,20 +94,40 @@ void main() {
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
} }
temp = fma(dall, sum1, fma(-dmin, sum2, temp)); temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
}
} }
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result // sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier(); barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; [[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
} }
barrier(); barrier();
} }
if (tid == 0) { if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]); [[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
} }
} }

View file

@ -6,21 +6,15 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K; const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block // 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16; const uint it_size = gl_WorkGroupSize.x/16;
@ -39,15 +33,17 @@ void main() {
const uint q_offset = 32*v_im + l0; const uint q_offset = 32*v_im + l0;
const uint y_offset = 128*v_im + l0; const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp FLOAT_TYPE temp[NUM_ROWS];
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
const uint s_shift = 4 * v_im; const uint s_shift = 4 * v_im;
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset; const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
@ -57,6 +53,10 @@ void main() {
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
@ -81,20 +81,40 @@ void main() {
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
} }
temp = fma(d, sum, temp); temp[n] = fma(d, sum, temp[n]);
}
} }
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result // sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier(); barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; [[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
} }
barrier(); barrier();
} }
if (tid == 0) { if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]); [[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
} }
} }

View file

@ -7,21 +7,15 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K; const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block // 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16; const uint it_size = gl_WorkGroupSize.x/16;
@ -42,12 +36,23 @@ void main() {
const uint q_offset = 32*v_im + l0; const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0; const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp FLOAT_TYPE temp[NUM_ROWS];
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset; const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128; const uint y2_idx = y1_idx + 128;
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d; f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
@ -98,11 +103,6 @@ void main() {
const uint32_t q4_14 = qs64_hi4.z; const uint32_t q4_14 = qs64_hi4.z;
const uint32_t q4_15 = qs64_hi4.w; const uint32_t q4_15 = qs64_hi4.w;
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
@ -112,20 +112,40 @@ void main() {
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
}
} }
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result // sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier(); barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; [[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
} }
barrier(); barrier();
} }
if (tid == 0) { if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]); [[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
} }
} }

View file

@ -7,21 +7,15 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K; const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block // 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16; const uint it_size = gl_WorkGroupSize.x/16;
@ -39,12 +33,27 @@ void main() {
const uint q_offset = 32*v_im + l0; const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0; const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp FLOAT_TYPE temp[NUM_ROWS];
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset; const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128; const uint y2_idx = y1_idx + 128;
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d; f16vec2 d = data_a[ib0 + i].d;
const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
@ -107,15 +116,6 @@ void main() {
const uint32_t q4_14 = qs64_80_hi4.z; const uint32_t q4_14 = qs64_80_hi4.z;
const uint32_t q4_15 = qs64_80_hi4.w; const uint32_t q4_15 = qs64_80_hi4.w;
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
const FLOAT_TYPE sx = const FLOAT_TYPE sx =
fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.x), q4_0,
fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.y), q4_1,
@ -141,20 +141,40 @@ void main() {
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
}
} }
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result // sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier(); barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; [[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
} }
barrier(); barrier();
} }
if (tid == 0) { if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]); [[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
} }
} }

View file

@ -7,21 +7,15 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
shared FLOAT_TYPE tmp[BLOCK_SIZE]; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
if (row >= p.stride_d) {
return;
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset; uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset); get_offsets(a_offset, b_offset, d_offset);
const uint num_blocks_per_row = p.ncols / QUANT_K; const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
// 16 threads are used to process each block // 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16; const uint it_size = gl_WorkGroupSize.x/16;
@ -42,11 +36,22 @@ void main() {
const uint s_offset = 8*v_im + is; const uint s_offset = 8*v_im + is;
const uint y_offset = 128*v_im + l0; const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp FLOAT_TYPE temp[NUM_ROWS];
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset; const uint y_idx = i * QUANT_K + y_offset;
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
FLOAT_TYPE scales[4]; FLOAT_TYPE scales[4];
@ -79,11 +84,6 @@ void main() {
uvec4 q2 = uvec4(unpack8(q2_u32)); uvec4 q2 = uvec4(unpack8(q2_u32));
uvec4 q3 = uvec4(unpack8(q3_u32)); uvec4 q3 = uvec4(unpack8(q3_u32));
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
FLOAT_TYPE sum = FLOAT_TYPE(0.0); FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 4; ++l) { [[unroll]] for (int l = 0; l < 4; ++l) {
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
@ -91,20 +91,40 @@ void main() {
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
} }
temp += sum * d; temp[n] += sum * d;
}
} }
tmp[gl_LocalInvocationID.x] = temp;
// sum up partial sums and write back result // sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier(); barrier();
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) { if (tid < s) {
tmp[tid] += tmp[tid + s]; [[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
} }
barrier(); barrier();
} }
if (tid == 0) { if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]); [[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
} }
} }

View file

@ -79,7 +79,8 @@ void execute_command(const std::string& command, std::string& stdout_str, std::s
} }
PROCESS_INFORMATION pi; PROCESS_INFORMATION pi;
STARTUPINFOA si = { sizeof(STARTUPINFOA) }; STARTUPINFOA si = {};
si.cb = sizeof(STARTUPINFOA);
si.dwFlags = STARTF_USESTDHANDLES; si.dwFlags = STARTF_USESTDHANDLES;
si.hStdOutput = stdout_write; si.hStdOutput = stdout_write;
si.hStdError = stderr_write; si.hStdError = stderr_write;

View file

@ -221,6 +221,7 @@ class GGUFType:
class MODEL_ARCH(IntEnum): class MODEL_ARCH(IntEnum):
LLAMA = auto() LLAMA = auto()
DECI = auto()
FALCON = auto() FALCON = auto()
BAICHUAN = auto() BAICHUAN = auto()
GROK = auto() GROK = auto()
@ -402,6 +403,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama", MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.DECI: "deci",
MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan", MODEL_ARCH.BAICHUAN: "baichuan",
MODEL_ARCH.GROK: "grok", MODEL_ARCH.GROK: "grok",
@ -602,6 +604,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP, MODEL_TENSOR.FFN_UP_EXP,
], ],
MODEL_ARCH.DECI: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.GROK: [ MODEL_ARCH.GROK: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.OUTPUT_NORM,
@ -1448,6 +1470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD, MODEL_TENSOR.ATTN_ROT_EMBD,
], ],
MODEL_ARCH.DECI: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.BAICHUAN: [ MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD, MODEL_TENSOR.ATTN_ROT_EMBD,

View file

@ -198,6 +198,7 @@ class TensorNameMap:
"transformer.h.{bid}.self_attention.dense", # falcon "transformer.h.{bid}.self_attention.dense", # falcon
"h.{bid}.self_attention.dense", # bloom "h.{bid}.self_attention.dense", # bloom
"model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
"model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth "layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert "encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j "transformer.h.{bid}.attn.out_proj", # gpt-j

File diff suppressed because one or more lines are too long

View file

@ -1912,7 +1912,7 @@ bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token t
} }
llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
return vocab.special_bos_id; return vocab.type != LLAMA_VOCAB_TYPE_WPM ? vocab.special_bos_id : vocab.special_cls_id;
} }
llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {

View file

@ -45,7 +45,7 @@ struct llama_vocab {
id special_unk_id = 0; id special_unk_id = 0;
id special_sep_id = LLAMA_TOKEN_NULL; id special_sep_id = LLAMA_TOKEN_NULL;
id special_pad_id = LLAMA_TOKEN_NULL; id special_pad_id = LLAMA_TOKEN_NULL;
id special_cls_id = LLAMA_TOKEN_NULL; id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930
id special_mask_id = LLAMA_TOKEN_NULL; id special_mask_id = LLAMA_TOKEN_NULL;
id linefeed_id = 13; id linefeed_id = 13;

View file

@ -159,6 +159,7 @@ static int layer_name_to_number(std::string inputString)
enum llm_arch { enum llm_arch {
LLM_ARCH_LLAMA, LLM_ARCH_LLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON, LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN, LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK, LLM_ARCH_GROK,
@ -216,6 +217,7 @@ enum llm_arch {
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = { static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GROK, "grok" },
{ LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPT2, "gpt2" },
@ -687,6 +689,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
}, },
}, },
{
LLM_ARCH_DECI,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{ {
LLM_ARCH_BAICHUAN, LLM_ARCH_BAICHUAN,
{ {
@ -1686,6 +1714,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN, LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7, LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3, LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR, LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH, LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA, LLM_CHAT_TEMPLATE_GEMMA,
@ -1704,6 +1733,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT, LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_UNKNOWN, LLM_CHAT_TEMPLATE_UNKNOWN,
}; };
@ -1718,6 +1748,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN }, { "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 }, { "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 }, { "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR }, { "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH }, { "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA }, { "gemma", LLM_CHAT_TEMPLATE_GEMMA },
@ -1736,6 +1767,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
}; };
static llm_arch llm_arch_from_string(const std::string & name) { static llm_arch llm_arch_from_string(const std::string & name) {
@ -5723,7 +5755,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) {
if (hparams.n_rot != hparams.n_embd_head_k) { if (hparams.n_rot != hparams.n_embd_head_k) {
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
} }
@ -5763,6 +5795,15 @@ static void llm_load_hparams(
} }
} }
} break; } break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 80: model.type = e_model::MODEL_70B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_MINICPM: case LLM_ARCH_MINICPM:
{ {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -6602,7 +6643,8 @@ static void llm_load_vocab(
} else if ( } else if (
tokenizer_pre == "llama3" || tokenizer_pre == "llama3" ||
tokenizer_pre == "llama-v3" || tokenizer_pre == "llama-v3" ||
tokenizer_pre == "llama-bpe") { tokenizer_pre == "llama-bpe"||
tokenizer_pre == "falcon3") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
vocab.tokenizer_ignore_merges = true; vocab.tokenizer_ignore_merges = true;
vocab.tokenizer_add_bos = true; vocab.tokenizer_add_bos = true;
@ -6703,6 +6745,9 @@ static void llm_load_vocab(
} else if ( } else if (
tokenizer_pre == "minerva-7b") { tokenizer_pre == "minerva-7b") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA; vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA;
} else if (
tokenizer_pre == "megrez") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
} else { } else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
} }
@ -8029,6 +8074,68 @@ static bool llm_load_tensors(
} }
} }
} break; } break;
case LLM_ARCH_DECI:
{
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
const int64_t n_ff = hparams.n_ff(i);
const int64_t n_head = hparams.n_head(i);
const int64_t n_head_kv = hparams.n_head_kv(i);
if (n_head_kv == 0 && n_head > 0) {
// linear attention for DeciLMCausalModel
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
}
else if (n_head_kv > 0) {
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
}
// optional bias tensors
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
}
else {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
}
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
// optional MLP bias
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_MINICPM3: case LLM_ARCH_MINICPM3:
{ {
const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_rope = hparams.n_rot;
@ -11457,6 +11564,167 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_deci() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
// mutable variable, needed during the last layer of the computation to skip unused tokens
int32_t n_tokens = this->n_tokens;
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
cur = inpL;
} else {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
}
if (n_head > 0 && n_head_kv == 0) {
// "linear attention" of Llama-3_1-Nemotron-51B
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
cb(cur, "wo", il);
} else if (n_head > 0) {
// self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models
struct ggml_tensor * rope_factors = build_rope_factors(il);
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// For Granite architecture
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
struct ggml_tensor * ffn_inp = cur;
if (n_head > 0) {
ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
}
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
// For Granite architecture
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
// For Granite architecture
if (hparams.f_logit_scale) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
}
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * build_baichuan() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
@ -17571,6 +17839,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_llama(); result = llm.build_llama();
} break; } break;
case LLM_ARCH_DECI:
{
result = llm.build_deci();
} break;
case LLM_ARCH_BAICHUAN: case LLM_ARCH_BAICHUAN:
{ {
result = llm.build_baichuan(); result = llm.build_baichuan();
@ -20950,6 +21222,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values // use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA: case LLM_ARCH_LLAMA:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN: case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER: case LLM_ARCH_STARCODER:
case LLM_ARCH_PLAMO: case LLM_ARCH_PLAMO:
@ -22781,6 +23054,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
} }
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) { } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3; return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return LLM_CHAT_TEMPLATE_FALCON_3;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) { } else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR; return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) { } else if (tmpl_contains("bos_token + message['role']")) {
@ -22827,6 +23102,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_GRANITE; return LLM_CHAT_TEMPLATE_GRANITE;
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) { } else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
return LLM_CHAT_TEMPLATE_GIGACHAT; return LLM_CHAT_TEMPLATE_GIGACHAT;
} else if (tmpl_contains("<|role_start|>")) {
return LLM_CHAT_TEMPLATE_MEGREZ;
} }
return LLM_CHAT_TEMPLATE_UNKNOWN; return LLM_CHAT_TEMPLATE_UNKNOWN;
} }
@ -22933,6 +23210,15 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<|assistant|>\n"; ss << "<|assistant|>\n";
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) { } else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template // zephyr template
for (auto message : chat) { for (auto message : chat) {
@ -23176,6 +23462,16 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "assistant<|role_sep|>"; ss << "assistant<|role_sep|>";
} }
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
// Megrez template
for (auto message : chat) {
std::string role(message->role);
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
}
if (add_ass) {
ss << "<|role_start|>assistant<|role_end|>";
}
} else { } else {
// template not supported // template not supported
return -1; return -1;