mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-11 01:24:36 +00:00
Merge branch 'master' into concedo_experimental
# Conflicts: # .devops/nix/sif.nix # .github/workflows/build.yml # .github/workflows/python-check-requirements.yml # README-sycl.md # README.md # flake.lock # flake.nix # requirements/requirements-convert-hf-to-gguf.txt # scripts/compare-llama-bench.py
This commit is contained in:
commit
7c64845dea
41 changed files with 3325 additions and 2053 deletions
|
@ -44,6 +44,7 @@ struct server_params {
|
|||
int32_t write_timeout = 600;
|
||||
bool slots_endpoint = true;
|
||||
bool metrics_endpoint = false;
|
||||
int n_threads_http = -1;
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
|
@ -441,8 +442,8 @@ struct llama_server_context
|
|||
const int ga_w = params.grp_attn_w;
|
||||
|
||||
if (ga_n != 1) {
|
||||
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
|
||||
|
@ -1709,8 +1710,8 @@ struct llama_server_context
|
|||
}
|
||||
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate it
|
||||
if (slot.n_prompt_tokens >= slot.n_ctx)
|
||||
// if input prompt is too big, truncate it, if group attention self-extend is disabled
|
||||
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
|
||||
{
|
||||
const int n_left = slot.n_ctx - slot.params.n_keep;
|
||||
const int n_block_size = n_left / 2;
|
||||
|
@ -1785,9 +1786,11 @@ struct llama_server_context
|
|||
}
|
||||
|
||||
LOG_INFO("slot progression", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "n_past_se", slot.n_past_se },
|
||||
{ "ga_i", slot.ga_i },
|
||||
{ "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
|
@ -2001,6 +2004,17 @@ struct llama_server_context
|
|||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
|
||||
json model_meta() {
|
||||
return json{
|
||||
{"vocab_type", llama_vocab_type(model)},
|
||||
{"n_vocab", llama_n_vocab(model)},
|
||||
{"n_ctx_train", llama_n_ctx_train(model)},
|
||||
{"n_embd", llama_n_embd(model)},
|
||||
{"n_params", llama_model_n_params(model)},
|
||||
{"size", llama_model_size(model)},
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
|
@ -2013,6 +2027,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-scaling {none,linear,yarn}\n");
|
||||
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
|
||||
|
@ -2299,6 +2314,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "--threads-http")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.n_threads_http = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "-b" || arg == "--batch-size")
|
||||
{
|
||||
if (++i >= argc)
|
||||
|
@ -2380,14 +2404,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
#else
|
||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
||||
{
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
|
||||
params.mul_mat_q = false;
|
||||
#else
|
||||
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--main-gpu" || arg == "-mg")
|
||||
|
@ -2909,9 +2925,10 @@ int main(int argc, char **argv)
|
|||
for (const auto& metric_def : metrics_def) {
|
||||
std::string name = metric_def["name"];
|
||||
std::string help = metric_def["help"];
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
|
||||
auto value = json_value(metric_def, "value", 0);
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||
<< "llamacpp:" << name << " " << value << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2992,6 +3009,7 @@ int main(int argc, char **argv)
|
|||
state.store(SERVER_STATE_READY);
|
||||
LOG_INFO("model loaded", {});
|
||||
}
|
||||
const auto model_meta = llama.model_meta();
|
||||
|
||||
if (sparams.chat_template.empty()) { // custom chat template is not supplied
|
||||
// check if the template comes with the model is supported by us
|
||||
|
@ -3141,7 +3159,7 @@ int main(int argc, char **argv)
|
|||
}
|
||||
});
|
||||
|
||||
svr.Get("/v1/models", [¶ms](const httplib::Request& req, httplib::Response& res)
|
||||
svr.Get("/v1/models", [¶ms, &model_meta](const httplib::Request& req, httplib::Response& res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
std::time_t t = std::time(0);
|
||||
|
@ -3150,10 +3168,11 @@ int main(int argc, char **argv)
|
|||
{"object", "list"},
|
||||
{"data", {
|
||||
{
|
||||
{"id", params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", t},
|
||||
{"owned_by", "llamacpp"}
|
||||
{"id", params.model_alias},
|
||||
{"object", "model"},
|
||||
{"created", t},
|
||||
{"owned_by", "llamacpp"},
|
||||
{"meta", model_meta}
|
||||
},
|
||||
}}
|
||||
};
|
||||
|
@ -3450,6 +3469,13 @@ int main(int argc, char **argv)
|
|||
}*/
|
||||
//);
|
||||
|
||||
if (sparams.n_threads_http < 1) {
|
||||
// +2 threads for monitoring endpoints
|
||||
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
|
||||
}
|
||||
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
|
||||
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
|
||||
|
||||
LOG_INFO("HTTP server listening", log_data);
|
||||
// run the HTTP server in a thread - see comment below
|
||||
std::thread t([&]()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue