mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 17:14:36 +00:00
try to fix lora naming issues
This commit is contained in:
parent
08993696c3
commit
7a5983399b
5 changed files with 109 additions and 22 deletions
|
@ -108,14 +108,14 @@ std::unordered_map<std::string, std::string> open_clip_to_hf_clip_model = {
|
|||
{"model.positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"},
|
||||
{"model.token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"},
|
||||
{"model.text_projection", "transformer.text_model.text_projection"},
|
||||
{"model.visual.class_embedding", "transformer.visual_model.embeddings.class_embedding"},
|
||||
{"model.visual.conv1.weight", "transformer.visual_model.embeddings.patch_embedding.weight"},
|
||||
{"model.visual.ln_post.bias", "transformer.visual_model.post_layernorm.bias"},
|
||||
{"model.visual.ln_post.weight", "transformer.visual_model.post_layernorm.weight"},
|
||||
{"model.visual.ln_pre.bias", "transformer.visual_model.pre_layernorm.bias"},
|
||||
{"model.visual.ln_pre.weight", "transformer.visual_model.pre_layernorm.weight"},
|
||||
{"model.visual.positional_embedding", "transformer.visual_model.embeddings.position_embedding.weight"},
|
||||
{"model.visual.proj", "transformer.visual_model.visual_projection"},
|
||||
{"model.visual.class_embedding", "transformer.vision_model.embeddings.class_embedding"},
|
||||
{"model.visual.conv1.weight", "transformer.vision_model.embeddings.patch_embedding.weight"},
|
||||
{"model.visual.ln_post.bias", "transformer.vision_model.post_layernorm.bias"},
|
||||
{"model.visual.ln_post.weight", "transformer.vision_model.post_layernorm.weight"},
|
||||
{"model.visual.ln_pre.bias", "transformer.vision_model.pre_layernorm.bias"},
|
||||
{"model.visual.ln_pre.weight", "transformer.vision_model.pre_layernorm.weight"},
|
||||
{"model.visual.positional_embedding", "transformer.vision_model.embeddings.position_embedding.weight"},
|
||||
{"model.visual.proj", "transformer.visual_projection.weight"},
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, std::string> open_clip_to_hk_clip_resblock = {
|
||||
|
@ -157,6 +157,10 @@ std::string convert_open_clip_to_hf_clip(const std::string& name) {
|
|||
} else if (starts_with(new_name, "cond_stage_model.")) {
|
||||
prefix = "cond_stage_model.";
|
||||
new_name = new_name.substr(strlen("cond_stage_model."));
|
||||
} else if (ends_with(new_name, "vision_model.visual_projection.weight")) {
|
||||
prefix = new_name.substr(0, new_name.size() - strlen("vision_model.visual_projection.weight"));
|
||||
new_name = prefix + "visual_projection.weight";
|
||||
return new_name;
|
||||
} else {
|
||||
return new_name;
|
||||
}
|
||||
|
@ -186,7 +190,7 @@ std::string convert_open_clip_to_hf_clip(const std::string& name) {
|
|||
replace_suffix();
|
||||
|
||||
open_clip_resblock_prefix = "model.visual.transformer.resblocks.";
|
||||
hf_clip_resblock_prefix = "transformer.visual_model.encoder.layers.";
|
||||
hf_clip_resblock_prefix = "transformer.vision_model.encoder.layers.";
|
||||
|
||||
replace_suffix();
|
||||
|
||||
|
@ -200,6 +204,25 @@ std::string convert_vae_decoder_name(const std::string& name) {
|
|||
return name;
|
||||
}
|
||||
|
||||
/* If not a SDXL LoRA the unet" prefix will have already been replaced by this
|
||||
* point and "te2" and "te1" don't seem to appear in non-SDXL only "te_" */
|
||||
std::string convert_sdxl_lora_name(std::string tensor_name) {
|
||||
const std::pair<std::string, std::string> sdxl_lora_name_lookup[] = {
|
||||
{"unet", "model_diffusion_model"},
|
||||
{"te2", "cond_stage_model_1_transformer"},
|
||||
{"te1", "cond_stage_model_transformer"},
|
||||
{"text_encoder_2", "cond_stage_model_1_transformer"},
|
||||
{"text_encoder", "cond_stage_model_transformer"},
|
||||
};
|
||||
for (auto& pair_i : sdxl_lora_name_lookup) {
|
||||
if (tensor_name.compare(0, pair_i.first.length(), pair_i.first) == 0) {
|
||||
tensor_name = std::regex_replace(tensor_name, std::regex(pair_i.first), pair_i.second);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return tensor_name;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, std::unordered_map<std::string, std::string>> suffix_conversion_underline = {
|
||||
{
|
||||
"attentions",
|
||||
|
@ -248,7 +271,7 @@ std::unordered_map<std::string, std::unordered_map<std::string, std::string>> su
|
|||
},
|
||||
};
|
||||
|
||||
std::string convert_diffusers_name_to_compvis(const std::string& key, char seq) {
|
||||
std::string convert_diffusers_name_to_compvis(std::string key, char seq) {
|
||||
std::vector<std::string> m;
|
||||
|
||||
auto match = [](std::vector<std::string>& match_list, const std::regex& regex, const std::string& key) {
|
||||
|
@ -282,6 +305,11 @@ std::string convert_diffusers_name_to_compvis(const std::string& key, char seq)
|
|||
return inner_key;
|
||||
};
|
||||
|
||||
// convert attn to out
|
||||
if (ends_with(key, "to_out")) {
|
||||
key += format("%c0", seq);
|
||||
}
|
||||
|
||||
// unet
|
||||
if (match(m, std::regex(format("unet%cconv_in(.*)", seq)), key)) {
|
||||
return format("model%cdiffusion_model%cinput_blocks%c0%c0", seq, seq, seq, seq) + m[0];
|
||||
|
@ -391,8 +419,8 @@ std::string convert_diffusers_name_to_compvis(const std::string& key, char seq)
|
|||
}
|
||||
|
||||
std::string convert_tensor_name(const std::string& name) {
|
||||
std::string new_name;
|
||||
if (starts_with(name, "cond_stage_model.") || starts_with(name, "conditioner.embedders.")) {
|
||||
std::string new_name = name;
|
||||
if (starts_with(name, "cond_stage_model.") || starts_with(name, "conditioner.embedders.") || ends_with(name, ".vision_model.visual_projection.weight")) {
|
||||
new_name = convert_open_clip_to_hf_clip(name);
|
||||
} else if (starts_with(name, "first_stage_model.decoder")) {
|
||||
new_name = convert_vae_decoder_name(name);
|
||||
|
@ -406,8 +434,12 @@ std::string convert_tensor_name(const std::string& name) {
|
|||
if (pos != std::string::npos) {
|
||||
std::string name_without_network_parts = name.substr(5, pos - 5);
|
||||
std::string network_part = name.substr(pos + 1);
|
||||
|
||||
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
|
||||
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '_');
|
||||
/* For dealing with the new SDXL LoRA tensor naming convention */
|
||||
new_key = convert_sdxl_lora_name(new_key);
|
||||
|
||||
if (new_key.empty()) {
|
||||
new_name = name;
|
||||
} else {
|
||||
|
@ -416,6 +448,33 @@ std::string convert_tensor_name(const std::string& name) {
|
|||
} else {
|
||||
new_name = name;
|
||||
}
|
||||
} else if (contains(name, "lora_up") || contains(name, "lora_down") ||
|
||||
contains(name, "lora.up") || contains(name, "lora.down") ||
|
||||
contains(name, "lora_linear")) {
|
||||
size_t pos = new_name.find(".processor");
|
||||
if (pos != std::string::npos) {
|
||||
new_name.replace(pos, strlen(".processor"), "");
|
||||
}
|
||||
pos = new_name.rfind("lora");
|
||||
if (pos != std::string::npos) {
|
||||
std::string name_without_network_parts = new_name.substr(0, pos - 1);
|
||||
std::string network_part = new_name.substr(pos);
|
||||
// LOG_DEBUG("%s %s", name_without_network_parts.c_str(), network_part.c_str());
|
||||
std::string new_key = convert_diffusers_name_to_compvis(name_without_network_parts, '.');
|
||||
new_key = convert_sdxl_lora_name(new_key);
|
||||
replace_all_chars(new_key, '.', '_');
|
||||
size_t npos = network_part.rfind("_linear_layer");
|
||||
if (npos != std::string::npos) {
|
||||
network_part.replace(npos, strlen("_linear_layer"), "");
|
||||
}
|
||||
if (starts_with(network_part, "lora.")) {
|
||||
network_part = "lora_" + network_part.substr(5);
|
||||
}
|
||||
if (new_key.size() > 0) {
|
||||
new_name = "lora." + new_key + "." + network_part;
|
||||
}
|
||||
// LOG_DEBUG("new name: %s", new_name.c_str());
|
||||
}
|
||||
} else if (starts_with(name, "unet") || starts_with(name, "vae") || starts_with(name, "te")) { // for diffuser
|
||||
size_t pos = name.find_last_of('.');
|
||||
if (pos != std::string::npos) {
|
||||
|
@ -832,8 +891,12 @@ bool ModelLoader::init_from_safetensors_file(const std::string& file_path, const
|
|||
}
|
||||
}
|
||||
|
||||
TensorStorage tensor_storage(prefix + name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin);
|
||||
// ggml_n_dims returns 1 for scalars
|
||||
if (n_dims == 0) {
|
||||
n_dims = 1;
|
||||
}
|
||||
|
||||
TensorStorage tensor_storage(prefix + name, type, ne, n_dims, file_index, ST_HEADER_SIZE_LEN + header_size_ + begin);
|
||||
tensor_storage.reverse_ne();
|
||||
|
||||
size_t tensor_data_size = end - begin;
|
||||
|
@ -1172,7 +1235,9 @@ bool ModelLoader::parse_data_pkl(uint8_t* buffer,
|
|||
if (reader.phase == PickleTensorReader::READ_DIMENS) {
|
||||
reader.tensor_storage.reverse_ne();
|
||||
reader.tensor_storage.file_index = file_index;
|
||||
reader.tensor_storage.name = prefix + reader.tensor_storage.name;
|
||||
// if(strcmp(prefix.c_str(), "scarlett") == 0)
|
||||
// printf(" got tensor %s \n ", reader.tensor_storage.name.c_str());
|
||||
reader.tensor_storage.name = prefix + reader.tensor_storage.name;
|
||||
tensor_storages.push_back(reader.tensor_storage);
|
||||
// LOG_DEBUG("%s", reader.tensor_storage.name.c_str());
|
||||
// reset
|
||||
|
@ -1275,7 +1340,8 @@ std::string ModelLoader::load_merges() {
|
|||
return merges_utf8_str;
|
||||
}
|
||||
|
||||
void remove_duplicates(std::vector<TensorStorage>& vec) {
|
||||
std::vector<TensorStorage> remove_duplicates(const std::vector<TensorStorage>& vec) {
|
||||
std::vector<TensorStorage> res;
|
||||
std::unordered_map<std::string, size_t> name_to_index_map;
|
||||
|
||||
for (size_t i = 0; i < vec.size(); ++i) {
|
||||
|
@ -1283,13 +1349,16 @@ void remove_duplicates(std::vector<TensorStorage>& vec) {
|
|||
auto it = name_to_index_map.find(current_name);
|
||||
|
||||
if (it != name_to_index_map.end()) {
|
||||
vec[it->second] = vec[i];
|
||||
res[it->second] = vec[i];
|
||||
} else {
|
||||
name_to_index_map[current_name] = i;
|
||||
res.push_back(vec[i]);
|
||||
}
|
||||
}
|
||||
|
||||
vec.resize(name_to_index_map.size());
|
||||
// vec.resize(name_to_index_map.size());
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend_t backend) {
|
||||
|
@ -1303,7 +1372,9 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend
|
|||
|
||||
preprocess_tensor(tensor_storage, processed_tensor_storages);
|
||||
}
|
||||
remove_duplicates(processed_tensor_storages);
|
||||
std::vector<TensorStorage> dedup = remove_duplicates(processed_tensor_storages);
|
||||
processed_tensor_storages = dedup;
|
||||
|
||||
bool success = true;
|
||||
for (size_t file_index = 0; file_index < file_paths_.size(); file_index++) {
|
||||
std::string file_path = file_paths_[file_index];
|
||||
|
@ -1365,7 +1436,6 @@ bool ModelLoader::load_tensors(on_new_tensor_cb_t on_new_tensor_cb, ggml_backend
|
|||
if (tensor_storage.file_index != file_index) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tensor* dst_tensor = NULL;
|
||||
|
||||
success = on_new_tensor_cb(tensor_storage, &dst_tensor);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue